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Abstract

We introduce some new weighted Herz spaces associated with the Dunkl
operator on R. Also we characterize by atomic decompositions the corre-
sponding Herz-type Hardy spaces. As applications we investigate the Dunkl
transform on these spaces and establish a version of Hardy inequality for
this transform.
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1. Introduction

In the last years Herz and Herz-type Hardy spaces in the Euclidean
case have been intensively considered in [11,12,13]. These spaces turn out
to be very useful in the study of the sharpness of multiplier theorems on Hp

spaces (see [14]).
In this work, we consider certain weighted Herz spaces, next we define

the corresponding Hardy spaces in terms of the Dunkl analysis.
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The Dunkl analysis with respect to α ≥ −1/2 concerns the Dunkl op-
erator Λα, the Dunkl transform Fα, the multiplication ∗α, and a certain
measure µα on R. In the limit case α = −1/2, then Λα, Fα, ∗α and µα

agree with the operator d/dx, the Fourier transform, the standard convolu-
tion and the weighted Lebesque measure 1√

2π
dx, respectively.

The Dunkl operators on Rn in [7] are differential-difference operators
associated with some finite reflection groups. They are important in pure
mathematics and in certain parts of quantum mechanics and one expects
that the results in this paper will be useful when discussing continuity
properties in Dunkl analysis. Furthermore, these operators provide a use-
ful tool in the study of special functions associated with root systems (cf.
[8,9,20,24]). They are closely related to certain representations of degener-
ated affine Hecke algebras (see [4,16]). Moreover the commutative algebra
generated by these operators has been used in the study of certain exactly
solvable models of quantum mechanics, namely the Calogero-Sutherland-
Moser models, which deal with systems of identical particles in one dimen-
sional space (cf. [1,10]).

The paper is organized as follows. In Section 2 we recall some results
about harmonic analysis associated with the Dunkl operator on R. Then,
we define the α-grand maximal function of N -order Gα,N .

In Section 3, using the α-grand maximal function Gα,N , we define for
0 < p ≤ 1 < q ≤ ∞, β ≥ 1− 1/q and large N ∈ N:

- The homogeneous weighted Herz space K̇β,p
α,q , by the space of functions

f in Lq
loc(µα) such that

∑∞
k=−∞ 22(α+1)βkp‖fχk‖p

q,α < ∞, where Lq
loc(µα) is

the space of functions f such that |f |q is locally integrable with respect to the
measure dµα(x) := (2α+1Γ(α + 1))−1|x|2α+1dx and χk is the characteristic
function of the set {x ∈ R / 2k−1 ≤ |x| ≤ 2k}.

- The Herz-type Hardy spaces HK̇β,p,N
α,q are as follows:

HK̇β,p,N
α,q :=

{
f ∈ S ′(R) / Gα,N (f) ∈ K̇β,p

α,q

}
.

We study the continuity property of the operator Gα,N on these spaces.
Next we establish their characterizations in terms of decompositions into
central atoms.

In Section 4, the atomic decomposition allows us to study the Dunkl
transform Fα on the Herz-type Hardy spaces HK̇β,p,N

α,q . In particular, we
establish the following version of Hardy inequality for Fα:∫

R
|Fα(f)(y)| dy

|y| ≤ C ‖f‖
HK̇

1/2,1
α,2

.

In the classical case this property is studied in [5,6].
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Throughout the paper we use the classic notation. Thus S(R) and S ′(R)
are the Schwartz space on R and the space of tempered distributions on R
respectively. Finally, C denotes a positive constant whose value may vary
from line to line.

2. Preliminaries

We recall first some basic definitions and facts. We consider the Dunkl
operator Λα, α ≥ −1/2, associated with the reflection group Z2 on R:

Λαf(x) :=
d

dx
f(x) +

2α + 1
x

[f(x)− f(−x)
2

]
.

Note that Λ−1/2 = d/dx.
For α ≥ −1/2 and λ ∈ C, the initial problem:

Λαf(x) = λf(x), f(0) = 1, (1)
has a unique solution Eα(λx) called Dunkl kernel given by

Eα(λx) = =α(λx) +
λx

2(α + 1)
=α+1(λx), x ∈ R,

where =α is the modified Bessel function of order α given by

=α(λx) := Γ(α + 1)
∞∑

n=0

(λx/2)2n

n! Γ(n + α + 1)
.

Note that E−1/2(λx) = eλx. See [8,9,18] and [25].
Furthermore, the Dunkl kernel Eα(λx) can be expanded in a power

series in the form:

Eα(λx) =
∞∑

n=0

(λx)n

bn(α)
, bn(α) =

2n({n/2})!
Γ(α + 1)

Γ({n + 1
2

}+ α + 1), (2)

where {a} is the integer part of a ∈ [0,∞[ (see [18]).

Let
dµα(x) := (2α+1Γ(α + 1))−1|x|2α+1dx.

We denote by Lp(µα), p ∈ [1,∞], the Lebesque space on R with respect to
the measure µα. In the following we use the shorter notation ‖f‖p,α instead
of ‖f‖Lp(µα).

The Dunkl kernel gives rise to an integral transform, called Dunkl trans-
form on R, which was introduced and studied in [9].

The Dunkl transform of a function f ∈ L1(µα), is given by

Fα(f)(y) :=
∫

R
Eα(−ixy)f(x)dµα(x), y ∈ R.
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Here the integral makes sense since |Eα(ix)| ≤ 1 for every x ∈ R ([17,
p.295]). Note that F−1/2 agrees with the Fourier transform F , given by:

F(f)(y) := (2π)−1/2

∫

R
e−ixyf(x) dx, y ∈ R.

Proposition 1. (See [24, p.25,26])
i) For all f ∈ L1(µα), we have ‖Fα(f)‖∞,α ≤ ‖f‖1,α.

ii) For all f ∈ S(R), we have Fα(Λαf)(y) = iyFα(f)(y), y ∈ R.

iii) Fα is a topological isomorphism on S(R) which extends to a topo-
logical isomorphism on S ′(R).

Theorem 1. (See[9,24])
i) Plancherel theorem: The Dunkl transform Fα is an isometric isomor-

phism of L2(µα). In particular, ‖f‖2,α = ‖Fα(f)‖2,α.
ii) Inversion formula: Let f be a function in L1(µα), such that Fα(f) ∈

L1(µα), then

F−1
α (f)(x) = Fα(f)(−x), a.e. x ∈ R.

Notation. For all x, y, z ∈ R, we put:

Wα(x, y, z) :=
[
1− σx,y,z + σz,x,y + σz,y,x

]
∆α(|x|, |y|, |z|), (3)

where

σx,y,z :=

{
x2+y2−z2

2xy , if x, y ∈ R\{0}
0, otherwise

and

∆α(|x|, |y|, |z|) :=





dα

[(
(|x|+|y|)2−z2

)(
z2−(|x|−|y|)2

)]α−1/2

|xyz|2α , if |z| ∈ Ax,y

0, otherwise ,

dα = 21−α(Γ(α + 1))2/
√

π Γ(α + 1/2), Ax,y =
[∣∣∣|x| − |y|

∣∣∣, |x|+ |y|
]
.

Remark. (See [17]). The signed kernel Wα is even and satisfies:

Wα(x, y, z) = Wα(y, x, z) = Wα(−x, z, y),

Wα(x, y, z) = Wα(−z, y,−x) = Wα(−x,−y,−z),
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and ∫

R
|Wα(x, y, z)| dµα(z) ≤ 4.

Theorem 2. (See [17])
i) Let α > −1/2, λ ∈ C. The Dunkl kernel Eα satisfies the following

product formula:

Eα(λx)Eα(λy) =
∫

R
Eα(λz)dνx,y(z); x, y ∈ R,

where νx,y is a signed measures given by

dνx,y(z) =





Wα(x, y, z)dµα(z), if x, y ∈ R\{0}
dδx(z), if y = 0
dδy(z), if x = 0.

ii) The measures νx,y have the following properties:

supp (νx,y) = Ax,y ∪ (−Ax,y), ‖νx,y‖ :=
∫

R
d|νx,y|(z) ≤ 4.

The Dunkl translation operators τx, x ∈ R are defined for a continuous
function f on R, by

τxf(y) :=
∫

R
f(z)dνx,y(z), y ∈ R.

Let f and g be two continuous functions on R with compact support.
We define the Dunkl multiplication ∗α of f and g by

f ∗α g(x) :=
∫

R
τxf(−y)g(y)dµα(y), x ∈ R.

The multiplication ∗α is associative and commutative ([17]). Note that
∗−1/2 agrees with the standard convolution ∗.

The following two propositions are shown in [19].

Proposition 2.
i) For all x ∈ R and f ∈ Lq(µα), q ∈ [1,∞]:

‖τxf‖q,α ≤ 4 ‖f‖q,α.

ii) For all x ∈ R and f ∈ L1(µα):

Fα(τxf)(λ) = Eα(ixλ)Fα(f)(λ), λ ∈ R.
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Proposition 3.
i) Assume that q, q′, r ∈ [1,∞] satisfy the Young condition 1/q+1/q′ =

1 + 1/r. Then the map (f, g) → f ∗α g extends to a continuous map from
Lq(µα)× Lq′(µα) to Lr(µα), and we have

‖f ∗α g‖r,α ≤ 4 ‖f‖q,α‖g‖q′,α.

ii) For all f ∈ L1(µα) and g ∈ L2(µα), we have

Fα(f ∗α g) = Fα(f)Fα(g).

Proposition 4.
i) The operators τx, x ∈ R, are continuous from S(R) into itself.
ii) For all f ∈ S(R) and x ∈ R, we have Λα(τxf) = τx(Λαf).

iii) For all f ∈ S ′(R) and φ ∈ S(R) such that

∫

R
φ(x)dµα(x) = 1, we

have
lim
t→0

f ∗α φt = f, in S′(R),

where φt is the dilation of φ given by

φt(x) := t−2(α+1)φ
(x

t

)
, x ∈ R. (4)

We will make use the Hardy-Littlewood maximal function. For a locally
integrable function f on R, we define its maximal function Mα(f), by

Mα(f)(x) := sup
t>0

{ 1
µα(]− t, t[)

∫ t

−t
|τx(f)(y)| dµα(y)

}
, x ∈ R .

This operator satisfies the following properties.

Proposition 5. For all q ∈ ]1,∞[, the operator Mα is continuous
from Lq(µα) into itself.

P r o o f. Since the operator Mα is sub-linear it suffices to show the
result for non-negative functions only. From (3), we have

|W (x, y, z)| ≤ 4∆α(|x|, |y|, |z|), |z| ∈ Ax,y,

where ∆α is the Bessel kernel introduced in (3).
We write f = fe + fo with fe even and fo odd, then

|τxf(y)| ≤ 8
∫ |x|+|y|
∣∣|x|−|y|∣∣

fe(z)∆α(|x|, |y|, |z|)dµα(z). (5)
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Thus

M(f)(x) ≤ 4 f∗e (|x|),
where f∗e is the maximal function of fe on the Bessel-Kingman hypergroups
[3,23]. Therefore by using [3, p.58] (see also [23]), there exists a constant
Cq > 0, so that

‖Mα(f)‖q,α ≤ Cq ‖fe‖q,α ≤ Cq ‖f‖q,α,

which proves the result.

For all N ∈ N, we denote by FN the subset of S(R) constituted by all
those φ ∈ S(R) such that supp(φ) ⊂ [−1, 1] and for all m,n ∈ N such that
m,n ≤ N , we have

ρm,n(φ) := sup
x∈R

(1 + |x|)m|Λn
αφ(x)| ≤ 1. (6)

Moreover the system of semi-norms {ρm,n}m,n∈N generates the topology of
S(R) (see [2]).

Let f ∈ S ′(R) and N ∈ N. We define the α-grand maximal function of
N -order Gα,N (f) of f , by

Gα,N (f)(x) := sup
t>0, φ∈FN

|φt ∗α f(x)|, x ∈ R,

where φt is the dilation of φ given by (4).
According to Proposition 4 and by proceeding in a standard way as in

[21,22], we obtain the following.

Corollary 1. The α-grand maximal function Gα,N is a bounded con-
tinuous operator from Lq(µα) into itself, for every q ∈ ]1,∞], provided that
N > 2(α + 1).

3. Herz-type Hardy spaces

In this section we describe certain weighted Herz-type Hardy spaces in
terms of the Dunkl analysis.

Definition 1. Let β ∈ R, p ∈ ]0,∞[ and q ∈ [1,∞].
i) The homogeneous weighted Herz space K̇β,p

α,q is the space constituted
by all the functions f ∈ Lq

loc(µα), such that

‖f‖
K̇β,p

α,q
:=

[ ∞∑

k=−∞
22(α+1)βkp‖fχk‖p

q,α

]1/p
< ∞,

where χk is the characteristic function of Ak := {x ∈ R / 2k−1 ≤ |x| ≤ 2k}.
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ii) The non-homogeneous weighted Herz space Kβ,p
α,q is defined, as usual,

by Kβ,p
α,q := Lq(µα) ∩ K̇β,p

α,q . Moreover, ‖f‖
Kβ,p

q,α
:= ‖f‖q,α + ‖f‖

K̇β,p
α,q

.

Note that K̇0,q
α,q = K0,q

α,q = Lq(µα).
Remark. By proceeding as in [13], we can obtain blocks decompositions

by the elements of the Herz spaces K̇β,p
α,q and Kβ,p

α,q .

We now study some properties for K̇β,p
α,q . It is remarkable that we can

establish similar results for Kβ,p
α,q . For simplicity, we prove our results in the

homogeneous version.

Proposition 6. Let p ∈ ]0,∞[ , q ∈ ]1,∞] and −1/q < β < 1 − 1/q.

Then the operator Gα,N , N > 2(α + 1) is continuous from K̇β,p
α,q into itself.

P r o o f. Assume that f is a compactly supported and integrable func-
tion on R. For x ∈ R and t > 0, we have

φt ∗α f(x) =
∫

R
τxφt(y)f(−y)dµα(y),

where φt is the dilation of φ given by (4).
Using the fact τxφt(y) = t−2(α+1)τx/tφ

(
y
t

)
, we obtain

φt ∗α f(x) = t−2(α+1)

∫

R
τx/tφ

(y

t

)
f(−y)dµα(y).

Let φ ∈ FN . Then from (5) we have

∣∣∣τx/tφ
(y

t

)∣∣∣ ≤ 4
∫ (|x|+|y|)/t

∣∣|x|−|y|∣∣/t
∆α(

|x|
t

,
|y|
t

, |z|)
[
|φ(z)|+ |φ(−z)|

]
dµα(z). (7)

Thus we deduce that
∣∣∣τx/tφ

(y

t

)∣∣∣ ≤ C
(∣∣∣|x| − |y|

∣∣∣/t
)−2(α+1)

; x, y ∈ R and t > 0.

Hence, we conclude for x /∈ suppf that

|Gα,N (f)(x)| ≤ C

∫

R

|f(y)|∣∣∣|x| − |y|
∣∣∣
2(α+1)

dµα(y). (8)

To prove our result we will use a procedure similar to the one developed
in the proof of [14,Theorem 1]. Assume that p, q ∈ ]1,∞[.

Let f ∈ K̇β,p
α,q . We can write

‖Gα,N (f)‖
K̇β,p

α,q
=

[ ∞∑

k=−∞
22(α+1)kβp‖Gα,N (f)χk‖p

q,α

]1/p
≤ E1 + E2 + E3,
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where

E1 =
[ ∞∑

k=−∞
22(α+1)kβp

( k−3∑

l=−∞
‖Gα,N (fχl)χk‖q,α

)p]1/p
,

E2 =
[ ∞∑

k=−∞
22(α+1)kβp

( k+2∑

l=k−2

‖Gα,N (fχl)χk‖q,α

)p]1/p

and

E3 =
[ ∞∑

k=−∞
22(α+1)kβp

( ∞∑

l=k+3

‖Gα,N (fχl)χk‖q,α

)p]1/p
.

We now analyze Ej , j = 1, 2, 3.
If k ∈ Z, x ∈ Ak and l ≤ k − 3, then according to (8) and Hölder’s

inequality, we obtain

|Gα,N (fχl)(x)| ≤ C

∫

Al

|f(y)|∣∣∣|x| − |y|
∣∣∣
2(α+1)

dµα(y)

≤ C

(2α+1Γ(α + 1))1−1/q
22(α+1)(l−k−l/q)‖fχl‖q,α.

Hence, if 0 < γ < 1 and β < γ(1− 1/q), then

E1 ≤ C
[ ∞∑

k=−∞

( k−3∑

l=−∞
22(α+1)[kβ+(l−k)(1−1/q)]‖fχl‖q,α

)p]1/p

≤ C
[ ∞∑

k=−∞
Sk(γ, p)

( k−3∑

l=−∞
22(α+1)p[kβ+γ(l−k)(1−1/q)]‖fχl‖p

q,α

)]1/p
,

where

Sk(γ, p) =
( k−3∑

l=−∞
22(α+1)p′(l−k)(1− 1

q
)(1−γ)

)p/p′
, 1/p + 1/p′ = 1.

Since Sk(γ, p) ≤ C, then

E1 ≤ C
[ ∞∑

l=−∞
22(α+1)plβ‖fχl‖p

q,α

∞∑

k=l+3

22(α+1)p(k−l)[β−γ(1−1/q)]
]1/p

≤ C
[ ∞∑

l=−∞
22(α+1)plβ‖fχl‖p

q,α

]1/p
= C ‖f‖

K̇β,p
q,α

.
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To estimate E2, from Corollary 1, we get

E2 ≤ C
[ ∞∑

k=−∞
22(α+1)kβp

( k+2∑

l=k−2

‖fχl‖q,α

)p]1/p

≤ C
[ ∞∑

k=−∞
22(α+1)kβp

k+2∑

l=k−2

‖fχl‖p
q,α

]1/p
≤ C ‖f‖

K̇β,p
q,α

.

Finally, if k, l ∈ Z, x ∈ Ak and l ≥ k + 3, from (8), we deduce that

|Gα,N (fχl)(x)| ≤ C

(2α+1Γ(α + 1))1−1/q
2−2(α+1)l/q‖fχl‖q,α.

Then, by proceeding as in the analysis of E1, it follows that

E3 ≤ C ‖f‖
K̇β,p

α,q
.

Thus we conclude that Gα,N is bounded from K̇β,p
α,q into itself.

Definition 2. Let N ∈ N, β ∈ R, p ∈ ]0,∞] and q ∈ ]1,∞]. The Herz-
type Hardy space HK̇β,p,N

α,q is the space of distributions f ∈ S ′(R) such that
Gα,N (f) ∈ K̇β,p

α,q . Moreover, we define

‖f‖
HK̇β,p,N

α,q
:= ‖Gα,N (f)‖

K̇β,p
α,q

.

Note that as in the same we define the space HKβ,p,N
α,q for the non-homogeneous

case.
In particular, we have the following

Lemma 1. Let N > 2(α + 1), p ∈ ]0,∞], q ∈ ]1,∞] and −1/q < β <
1− 1/q. Then

HK̇β,p,N
α,q = K̇β,p

α,q .

P r o o f. Let f ∈ K̇β,p
α,q , from Proposition 6 we deduce that Gα,N (f) ∈

K̇β,p
α,q . Hence f ∈ HK̇β,p,N

α,q .

Conversely, let f ∈ HK̇β,p,N
α,q and φ ∈ FN such that

∫

R
φ(x)dµα(x) = 1.

Since

‖f‖
HK̇β,p,N

α,q
:=

[ ∞∑

k=−∞
22(α+1)βkp‖Gα,N (f)χk‖p

q,α

]1/p
,

we deduce that for every k ∈ N, Gα,N (f)χk is bounded in Lq(µα).
On the other hand, let 0 < a < b < ∞. Since supp(φ) ⊂ [−1, 1], we can

write
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f ∗α φt(x) =
∫

Jx,t

f(−y)
∫ |x|+|y|
∣∣|x|−|y|∣∣

φt(z)dνx,y(z)dµα(y)

+
∫

Jx,t

f(−y)
∫ −

∣∣|x|−|y|∣∣

−|x|−|y|
φt(z)dνx,y(z)dµα(y),

where Jx,t = [−|x| − t,−|x|+ t] ∪ [|x| − t, |x|+ t].
Then for |x| ∈ [a, b] and t ∈ (0, a/2), we obtain

f ∗α φt(x) =
∫

Ja,b

f(−y)τxφt(y)dµα(y),

where Ja,b = [−a/2− b,−a/2] ∪ [a/2, a/2 + b].
Hence f ∗α φt(x) = g∗α φt(x), |x| ∈ [a, b], for a certain g ∈ Lq(µα), being

g(x) = f(x), |x| ∈ [a, b], when t is small enough.
By a standard argument, we have lim

t→0
g ∗α φt = g, a.e. x ∈ R. Then,

lim
t→0

f ∗α φt = f, a.e. |x| ∈ [a, b].

Thus we show that

|f(x)| ≤ Gα,N (f)(x), a.e. |x| ∈ [a, b].

From this inequality and since Gα,N (f)χk is bounded in Lq(µα), we deduce
that f ∈ Lq

loc(µα) and ‖f‖
K̇β,p

α,q
≤ ‖Gα,N (f)‖

K̇β,p
α,q

< ∞. It concludes that

f ∈ K̇β,p
α,q .

In the sequel, we are interested in the spaces HK̇β,p,N
α,q , when β ≥ 1−1/q.

Now, we turn to the atomic characterization of the space HK̇β,p,N
α,q .

Definition 3. Let q ∈ ]1,∞] and β ≥ 1− 1/q. A measurable function
a on R is called a (central) (β, q)-atom if it satisfies:

(i) supp(a) ⊂ [−r, r], for a certain r > 0,
(ii) ‖a‖q,α ≤ r−2(α+1)β,

(iii)
∫

R
a(x)xkdµα(x) = 0, k = 0, 1, ..., 2s + 1,

where s = {(α + 1)(β − 1 + 1/q)} (the integer part of (α + 1)(β − 1 + 1/q)).

Theorem 3. Let 0 < p ≤ 1 < q ≤ ∞, β ≥ 1 − 1/q and N ∈ N,

N > 2(2s + 3 + α). Then f ∈ HK̇β,p,N
α,q if and only if there exist, for all

j ∈ N\{0}, an (β, q)-atom aj and λj ∈ C, such that
∑∞

j=1 |λj |p < ∞ and
f =

∑∞
j=1 λjaj . Moreover,
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‖f‖
HK̇β,p,N

α,q
∼ inf

( ∞∑

j=1

|λj |p
)1/p

,

where the infimum is taken over all atomic decompositions of f .

P r o o f. We first verify the necessity : Suppose a is an (β, q)-atom and
assume that q < ∞ (when q = ∞ we can proceed analogously). It is enough
to verify that ‖Gα,N (a)‖

K̇β,p
α,q
≤ C, where C is a constant independent of a.

Let supp(a) ⊂ [−r, r] and 2k0 < r < 2k0+1 for some k0 ∈ Z. We write

‖Gα,N (a)‖p

K̇β,p
α,q

=
∞∑

k=−∞
22(α+1)βkp‖Gα,N (a)χk‖p

q,α := I1(k0) + I2(k0),

where

I1(k0) =
k0+3∑

k=−∞
22(α+1)βkp‖Gα,N (a)χk‖p

q,α,

and
I2(k0) =

∞∑

k=k0+4

22(α+1)βkp‖Gα,N (a)χk‖p
q,α.

For I1(k0) we have

I1(k0) ≤ ‖Gα,N (a)‖p
q,α

k0+3∑

k=−∞
22(α+1)βkp.

Applying Proposition 5 and (ii) of Definition 3, we obtain

I1(k0) ≤ C ‖a‖p
q,α22(α+1)βk0p ≤ C,

where C is a constant that does not depend on the (β, q)-atom a.
In order to estimate I2(k0), we need a pointwise estimate of Gα,N (a)(x)

on Ak for k ≥ k0+4. Suppose now that φ ∈ FN . According to [15, Theorem
2], φ admits a generalized Taylor formula with integral remainder

φ(x) =
n∑

k=0

Λk
αφ(0)
bk(α)

xk +
∫ |x|

−|x|
wn(x, y)Λn+1

α φ(y)dµα(y), (9)

where bn(α) given by (2) and wn(x, y) a kernel satisfying:∫ |x|

−|x|
wn(x, y)dµα(y) ≤ cn(α)|x|n+1, (10)

where

cn(α) =
1

22α+1Γ(α + 1)

[ 1
bn+1(α)

+
1

bn(α)

]
.

Then, if x ∈ R and n ∈ N with n ≤ 2s + 1, (iii) of Definition 3 allows to
write
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a ∗α φt(x) =
∫

R

∫ |x|

−|x|
a(−y)wn(y, z)τx(Λn+1

α φt)(z)dµα(z)dµα(y),

where φt is the dilation of φ given by (4).

Using the fact Λn+1
α (φt)(z) = t−2α−n−3φ

(
z
t

)
, we obtain

a ∗α φt(x) = t−2α−n−3

∫

R

∫ |x|

−|x|
a(−y)wn(y, z)τx/t(Λ

n+1
α φ)

(z

t

)
dµα(z)dµα(y).

Let (Λn+1
α φ)e be the even part of Λn+1

α φ, then from (7), we have

∣∣∣τx/t(Λ
n+1
α φ)

(z

t

)∣∣∣ ≤ 8
∫ (|x|+|z|)/t

∣∣|x|−|z|∣∣/t
∆α(

|x|
t

,
|z|
t

, u)|(Λn+1
α φ)e(u)|dµα(u)

≤ 8ρm,n+1(φ)
∫ (|x|+|z|)/t

∣∣|x|−|z|∣∣/t
(1+|u|)−m∆α(

|x|
t

,
|z|
t

, u)dµα(u)

≤ 4ρm,n+1(φ)
(
1 +

∣∣∣|x| − |z|
∣∣∣/t

)−m
.

Here ρm,n(φ) are the semi-norms given by (6). Hence,

|a ∗α φt(x)| ≤ 4ρm,n+1(φ)
t2α+n+3

∫

R

∫ |y|

−|y|

|a(−y)||wn(y, z)|(
1 +

∣∣∣|x| − |z|
∣∣∣/t

)m dµα(z)dµα(y).

From (i) of Definition 3, there exists a constant θy ∈ [−|y|, |y|], such

that
∣∣∣|x| − |θy|

∣∣∣ ≤
∣∣∣|x| − |z|

∣∣∣, for all z ∈ [−|y|, |y|].
Thus,

|a ∗α φt(x)| ≤ 4cn(α)ρm,n+1(φ)
tn−m+2α+3

∫

R
|y|n+1|a(−y)|

(
t +

∣∣∣|x| − |θy|
∣∣∣
)−m

dµα(y).

Since cn(α) ≤ 1
22αΓ(α + 1)

, putting n = 2s + 1 and m = 2(s + α + 2), then

for N ≥ 2(2s + α + 3), we get

|a ∗α φt(x)| ≤ C r2(s+1)

∫

R
|a(−y)|

(
t +

∣∣∣|x| − |θy|
∣∣∣
)−2(s+α+2)

dµα(y).

By proceeding as in [11, p.108], we obtain

|a ∗α φt(x)| ≤ C
r2(s+1)

|x|2(s+α+2)

∫ r

−r
|a(y)|dµα(y).

Applying Hölder’s inequality and (ii) of Definition 3, we obtain
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|a ∗α φt(x)| ≤ C
r2(s+1)

|x|2(s+α+2)

[ ∫ r

−r
|a(y)|qdµα(y)

]1/q[ ∫ r

−r
dµα(y)

]1−1/q

≤ C ru

(2α+1Γ(α + 1))1−1/q|x|2(s+α+2)
,

where u = 2[s + 1 + (α + 1)(β + 1− 1/q)].
Using the fact that 2k0 ≤ r ≤ 2k0+1, we obtain

|a ∗α φt(x)| ≤ C 2uk0

(2α+1Γ(α + 1))1−1/q|x|2(s+α+2)
.

Then for x ∈ Ak, k ≥ k0 + 4, we get

|Gα,N (a)(x)| ≤ C 2uk0

(2α+1Γ(α + 1))1−1/q|x|2(s+α+2)
.

Hence, it follows that

I2(k0) ≤ C 2puk0

∞∑

k=k0+4

22(α+1)βkp
[
2

∫ 2k+1

2k

x−2(s+α+2)q+2α+1dx
]p/q

≤ C 2puk0

∞∑

k=k0+4

22pk(α+1)β−(α+2+s)+(α+1)/q.

Because (α + 1)(β − 1 + 1/q) < s + 1, then I2(k0) ≤ C, where C a constant
not depending on the (β, q)-atom a. Hence this finishes the proof of the
necessity.

Now, we turn to the proof of the sufficiency : Suppose that f ∈ HK̇β,p,N
α,q .

To see that f =
∞∑

j=1

λjaj , where the series converges in S ′(R), for certain

(β, q)-atom aj and λj ∈ C, for every j ∈ N\{0}, such that
∞∑

j=1

|λj |p < ∞,

we can proceed as in the proof of [11, Theorem 2.1].
We choose a positive function φ ∈ S(R), such that supp(φ) ⊂ [−1, 1]

and ‖φ‖1,α = 1. We define the functions:

φk(x) = 22k(α+1)φ(2kx) and fk(x) = f ∗α φk, k ∈ N.

It is well known that lim
k→∞

fk = f , in the distribution sense. Also, we take

a smooth function ψ such that supp(ψ) ⊂ {x : 1
2 − ε ≤ |x| ≤ 1 + ε},
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for a certain 0 < ε < 1/2 and ψ(x) = 1 if 1/2 ≤ |x| ≤ 1. We define
ψk(x) = ψ(2−kx), k ∈ Z. It is easy to see that

supp(ψk) ⊂ Ak,ε := {x / 2k−1 − 2kε ≤ |x| ≤ 2k + 2kε}
and ψk(x) = 1 if x ∈ Ak,0. For each k ∈ Z, we consider

Ψk(x) :=
ψk(x)∑∞

j=−∞ ψj(x)
, for x ∈ R\{0} and Ψk(0) = 0.

By Ps we denote the space of polynomials of degree less or equal than
2s + 1. For each k ∈ Z and l ∈ N, Pk,l represents the unique polynomial in
Ps such that∫

Ak,ε

xm[fl(x)Ψk(x)− Pk,l(x)]χ eAk
(x)dµα(x) = 0 , m = 0, 1, ..., 2s + 1.

We now write fl = S1,l + S2,l, where

S1,l(x) =
∞∑

k=−∞
{fl(x)Ψk(x)− Pk,l(x)} and S2,l(x) =

∞∑

k=−∞
Pk,l(x).

Moreover, for every i = 1, 2 and j ∈ N\{0}, there exist (β, q)−atom aj,i and

λj,i ∈ C, being
∞∑

j=1

|λj,i|p < ∞, such that Si,l =
∞∑

j=1

λj,iaj,i. Also,∞∑

j=1

|λj,i|p ≤ C ‖Gα,N (f)‖
K̇β,p

α,q
, i = 1, 2.

Finally, by invoking the Banach-Alaoglu theorem and (9), we can con-

clude that f =
∞∑

j=1

λjaj , where the series converges in S ′(R), for some

(β, q)-atom aj and λj ∈ C, j ∈ N\{0}, such that∞∑

j=1

|λj |p ≤ C ‖Gα,N (f)‖
K̇β,p

α,q
,

where C > 0 is not depending on f .
Thus the proof is finished.
Remark. According to Theorem 3, the space HK̇β,p,N

α,q is not depending
on N provide that N ≥ 2(2s + 3 + α). In the sequel we assume that
N ≥ 2(2s + 3 + α) and we write HK̇β,p

α,q instead of HK̇β,p,N
α,q .

4. The Dunkl transform on HK̇β,p
α,q

In this section we study the Dunkl transformation on the space HK̇β,p
α,q .

In particular, we prove a Hardy inequality for the Dunkl transform Fα.
First, we establish useful estimates for the Dunkl transform of (β, q)-atoms.
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Lemma 2. Let a be an (β, q)-atom where β > 0 and q ∈ [1,∞]. Then
for all y ∈ R:

i) |Fα(a)(y)| ≤ C|y|2(s+1)‖a‖A
q,α , A = 1− 1

β
(1− 1

q
+

s + 1
α + 1

).

ii) |Fα(a)(y)| ≤ C‖a‖B
q,α, B = 1− 1

β
(1− 1

q
) .

P r o o f. Let a be an (β, q)-atom. Assume that r > 0 is such that
supp(a) ⊂ [−r, r], and that ‖a‖q,α ≤ r−2(α+1)β.

i) From (iii) of Definition 3, we have

Fα(a)(y) =
∫ r

−r

[
Eα(−ixy)−

2s+1∑

k=0

(−ixy)k

bk(α)

]
a(x)dµα(x), y ∈ R.

But from (9) and (1), we have

Eα(−ixy) =
2s+1∑

k=0

(−ixy)k

bk(α)
+ (−1)s+1

∫ |xy|

−|xy|
w2s+1(xy, t)Eα(−it)dµα(t).

Thus, by (10) we obtain
∣∣∣Eα(−ixy)−

2s+1∑

k=0

(−ixy)k

bk(α)

∣∣∣ ≤ 1
22αΓ(α + 1)

|xy|2s+2.

Then,

|Fα(a)(y)| ≤ C|y|2s+2

∫ r

−r
|x|2s+2|a(x)|dµα(x)

≤ C|y|2s+2‖a‖q,α

[ ∫ r

−r
|x|(2s+2)q′dµα(x)

]1/q′

≤ C|y|2s+2‖a‖q,αr2[s+1+(α+1)/q′], 1/q + 1/q′ = 1.

From (ii) of Definition 3, we obtain

|Fα(a)(y)| ≤ C|y|2(s+1)‖a‖A
q,α, A = 1− 1

β
(1− 1

q
+

s + 1
α + 1

).

ii) We have

|Fα(a)(y)| ≤
∫ r

−r
|a(x)|dµα(x) ≤ C ‖a‖q,αr2(α+1)(1−1/q) ≤ C ‖a‖B

q,α,

where B = 1− 1
β (1− 1

q ). We complete the proof.
As a consequence of Lemma 2, we prove the following essential property.

Proposition 7. Let a be an (β, q)-atom, where q ∈ ]1,∞] and 1− 1
q ≤

β ≤ 1− 1
q + s+1

α+1 . Then

|Fα(a)(y)| ≤ C |y|2(α+1)(β−1+ 1
q
)
, y ∈ R.
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P r o o f. Let a be an (β, q)-atom. Assume firstly that |y|2(s+1)‖a‖A
q,α ≤

‖a‖B
q,α, where y ∈ R, A and B given in Lemma 2. Then from Lemma 2 i),

it infers that
|Fα(a)(y)| ≤ C |y|2(s+1)‖a‖A

q,α ≤ C |y|2(α+1)(β−1+ 1
q
)
, y ∈ R.

On the other hand, if |y|2(s+1)‖a‖A
q,α ≥ ‖a‖B

q,α, then Lemma 2 ii) leads to

|Fα(a)(y)| ≤ C ‖a‖B
q,α ≤ C|y|2(α+1)(β−1+ 1

q
)
, y ∈ R.

Thus, we conclude that

|Fα(a)(y)| ≤ C |y|2(α+1)(β−1+ 1
q
)
, y ∈ R.

Let f ∈ S ′(R). The Dunkl transform Fα(f) of f is defined by

〈Fα(f), φ〉 = 〈f,Fα(φ)〉, φ ∈ S(R).

In the following we infer weak-type inequality for the Dunkl transform.

Proposition 8. Let 0 < p ≤ 1 < q ≤ ∞, 1− 1
q ≤ β ≤ 1− 1

q + s+1
α+1 and

f ∈ HK̇β,p
α,q . Then,

i) |y|−2(α+1)(β−1+ 1
q
)|Fα(f)(y)| ≤ C‖f‖

HK̇β,p
α,q

, y ∈ R.

ii) µα

({
y ∈ R / |y|−2(α+1)(β−1+ 1

q
+ 1

p
)|Fα(f)(y)|>λ

})
≤ C

‖f‖p
p,α

λp
, λ > 0.

P r o o f. i) Let f ∈ HK̇β,p
α,q . Assume that f =

∑∞
j=1 λjaj , where the

series converges in S ′(R), for certain (β, q)-atom aj and λj ∈ C, j ∈ N\{0},
being

∑∞
j=1 |λj |p < ∞. Since Fα is a continuous linear mapping from S ′(R)

into itself, we have
Fα(f) =

∞∑

j=1

λjFα(aj).

Moreover, since
∞∑

j=1

|λj | ≤
( ∞∑

j=1

|λj |p
)1/p

from Proposition 7, we obtain

|Fα(f)(y)| ≤ C |y|2(α+1)(β−1+ 1
q
)
( ∞∑

j=1

|λj |p
)1/p

.

Hence we deduce i).
ii) Let f ∈ HK̇β,p

α,q and λ > 0. From i) it follows that

µα

({
y ∈ R / |y|−2(α+1)(β−1+ 1

q
+ 1

p
)|Fα(f)(y)|>λ

})
≤2

∫ Cp

0
dµα(y)≤C

‖f‖p
p,α

λp
,

where
Cp =

(
C‖f‖p,α/λ

) p
2α+2 . We finish the proof.
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Lemma 3. Let p ∈ ]0, 1] and 1
2 ≤ β ≤ 1

2 + s+1
α+1 . For every (β, 2)-atom a,

we have ∫

R
|Fα(a)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y) ≤ C.

P r o o f. Let a be an (β, 2)-atom. Assume that R > 0. By virtue of
Lemma 2 i), we have∫ R

−R
|Fα(a)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y) ≤ C R σ‖a‖pA

2,α,

where A = 1− 1
β

(
s + 1
α + 1

+
1
2
) and σ = 2p[s + 1− (α + 1)(β − 1

2)].

Since σ = τA, where τ = −2(α + 1)βp, we can write
∫ R

−R
|Fα(a)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y) ≤ C

(
R ‖a‖p/τ

2,α

)σ
. (11)

Also according to Theorem 1, Hölder’s inequality leads to∫

|y|>R
|Fα(a)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y)

≤ ‖a‖p
2,α

[ ∫

|y|>R
|y|4

(α+1)p
p−2

(β− 1
2
+ 1

p
)
dµα(y)

] 2−p
2 ≤ C ‖a‖p

2,αR τ .

Thus,
∫

|y|>R
|Fα(a)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y) ≤ C

(
R ‖a‖p/τ

2,α

)τ
. (12)

By taking now R = ‖a‖−p/τ
2,α , from (11) and (12) we obtain the result.

Theorem 4. Let p ∈ ]0, 1] and 1
2 ≤ β ≤ 1

2 + s+1
α+1 . Then∫

R
|Fα(f)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y) ≤ C ‖f‖p

HK̇β,p
α,2

,

for every f ∈ HK̇β,p
α,2 .

P r o o f. Assume that f =
∑∞

j=1 λjaj , where the series converges in
S ′(R), for certain (β, 2)-atom aj and λj ∈ C, j ∈ N\{0}, being

∑∞
j=1 |λj |p <

∞. Then, Fα(f) =
∑∞

j=1 λjFα(aj).
According to Lemma 3, we can write∫

R
|Fα(f)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y)

≤ C
∞∑

j=1

|λj |p
∫

R
|Fα(aj)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y) ≤ C

∞∑

j=1

|λj |p.



HERZ-TYPE HARDY SPACES FOR THE DUNKL . . . 305

Hence ∫

R
|Fα(f)(y)|p|y|−2(α+1)p(β− 1

2
+ 1

p
)
dµα(y) ≤ C ‖f‖p

HK̇β,p
α,2

.

Thus the proof is completed.
A version of the Hardy inequality for the Dunkl transform Fα appears

when we take β = 1/2 and p = 1 in Theorem 4.

Corollary 2. (Hardy inequality) Let f ∈ HK̇
1/2,1
α,2 , then∫

R
|Fα(f)(y)| dy

|y| ≤ C ‖f‖
HK̇

1/2,1
α,2

.
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