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Abstract

Let K = [0, 00) xR be the Laguerre hypergroup which is the fundamental
manifold of the radial function space for the Heisenberg group. In this
paper we consider the generalized shift operator, generated by Laguerre
hypergroup, by means of which the maximal function is investigated. For
1 < p < oo the Ly(K)-boundedness and weak L;(K)-boundedness result for
the maximal function is obtained.
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1. Introduction

The Hardy-Littlewood maximal function is an important tool of har-
monic analysis. It was first introduced by Hardy and Littlewood in 1930
(see [12]) for functions defined on the circle, and later it was extended to the
Fuclidean spaces, various Lie groups, symmetric spaces, and some weighted
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measure spaces (see [7], [8], [16], [19], [20]). In the setting of hypergroups,
some versions of Hardy-Littlewood maximal functions were given in [5] for
the Jacobi hypergroups of compact type, in [6] for the Jacobi-type hyper-
groups, and in [17] for the one-dimensional Bessel-Kingman hypergroups,
in [2] for the one-dimensional Chebli-Trimeche hypergroups, and in [9] (see
also [10]) for the n-dimensional Bessel-Kingman hypergroups (n > 1).

In the present work, we study the maximal function on the Laguerre
hypergroup, so we fix @ > 0 and K = [0,00) x R and we define the maximal
function using the harmonic analysis on the Laguerre hypergroup which
can be seen as a deformation of the hypergroup of radial functions on the
Heisenberg group (see, for example [1, 14, 15, 18]). For 1 < p < oo the
L,(K)-boundedness and weak Li(K)-boundedness result for the maximal
function is obtained. The proof of this result extends ideas and techniques
of [10].

2. Preliminaries

We consider the following partial differential operators:

D1:97

ot
L T
27 g2 x Oz waﬁ’

(z,t) €]0,00[xR and « € [0,00].

For « = n —1, n € N \{0}, the operator D is the radial part of the
sub-Laplacian on the Heisenberg group H,.
For (A,m) € R x N, the initial value problem

Diu = i),
Dou = —4| )| (m + C“T'H) u;
ou
u(0,0) =1, %(O,t) =0 forall teR,

has a unique solution ¢, ,, given by
oam(@,t) =ML (INa?) . (0,1) €K,

where [,,(ﬁ ) is the Laguerre function defined on R by

L) (@) = e 2L (@) /L (0)
and L,(g ) is the Laguerre polynomial of degree m and order « (see [1]).

Let o > 0 be a fixed number, K = [0,00) x R and m, the weighted
Lebesgue measure on K, given by
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2a+1
x dxdt
d t) = ———~ > 0.
ma(@,?) M+l “F
For every 1 < p < oo, we denote by L,(K) = L,(K;dm,) the spaces of
complex-valued functions f, measurable on K such that

1/p
sy = ( [ 150 0P dma(e.0)) <o, it pe 1),
and

£l = esssuplf (@, )1
(z,t)eK

Let |(z,t)|x = (z* + t2)'/* be the homogeneous norm of (z,t) € K and
r > 0. We will denote by d,(x,t) = (rz,r?*t), the dilation of (z,t) € K and
by By(z,t) the ball centered at (z,t) of radius r, i.e., the set B,(x,t) =
{(y,s) e K: |(x —y,t — s)|g < r}. Let also B, = B,(0,0).
We denote by
folw,t) = r= Gt f (51 (x,1))

the dilation of the function f defined on K preserving the mean value of f
with respect to the measure dm,, in the sense that

/ fr(z, t)ydmy(x,t) = / f(z, t)dma(x,t), Vr>0and fe Li(K).
K K

The Fourier-Laguerre transform F is defined for f € Li(K) by:

F(f)(Am) = / om0, 8) (@, ) dma (1)

K
and we have (see [1, 15])

IF o) < NIz x)-
For (z,t),(y,s) € Kand 0 € [0,27), r € [0,1) let

(z,t), (y,9)or = ((a:2 + 9y + 2zyr cos §) 12 , T+ s+ xyrsin (9) :

The generalized translation operators 7 on the Laguerre hypergroup

(z,t)
are given for a suitable function f by

L [T £ (((2,1), (y,9))p.1) dO, if a =0,

(@) . 2r Jo
Toafw5) = { & [0 (2 7 (o). (v ). d0) (1 — 12 Ldr, i > 0.
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They satisfy the following properties (see [1], [15]):
T fys) =T Fat), Tion f(w.9) = f(y,5),

1T Pl < Wy for € Ly(K),

F(TE D Om) = F(F)Om) orm(@t).
In [14] the translation operator T((fi)

is given by:
T f(y,5) = /K ) Wal(2 ), (5, 8), (2, 0))22*H dzd,

(z,t)

where dzdv is the Lebesgue measure on K, and W,, is an appropriate kernel
satisfying

/KWa((x,t), (y, ), (2,v)) 22T dzdv = 1.

For all (A\,m) € R x N, the function ¢y ,,(z,t) satisfies the following
product formula

orm (@) Prm(y, ) = T\ oxm(y, 5).

Using the generalized translation operators T ((fi), (z,t) € K, we define
a generalized convolution product * on K by

(Bt * O) (1) =T F (s 9),

where §(, 4 is the Dirac measure at (z,1).
The convolution product is defined on the space My(K) of bounded
Radon measures on K by

Gen)(f) = [T £(w.5) e ) ()

KxK

When = h-mg and v = g - my, with h and ¢ in the space L;(K) of
integrable functions on K with respect to the measure dmg(z,t), we have

wxv = (f*g)mav with g(yas) :g(y’_s)a

where h * g is the convolution product of A and ¢ defined by:

(e g)est) = [ TE)hy:5) o0 =) dimalyss), forall (1) €K
K b
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(My(K), %,4) is an involutive Banach algebra, where i is the involution
on K given by i(z,t) = (z,—t) and the convolution product * satisfies all
the conditions of Jewett (see [13]), hence (K, x*,7) is a hypergroup in the
sense of Jewett (see [3], [13]) and the functions ¢} ,, are characters of K. If
a =n — 1 is a nonnegative integer, then the Laguerre hypergroup K can be
identified with the hypergroup of radial functions on the Heisenberg group
H,.

3. Polar coordinates in Laguerre hypergroup K
and some lemmas

Let ¥ = Y9 denote the unit sphere in K, wy its surface area and 9 its
volume (see [11]). For £ = (z,t) € K, we consider the transformation given
by

z =r(cosp)/?, t =12

where —7/2 < p < 7/2, r = |€|g and & = ((cos p)!/2,sinp) € .

The Jacobian associated with the above transformation is equal to
r22F3(cos p)®, thus if f is integrable in K,

sin ¢,

/ (1) dmo (2, 1)
K

1 /2 poo ‘ ) )
- 27TF(0‘+1)/ /2/0 f(r(cos )2, sin ) 1243 (cos o) *drd.
We write
1 /2 oy o
27rr(a+1)/_7r/2(00880) sO—/E 3
and thus

[t pdman = [ | 20 1(5,80) drde 1)

K
Here d¢’ is called the surface area element on X.
LEMMA 1. The following formulas
G2
2y/rl(a+ 1I(5 +1)

w2

and
I“(LH)

are valid.
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Proof Wehave

— ! _ 1 2 «a = F(QTH)
2= J € = sy | oo e = 5 iy

By (1),

1
Q= [ dmg(z,t) = 2043 g ge! — L2
9 /Blm(x) /E/Or rd§ 50+ 4

_ (°35)
CAym(e+2)T(a+ IS +1)

!

Observe that for any (z,t) € K and r > 0 the area of the sphere S, (x,t)

of center (z,t) and radius 7 is equal to r2®+3

2a+4 _ 244 w2
T QQ—’I” Sotd

wo and its volume is equal to

LEMMA 2. The function f(x,t) = |(z,t)|3 is integrable in any neigh-
borhood of the origin if and only if A > —2«a — 4, and it is integrable in the
complement of any neighborhood of the origin if and only if A < —2a — 4.

Proof. Forafixed A# —2a —4 and 0 < a < b < o0, we have

/ (@, DI} dma (. 1)
a<|(z,t)|g<b

b
= / / 203N g e’ — w2 (BRoHATA _ g2at4td)
»Ja 2a + 4

and thus the thesis follows. ]

LEMMA 3.  For every (z,t), (y,s) € K and r > 0 the function

T((fi)xgr (y,s) is supported in Er(az,t) and the following inequalities are
valid:

meBr(z,t) < Cr2® T max{1, (z/r)** 1},
ma B, (z,t) < Cr2*t max{1, (z/r)?*+3},

where By(z,t) = {(y,s) €K : |z —y| <7, [t —s| <z(x+71)}.
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P r oo f. Note that T((;i)xgr(y, s) = 0 for any (y,s) € K\ By(z,1), and

this means that the support of function T((;,Z)XBT (y, s) belongs to ér(l', t).
Further,

Mo Br(x,t) = ma By (2,0)

r4r r

2
= / dme(y,s) < / yQO‘de/ds
—r2

{(y9)eK: [(z—y, s)[k<r}

(x—7)+
2a+4
r ; x<r 20+4 20+1
< =
sof L EST = o a0,
and
magT(x,t) = dmy(y, s)
{(y,8)€K: |[z—y|<r, [t—s|<z(z+r)}
x4 z(w+r)
< / y2a+1dy / ds
(z—r)4 —z(z+r)
2a+4
r , z<r 2044 20+3
< —
< C'{ L N Cr max{1, (x/r) }

where (z — r); = max{x —r,0}.
Thus the proof of Lemma 3 is completed.

4. L,-boundedness of maximal function on the Laguerre
hypergroup

We now consider the maximal operator

_ 1 (o)
M) =sup Lo [T 1505 dmay. )

THEOREM 1. 1) If f € Li(K), then for every >0

o {(@8) €K : Mf(z,t) > 8} < g/K\f(x,tﬂ dma(x, 1),

where C' > 0 is independent of f.
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2)If fe Ly(K), 1<p<oo,then Mf e L,(K) and

IMfliz,@) < Coll fllL, ),
where Cp, > 0 is independent of f.

P r o o f. The maximal function M f(x,t) may be interpreted as a
maximal function defined on a space of homogeneous type. By this we
mean a topological space X equipped with a continuous pseudometric p
and a positive measure v satisfying

v(E(E,2r)) < Crv(E(E,T)) (2)

with a constant C; independent of £ and r > 0. Here E({,r) = {n € X :
p(&,n) <r}, p(§&,n) =1£—n|. Let (X, p,v) be a space of homogeneous type.
Define

Mof(@) = supr(BEn)™ [ vt

r>0

It is well known that the maximal operator M, is of weak type (1, 1)
and is bounded on L,(X,dv) for 1 < p < oo (see [4]). We shall use this
result in the case in which X =K, £ = (z,t), n = (y,s) € K, p(&,n) =
max{|z — yl|, (t — 5)%}, dv(¢) = dma(z,t). It is clear that this measure
satisfies the doubling condition (2).

We will shall show that

Mf(x,t) < CM, f(§). (3)
From the definition of the generalized shift operator it follows that
T((;ﬁ XB, (Y, s) is supported in B, (z,t).

oreover, there exists a constant Cy such that

0 < T x5, (y.8) < min{1,Cy (r/2)* ™}, V(y,s) € Brla,t).  (4)

In the case x <r this follows from the simple inequality 0 <T; ((;lﬂ)ﬁ) xB,(y,s)<1.
Thus

Mf(z,t) < Mif(x,t) + Maf(z,t),

where
_ 1 (o)
Mfet) = swp Lo [T )] dmaty. o),
_ (o)
Mof(e.t) =sup o [T 1) dmfy. o).
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If » > =z, then from Lemma 3, moB.(z,t) < Cr2*4 also

Mo By = Qor?®t* and T((fi)xgr(y, s) < 1 for all (y,s) € Bp(z,t). Thus
we have

1 a
Mif(et) <sw o [ 1) T xe, (09) dmay.)
r>z MaDr JB,.(z,t) ’

1
< Csup———— / 1£(5, )] dma(y, s) < CM, f(€).
r>x maBr(x, t) Br(z,t)

If < x, then by Lemma 3 and (4), moB(x,t) < Crz?*3 and

T((;‘])t)xgr (y,5) < (r/z)2%3 for all (y, s) € By(x,t). This yields

Mof(xz,t) <sup
f( ) r>x maBr

1
S Csup~7 /~ ‘f(y7 S)| dma(ya 3) S CMVf(é)
r<z maBr(:L’, t) B (z,t)

[ ) T8k :5) dmaly.s)
By (z,t)

Therefore we get (3), which completes the proof. [

COROLLARY 1. If f € Lj.(K), then

li L
11m
r—0 ’I?’LQBT

[ 17 109 = )] dma(y.5) =0
for a. e. (z,t) € K.

As an application, we give a result about approximations of the identity.
The maximal function can be used to study almost everywhere convergence
of fxp. as they can be controlled by the Hardy-Littlewood maximal function
M f under some conditions on .

THEOREM 2. Let ¢ a nonnegative and decreasing function on [0, c0),
lo(x,t)] < ¥(|(z,t)|) and ¥(|(x,t)]) € Li1(K). Then there exists a constant
C > 0 such that

M@f(xvt) = Sli% |(f * 907“) (xvt)’ < CMf(:U,t)
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Proof Wehave

|(f * @r) (z,1)] = ’/ T(a) ¢r(y, —s) dma(y, s)
- Z 204 / O, ) K) T | F (s 5)] dma(y, 5)
k——o0 BQk+1 \Bri
< 3 eyl / T 1 f (v, 9)| dima(y, s)
k——o00 B2k+1r B2kr

< (9 fj 2“““)(2“*‘%(2’“)) M f(,t)

k=—o0

_ 92a+4 <Q2 i 2k(2a+4)¢(2k)> Mf(x,t),

k=—o00

where we have used the fact that mqB, = Qgr2e+4,

On the other hand, we have

/Kw(!(%t)lK)dma(%t) = kz_:oo /B2k+1 \BQkT%b(!(%t)IK) dme(z,t)

>0, i (Qk(2a+4) _ 2(k71)(2a+4)) B(2")

k=—o00
— ( 2—20& 4 <Q2 Z 2]{: 2a+4 )) )
k=—o00
The proposition is proved, as ¥(|(z,t)|) € L1(K). ]
COROLLARY 2. Let ¢ € Li(K) and assume [ ¢(x,t)dmqo(x,t) = 1.
Then for f € L,(K), 1 <p < oo

L [+ or = fllp, ) =
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