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Abstract

Using a convolution structure on the real line associated with the Jacobi-
Dunkl differential-difference operator A, g given by:

Aapf(x) = f(x) + (20 + 1) cothz + (26 + 1) tanh ) (

a> 0> —%, we define mean-periodic functions associated with A, 3. We

characterize these functions as an expansion series intervening appropriate
elementary functions expressed in terms of the derivatives of the eigenfunc-

tion of A, 3. Next, we deal with the Pompeiu type problem and convolution

f(x) —Qf(—x)> ’

equations for this operator.
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0. Introduction

For a > 3 > —%, we consider the Jacobi-Dunkl operator A, g defined
on C*(IR) by

Aapf(2) = £ () + (20 + 1) cothz + (20 + 1) tanh 2) (f<w>—f<—>> |

2
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We point out that the operator A, g coincides with the Heckman-Opdam
operator, known also as the Dunkl-Heckman operator:

1+e @
1—ea

D¢ = 0¢ + % > kaa(€)

aER 4+

(1 - Ta),

on IR, with Ry = {2,4} and suitable choice of k,’s (see [17] and the refer-
ences cited therein).

The eigenfunction of this operator, satisfying A, gf(z) = iAf(z), A €@
and f(0) = 1, can be expressed in terms of the Jacobi functions gp,oj’ﬁ and

goﬁ+1”8+1, namely:
\I’aﬁ(ﬂf) = %P () + A sinh z cosh z 1A+ (1),
A s 2o+ 1) z
where
N =p2+p? with p=a+6+1,
and o .
‘Pg’ﬁ(ﬂ = 2F1(p 2wa i 2w;a + 1; — sinh? x).

We note that in [2], the authors have established a product formula for the
eigenfunction \Iff\"ﬁ, ANeEQ :Forz,y € IR

w%ﬁu»wiﬂ@»::[;wiﬂcaduxﬁwx

where pg’y is a real uniformly bounded measure with compact support,
which may not be positive. This leads in a natural way to define the trans-
lation operators, denoted T s , € IR, by

WeRmWﬂwzﬁj@w%u»

Here f is a measurable function on IR.

We point out that in [10], the authors have shown that for all A € @,
the eigenfunction \Ifi”g , admits an integral representation which permits to
define an intertwining operator V,, g on £(IR), the space of C*°-functions on
IR, by

||

Vaﬂf(JU) _ o K(z,y)f(y)dy, if e R\{0},

£(0), if x=0,
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where K (z,.) is a positive function on IR, continuous on | — |z, |z|[ and
supported in [—|z|, |z|], V4, g intertwines A, g and the usual derivative D =
L NogVas = VagD.

This intertwining operator leads also to define T B f as follows

T30 f(y) = VapaVasu (Vo 5 ()@ +y)).

Of course, the two formulas defining T B f coincide on E(IR).
A function f in £(IR) is called mean-periodic associated with the oper-
ator A, g, if there exists a non zero distribution p € £'(IR), such that

M *a3 f(x) =0,

where, for all xz € IR,
Bap F(x) = (y, T F(),

here f(u) = f(—u).
Using the operator V,, 3 and the results of L. Schwartz in [19] for the
classical case, we give a representation of a mean-periodic function f in

E(IR), associated with A, g , in terms of a series intervening elementary
d ;

functions \Iff\tf(x), defined by @(lllg;'? (x))t:i)\ = VOQB (xl@l)\:p)’ which we call

exponential-monomials associated with A, 3. Namely, we have (formally)

F@) =3 3 ¥l @), oy, e,

(A1) 0<5<i—1

the summation is extended over the distinct roots of F, g(u) counted with
multiplicities [, where F, () is the Jacobi-Dunkl transform of u defined
by
Fap()(N) = (p, U5F).

For general 1 one can get convergence of the series expansion in the topology
of £(IR) only if one groups the terms and then uses the Abel summability.
For a wide class of distributions y the Abelian summation process is not nec-
essary. More precisely, if one assumes that p € £'(IR) is slowly-decreasing
in the following mean: there are A, > 0 such that for any = € IR

1
Max{|Fa,s(m)(®)], y € R, |z —y| < Alog(1 + |2*)} > (1 + |z[) 7%,

then the Abel summation procedure can be dispensed.
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Next, for p,v € E'(IR) and g, h € E(IR), we are interesting to establish
the uniqueness and existence of solutions f € £(IR) of the system

KHap [ =9,
(S) { V*oa,ﬁ f = h,

where *, g is the convolution associated with A, g.

The uniqueness turns out to prove that f = 0 is the unique solution in
E(IR) of the system

B *a,3 [ =0,
S )
(50) { v¥apg f=0.
This leads naturally to study the Pompeiu problem in this context, which
consists to characterize compactly supported distributions pq, o such that
f = 0 is the unique smooth function satisfying

Wi *a5 f =0, for i =1,2.

In other words, f = 0 is the unique smooth function which is mean periodic
relatively to p1 and ps.

The paper is organized as follows. The first section is devoted to in-
troduce some results about harmonic analysis associated with A,g which
will be used later. In Section 2, we introduce the notion of a mean periodic
function associated to the operator A, g called (a, 3)-mean-periodic func-
tion. Next, we summarize the essential fact about these functions namely
their series expansion in terms of (o, 3)-exponential monomial \Ililﬁ . Then
we determine their coefficients, for that purpose we construct a bibrthogo—
nal system. In Sections 3 and 4, we introduce the Pompeiu problem related
to (a, #)-mean-periodic function and we give the resolution of a system of
convolution equations associated with the Jacobi-Dunkl operator.

1. Preliminaries
In the following, we begin by introducing some useful spaces:

- D(R) is the spaces of C°-functions on IR, with compact support, we
have
D(R) = | Da(RR),

a>0
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where D,(IR) is the space of C*°-functions on IR, with support in the
closed interval [—a,a]. We provide D,(IR) with the topology of uniform
convergence of functions and their derivatives. For this topology D, (IR) is
a Fréchet space.
The space D(IR) is provided with the inductive limit topology.
- E(IR) the space of C*°-functions on IR, endowed with the usual topology
of uniform convergence of the functions and their derivatives of all order on
compact subsets of IR.
- &'(IR) the space of distributions on IR with compact support.
- IH (@) the space of entire functions on @', rapidly decreasing of exponential
type. We have

H<¢1) = U Ha(w)a

a>0

H,(@) = {¢ entire,¥Ym € IN,
om () = sup (1 + AP)p(A)e T | < +oo} |
Ae@

We provide IH, (@) with the topology defined by the seminorms g,,,m € IN.
The space HH (@) is equipped with the inductive limit topology.

- JH(@') the space of entire functions on €', slowly increasing of exponential
type, i.e. 3m € IN,3R > 0, such that

sup [(1+ AP) 7" (A)e” A < oo,
e

1.1. The function 0"’
For a > (6 > —%, we consider the Jacobi-Dunkl operator A, g given by

fx) = f=)

Ao pf (@)= f'(2)+((20+1)coth 2-+(20+1)tanh ) (==

), f € CHIR).

The eigenfunction \If‘j\"ﬁ of A, g satisfying
Appu = idu, e,
u(0) = 1,

is related to the Jacobi functions gou’(s and it is given by

sinhz coshz o1 (2), 2z e R,

U0 (2) = 2P () +i «

2(a+1)

where A2 = p?2 + p? and p = a + B+ 1. We recall that 4,0#’5 is defined in
terms of the Gauss hypergeometric function o F; by
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FNE YO ip v+ 1 —iu
() = 2F1( ) ; 5 ;

For z € IR\ {0} and A\ €@, the function \Il?\"ﬁ admits the following integral
representation

v +1;—sinh?z), =€ R.

€T
5 (w) = '| Ky, )
—|T
where K(x,.) is a positive function on IR, continuous on | — |z|,|z|[, sup-
ported in [—|x|, |z|]. For the explicit form, one can see formula (3.4) in [10].
Also, the function \Ilff”g verifies the following properties (see, [3] and
[10)):
i) For alln € IN \ {0}, z € IR\ {0} and X €T, then

dn \I]a7ﬁ

dan A z

(z) = PPN U7 (2) + QP (N U7 (—a),

where P’ (resp. Q) is a polynomial in A of degree n (resp. of degree
< n —1). Its coefficients are bounded independently on z, |z| > x¢, where
xg > 0.

ii) For all n € IN, there exists a constant ¢, > 0 such that for all x € IR
and A € R\ {0},

a
dz™

(14 p+ A"+t

V@) < enll+ o)

iii) For all n € IN, € IR and A € @, we have

d?’l
P02 (@)] < faprem e,

Formula (1) permits to define the Jacobi- Dunkl intertwining operator
on £(IR) by

||

Vasf@ =4 | K(z,y)f(y)dy, if =€ R\ {0},

£(0), if x=0.
It is a topological automorphism of £(IR) verifying

Va,ﬁ(Df) = Aoc,ﬂ(vaﬂf)7 f € E(JR)7

D is the usual derivative operator.
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The dual operator 'V, g of the operator V, s is defined on D(IR) by

Vo s(9)(y) = /| K )9 At

It is a topological isomorphism of D(IR) and satisfies the transmutation
relation

D("Vo39) = "Vas(Magg), g € D(IR).

To complete, we recall that the dual operator tVaﬁ of the operator V,, g
is defined on & (IR) by

(Vap(), f)={n Vas(f)),

and it is an isomorphism of &'(IR).

We point out that from the properties of the intertwining operator V, g
and its inverse, we have

Yu € & suppu C [—a,a] <= supp'V, g(p) C [~a,a. (2)

1.2. The Jacobi-Dunkl transform and the convolution product

We recall some notions related to the Jacobi-Dunkl transform, which
will be used later (see [2], [3] and [10]).

The Jacobi-Dunkl transform is defined on D(IR), (resp. £'(IR)) by
Fasl NN = [ 1@ @) A0 p(w)iz, A€,

(resp. Fas(i)(N) = (i, ¥) ).

Here, A, () = 22°(sinh |z])2**+! (cosh )27+,
It is connected to the usual Fourier transform F by the relations

VfED(R) ) faﬂ(f) = Fo tVa,ﬁ(f)7 (3)
Vu e E(R) , Fap(p) = FolVs(p),

where

FHO) = /JR F@) e ™dz, ) ed,

(resp. F(u)(A) = (u, e™), A€ @).
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From the relations (3) and the classical Paley-Wiener type theorems
associated with the transformation F, we deduce the following Paley-Wiener
type theorems associated with the operator A, g (see [10]):

The Jacobi-Dunkl transform F, g is a topological isomorphism from

D(IR), (resp. £'(IR)) onto H (@), (resp. TH(@)).

In [2] the authors have established a product formula for the function
\II(;\"B, Ael:
W@ = [ 950G, e e R

where pz7, is a real uniformly bounded measure with compact support,
which may not be positive.

The translation operators Ty B , ¢ € IR, associated with the Jacobi-
Dunkl operator is defined by

T8 f(y) = /R F(2)dueL (), .y € R,

here f is a measurable function.
This formula coincides on £(IR) with

Vye R, TSP f(y) = VapaVasy (Va5 (H) (@ +1). (4)

The last formula was given as a definition of 7% on & (IR), see [10].

Also, the operator T°°, satisfies:
(i) For all z € IR, T5"" is linear and continuous from &(IR) into itself.
(ii) For all f € £(IR), we have

) = TPf@) T f) = f()
Txa?ﬁTyavﬁ — Tya?/@Tgvﬁ , TgvﬁAa’ﬂ — Aa7ﬁTxa’ﬁ'

(iii) For all z,y € IR and A € @, we have the following product formula:
TP (W) (y) = 057 (2) 057 (y).
(iv) For all f € D,(IR), a > 0, we have
Vo € R, TP f € Dy (R),

YAEX, Fos(TEPF)N) = 3P (@) Fas(f)N).
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To complete this section, we give the following definitions:

(i) We define the convolution of two distributions u,v € £'(IR) by

(rapv, )= (e, (v, TP f()), | € E(R).
(ii) The convolution of € £'(IR) and f € E(IR) is the function px, g f €
E(IR) given by
o 1) = (y, T2 F (),

here f(u) = f(—u).
(iii) The convolution of two functions f and g in D(IR) is defined by the
relation

f g 9(a) = /R T8 F(1)g(y) An s (4)dy.

Obviously, we have the following properties:

I) Let p,v be two distributions in &'(IR) and let f, g be two functions
in D(IR), then we have

Fap(rapv) = Fap(p)Fasv),
Fapsbxap ) = Fapp)Faps(f), (5)
]:a,,@(f *a,B g) = fa,ﬂ(f)faﬂ(g)-

IT) Let p, v be two distributions in £'(IR) and f be in £(IR) we have
K *a. 8 (V *a,8 f) = (,u *a,B V) *a,8 f. (6)

Also, this convolution and the ordinary convolution * are related by the
following:

Let p, v be two distributions in £&'(IR) and f be a function in £(IR) we
have . .
(Vas)” (1) *ap Vas(f) = Vapsluxf),

W)« Vo 5(f) = Vig(pras ), (7)
Vaps(titapr) = WVap(p)x Vaps).
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2. Mean-periodic functions associated with
the Jacobi-Dunkl operators

2.1. Mean-periodic functions

DEFINITION 2.1. A function f in £(IR) is called mean-periodic asso-

ciated with the operator A, g, if there exists a non zero distribution u €
E'(IR), such that for all z € IR

p*a,p f(x) =0. (8)
Henceforth we shall denote («, 3)-mean-periodic function for the mean pe-
riodic function associated with A, 5. If we want to emphasize the equation
satisfied by f we will say that f is («, 3)—mean-periodic with respect to p
or p-(a, f)—mean-periodic function.

If a« = = —1/2, we recover the definition of the classical mean-periodic
function, (see [19]).

As in [5], Proposition 6.1.2, we can prove the following proposition.

PROPOSITION 2.2.  The set Myg = {f € E(R), p*ap f=0} is a
closed subspace of £(IR) which is invariant under translations Ty B ,x € IR.

According to the Hahn-Banach theorem, we have the following propo-
sition.

PROPOSITION 2.3. A function f € E(IR) is («, f)—mean periodic for at
least one pu # 0, p € &'(IR), if and only if Z*8(f) # E(IR).

ZB( ) is the closure of the subspace of £(IR) spanned by T‘_yff, x € IR.

Examples:

(i) Given a € IR,a # 0, every function f in £(IR) such that
TP f(a) = f(z) , forallz € R

is (o, f)—mean-periodic with respect to p = 0, — do, where d, denotes the
Dirac point measure at z.
(ii) If f € D(IR), f # 0, then f is not mean periodic.

Notations: For A €@, x € IR and [ € IN, we put

_1_1 .
- \I/)\(x) e \I/)\ 2’ 2(1‘) — ez,
dl
- U i(@) = S (Vi (@))emin = ale

o dl o
- U () = Vas(Wa1) () = @(‘Ifﬁg(@)t:ik'

AT
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For € £'(IR), as in the classical case, (see [5]), one can shows that

J .
otas U3 (@) =3 (WS (@) (=) FEL ()N i€ E(R), 0 j < 1-1.
s=0
(9)

Thus, if we choose p € £'(IR) such that A is a root of order at least [ of
Fa (1), we conclude that x — \Ilf\ylﬂ(x) is p — (o, f)—mean-periodic.

DEFINITION 2.4. U are called («, 8)—exponential-monomials.
By using relation (9), one can see the following proposition.

PROPOSITION 2.5. The functions U§ ]ﬂ 0 < j <1—1, belong to ZP(f)
if and only if, for each distribution p € 5' (IR) verifying

pqp f =0, forall z € IR,

we have

Fff,}(u)(/\) =0, forj=0,---,1—1.

DEFINITION 2.6. We call spectrum of a («, §)—mean-periodic function
fin E(IR), denoted by sp(f), the set of pairs (A, l), A € @,l € IN, such that
the functions \I/';f]ﬁ belong to Z*#(f) for 0 < j <1 —1 and not for j =1 .

From the last proposition, we can conclude that the spectrum is com-
posed by the common zeros of the Jacobi-Dunkl transform of elements in
£'(IR), which are orthogonal to Z%8(f), each zero being counted with its
order of multiplicity.

There is a relationship between («, 3)—mean-periodic functions and

classical mean-periodic as shown in the following result which is deduced
from the relation

Va,(1) * Vo 5(f) = Vo (1 %a,6 f)-

PROPOSITION 2.7. A function f in E(IR) is (o, #)—mean-periodic with
respect to p if and only if the function Va_ﬂl( f) is classical mean periodic
with respect to 'V, g(p).

From the work of L. Schwartz ([19]) about classical mean-periodic func-
tions on IR and Proposition 2.7, we deduce the following characterization of
the (a, f)—mean-periodic functions.

THEOREM 2.8. Every («, 3)—mean-periodic function f in E(IR), can
be approximated in the topology of £(IR) by finite linear combinations of



226 N. Ben Salem, A. Ould Ahmed Salem, B. Selmi

functions of the type \I/M , (A1) € sp(f). More precisely, we can find finite
sets A, C sp(f) and cM €@, such that

f nEI—OI—loo Z Z C)\’j (10)

(AD)EA, 0<j<I—1

the coefficients c) j are uniquely determined.

REMARK. One can see that the space M, g, defined in Proposition 2.2,
is generated by the (o, 3)-exponential monomials \Ilff, for j € {0,1,2..1—-1}
and (A, 1) € sp(f).

EXAMPLE. Let A}, 500, n € IN, the element of £'(IR) defined by

N
<AZ,,@507 f> = (_]‘)n(AZ,ﬂf)(O) and n= chAg,ﬁéoa Cn 6@7 N e Nu
n=0

then p*, g f = 0 means that f is a solution of the homogeneous differential-
difference equation with constant coefficients, namely the equation

eNAY gf(x) + - cof(x) =0

Then the solution of this equation is given by finite sums of the form

fay=">_ Y av , ay; €,

(AD)ESP(f) 0<j<l—1

where sp(f) is the set of the roots A of the algebraic equation
N

Fap()(X) = en(ir)* = 0.
n=0
If « = = —1/2, this corresponds to the classical result of Euler.

2.2. Biorthogonal system associated with
(a, B)—exponential monomials

Notation. Let p € £'(IR), p # 0, we put
- Z(Fap(p) ={(An,ln),ne N, l, € N},
where \,, is a zero of order [, of the entire function F, g(u).

As in the classical case [12], [19] and [5] (see also [20] and [4]), we
construct a family of distributions g, », € E'(IR) verifying

<:U'n,m7 \Il(ffs’j> = (_1)j5n,55m,j7 (11)
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where (A\p,ln) € Z(Fap(p)), 0 <m <, —1 and 0 < j <[y —1, here

s denotes the Kronecker symbol. This formula permits to compute the

coefficients cy ; of the development of a p-(c, #)—mean-periodic function

f € E(IR), respect to the (o, f)—exponential monomials defined in (10).
Let f be a function in £(IR), for all n € N, we put

xT
_ / F(t)e M0y
0

It is known that the general solution in £(IR) of the equation

(D +idp)mg = f,

is given by
11 I, times
v)=Y Biale 4+ 0oL (f)(x) , B eC.
j=0

It follows that the general solution in £(IR) of the equation

(Aa,ﬂ + i/\n)lng = f')

is given by
L1 I, times
a,f -1
- Yo o+ VasTno o V(D)) f; €.
Notation.

- If G is a meromorphic function, having v as a pole, we denote by [G(\)],
the singular part of G()) in a neighborhood of 7, hence G(X\) — [G(M)], is
holomorphic in a neighborhood of ~.

LEMMA 2.9.
(i) The distribution gy, in &' (IR) whose the Jacobi-Dunkl transform is

Fop(@n)(N) = (A= An)" [faﬁ(lﬂ)(/\)} A

has a support concentrated at the origin.
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(ii) The distribution p,o € £'(R),n € IN, whose the Jacobi-Dunkl
transform is given by

1
Fa, M(/\)[ ] , IEXNF# A,
Faplmo)y) = 72N | FGom],
1 , A= A\,
satisfies

I, times

<,Ufn,0 ) f> = (_i)ln <Qn *a,ﬁ M, Va,ﬁ In O---0 In(va_,ﬁl(f)»? for all f € E(B)

Proof.

1
(i) Since the function (A — \,) [

Fa,8(1)(A)
using the relation (2), we can conclude that the distribution g,, has a support

concentrated at the origin.
(ii) By the Jacobi-Dunkl transform, it is clear that

] is a polynomial and
A

(=)' (Aa,g = iAn) " b0 = G *au p1-

For all gin E(IR),we have

<Qn *a,8 K g) = (Z)ln <Nn,07 (Aa,,@ + i)\n)lng>'

Now the general solution of the equation

(Aap+id)mg=f , feE(R),
is given by
L—1 I, times

g(z) =D B (2) + VagTno--- oLV 5(£)(x), B; €C.
j=0
Hence,
(im0 s F) = (=) (gn %06 1. Vasln o -0 L (VI A(£))-

REMARK. If the zeros A, of F, g(i) are simple, then the distribution

qn is given by
1

= Fa )
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and

Fo,8(p) (A
Fap(tin0)(N) = (}—a,ﬁ(ﬂ))/(%)(f\ - An)

,iEA # A,
CiEA = A
Then, for all f € £(IR),

(=2)
(Fa5(1)' (An)

In the same way as in [19] (see also [5] and [4]), we can prove the following
proposition.

(tno, f) = (t, VasIn(Vo ().

PROPOSITION 2.10. For p € E'(IR), u # 0, there exists a distribution
Pn,m, 0 <m <1, —1, in &'(IR) satisfying the relation (11). It is given by

1 .
Hnm = %(Aa,ﬁ - Z)\n)mlﬁn,o + Tnom *a,8 Iy

where T, ,,, is the distribution in E'(IR), with support concentrated at the
origin, for m # 0 its Jacobi-Dunkl transform is given by

O RO L PN S
FaiTnm)N) = L {[mmmk - [faﬂwmk}'

Moreover, if [a,b] is the smallest closed interval containing the support of
p, then supp(pin,m) C [a, b].

COROLLARY 2.11. Let f € £(IR) and p € £'(IR), assume that

@)= 3 enuiia),

n>00<1<l,—1

with (An, ln) € Z(Fa,(1)) and the series converges in the topology of £(IR).
Then f is p-(a, ) —mean-periodic and the coefficients c,,; can be computed
by the formula

Cn,l = <,Ufn,l 5 f> = %<(Aa,6 - iAn)lﬂn,Oa f> (12)
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2.3. Jacobi-Dunkl expansion of («, 5)—mean-periodic functions

Let f be a (a, #)—mean-periodic function in £(IR) with respect to u €
E'(IR). We will be interested in the convergence, which will be defined, of

the series expansion
Z Z Cwl‘ljifz’ (13)
Arsln)EZ(Fa (1)) 0<I<ly—1

to f, where the coefficients ¢, ;,0 < 1 < I, —1,n € IN, are given by the
relation (12).

DEFINITION 2.12. The series (13) converges to f in £(IR) by means of

grouping of terms and Abel convergence factors, if there are disjoint finite
+oo

subsets Z; ( groupings ) such that Z(F, g(n)) = U Z; and for every € > 0

1
the series expansion

“+oo

Z Z Z cn,l\Ili‘;fl(x +i0e) | |,

=1 | Qnyln)eZ; \0<I<ln—1
converges to a function f., satisfying lim0 fe = f, where both the series and
E—

the limit are in the topology of £(IR).
Here, 0 = —1 for ReX, > 0,0 =1 for Rel, < 0 and o =
0 for Rel, =0.

From the results of L. Schwartz ([19]) about the Fourier-expansion of
classical mean-periodic functions on IR, we deduce, similarly as in [4] the
following result for the Jacobi-Dunkl expansion of (a,3)—mean-periodic
functions relatively to a distribution in &'(IR).

THEOREM 2.13. Let f be a (a, f)—mean-periodic function with respect
to u € E'(IR), then the series expansion defined in (13) whose coefficients
are given by the relation (12), converges to f in E(IR) by means of grouping
of terms and Abel convergence factors.

L. Ehrenpreis [13]) (see also [7]), showed in the classical case that for a
wide class of distributions u the abelian summation process is not necessary.
Naturally, we can extend it for (a, 3)— mean-periodic functions.

DEFINITION 2.14. A distribution p € &'(IR) is called («, 3)-slowly-
decreasing, if there are positive constants A, e, such that for any x € IR

Max {|Fas()(y)|, y € R, |z —y| < Alog(1 + |z[)} > e(1 + ||) Ve,
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It turns out that:

i) if @« = = —1/2, we have the definition of slowly decreasing distribu-
tion (see [7] p.123).

ii) p is («,B)-slowly-decreasing if and only if 'V, g(u) is a slowly de-
creasing.

By using the result of L. Ehrenpreis for the Fourier expansion of classical
mean-periodic functions on IR (see [13]) and Proposition 2.7, we deduce the
following theorem.

THEOREM 2.15. If u is («, 3)—slowly-decreasing, there exists a finite
grouping Z; of Z(Fa (1)) such that for any f € E(IR) satisfying p*qgf = 0,

the series
“+o00

2| X > @ || (14)

3=1 | (An,ln)€Z; \O0<I<ln—1

converges to f in E(IR), where the coefficients ¢, ;, 0 <1 <1l,—1,ne IN
are given by the relation (12).

By imposing other conditions on the (¢, 3)—slowly-decreasing distribu-
tion u, we can show as follows that the series expansion defined in the
relation (13) converges in £(IR) without the grouping of terms (i.e., for
which we have card(Z;) =1 in (14) for all j).

It follows from the results of C. A. Berenstein and B. A. Taylor [7] (see
also [6], p.214), in the classical case and Proposition 2.7, the following result.

THEOREM 2.16. Given a (o, 3)—mean-periodic function f in E(IR) rel-
atively to a distribution p in E'(IR) which is (a, 8)—slowly-decreasing, a
necessary and sufficient condition for which the Jacobi-Dunkl series rep-
resentation defined in the relation (13) converges to f in E(IR) without
groupings is that for some €,c > 0, we have

exp(—c|ImAl)

(1
Fal )] 2 £,

where (X, 1) € Z(Fo (1))

(15)

3. Pompeiu problem associated with the Jacobi-Dunkl operators

The Pompeiu problem extensively studied by several authors (see, [9]
and [1]), is very closely related to the theory of mean periodic functions, see

[6].
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Let us first recall that a family R of compactly supported Radon mea-
sures is said to have the Pompeiu property associated with the Jacobi-Dunkl
operator, (see [18]), if there is no non trivial function f € C(IR) or £(IR)
satisfying

f*apgp =0, forallpyeR. (16)
Similarly, a collection K of bounded measurable subsets of IR is said to have
the Pompeiu property, if there is no non trivial function f € C(IR) such
that:

f*ap 1p(z) = / T8 (y) Au s(y)dy = 0, forall D € K.
D

Analogously, we say that a family R of compactly supported distributions
has the Pompeiu property, if there is no non trivial smooth function satis-
fying: p*q 5 f =0, for all p € R.

THEOREM 3.1. Two distributions pu,v of & (IR) have the Pompeiu
property if and only if F(u) and F(v) have no common zero.

P r oo f. The system

:u*a,ﬁf = 07
V*a,ﬂf = 07

is clearly equivalent to the following

Wa(p) * Vo 3(f) =0,
Was(v) * Vo 5(f) =0,

which leads to Va_ﬁl(f) =0, (see [6], p. 206), and to f = 0.
Conversely, let A € @ such that F, g(p)(A) = Fa,g(v)(A) = 0, then

W ¥ 3 \Ili‘ﬁ(x) =V %y \I/i‘ﬁ(x) =0, forallz € IR.

On the other hand, \Ili’ﬁ(O) =1, hence p and v do not satisfy the Pompeiu
problem, this finished the proof. [ ]
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Applications

ProrosiTION 3.2. For r1 > r9 > 0 a necessary and sufficient condition
such that there is no non trivial f € C(IR) satisfying

T .
VoeR, [ T f(y)Aas(y)dy =0, (i=1,2), (17)
.
is that the functions p — @5 P (ry) and p — 2T (ry), have no

comimon zeros.

P roof. If we denote by o, = 1,_, .[(7) As,g(z)dz, the relation (17) is
equivalent to the following

Vz € R, 0y, %05 f(z) =0 (i =1,2). (18)

So by Theorem 3.1 there is no non trivial function satisfying (17) if and only
if the functions A — F, g(or,)(A) and A — F, g(0r,)(A) have no common
zero. But we have

dr, . _ o o
. [(smh 2x) 1Aa+1,5+1(x)cpu+1’5“(:c)] =16(a + 1)Aa,5(x)<pu’ﬁ(x),

([15], p.148). Tt follows that (A? = u? + p?),

2%
Faplom) (V) = —= = (sinh )20+ (cosh 7, 20D 04 1),
and this gives the result. ]

By applying Theorem 3.1, for the measures p; = %(5,01. +0_p,), 1=1,2,
we obtain the following proposition.

ProrosiTiON 3.3. For ri,79 > 0, a necessary and sufficient condition
such that there is no non trivial function f € C(IR) satisfying

Vee R, T, f(z)+ T, f(z) =0, (1=1,2)

is that the functions u — ¢ﬁ+1’5+1(r1) and p — gofj“’ﬁﬂ(rg), have no

comimon zeros.
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4. Convolution equations

For p,v € &'(IR), u being («a, f)—slowly-decreasing, we consider the
system of (a, 3)-convolution equation

f*ap f =9,
s) { Ll
where g, h € £(IR) and the unknown function f is also sought in £(IR). For
the classical case one can see [7].
There is clearly compatibility condition, namely:

H*agh =1V%q3g.

PROPOSITION 4.1. Assume that F,, (1) and F, g(v) have no common
zeros. The necessary and sufficient condition for the previous system (S) to
have a solution for every pair (g, h) satisfying the compatibility condition,
is the existence of 1,11 € E'(IR) such that

[ *a.8 [+ V1 %o 3V = dp. (19)
In this case the solution is unique.

P r o o f. From relation (7), the system (S) is equivalent to

Vas(p) * Vo 5(f) =V, 5(9),
Was(W) * V, 3(f) = V. 5(h).

Using the classical result ([6], p. 219) and the fact that tVa_’é(ég) = dp, we
deduce the result. ]

By using Theorem 3.1, one can remark that if f is a solution of the
system (S), then f is unique.

COROLLARY 4.2. If the hypotheses of Proposition 4.1 hold, then the
necessary and sufficient condition for the existence of a solution f of the
previous system (S) for every pair satisfying the compatibility condition is
the existence of constants € > 0 and C' > 0, such that

exp(=C|Zm¢])

Fas (W)(©)] + | Fap0O 2 e e

, for all ¢ €. (20)

P r o o f. The proof of the corollary is based on Proposition 4.1, the
relation (7) and the result in the classical case (see [6] p. 220). ]
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REMARKS.
i) If we denote by

PHvV € —>5(B) X E(R), f_> (M *a,B faV*a,,@ f)’

called Pompeiu transform under the assumption that F, g(u), Fa,g(v) have
no common zero, then P, , is injective.

ii) Let p,v € &'(IR) satisfying (19), the solution f of the system (S) is

given by
[ =1 *ap g+ vi*qsh.
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