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Abstract

Recently, many papers in the theory of univalent functions have been
devoted to mapping and characterization properties of various linear integral
or integro-differential operators in the class S (of normalized analytic and
univalent functions in the open unit disk U), and in its subclasses (as the
classes S∗ of the starlike functions and K of the convex functions in U).
Among these operators, two operators introduced by Saigo, one involving
the Gauss hypergeometric function, and the other - the Appell (or Horn)
F3-function, are rather popular. Here we view on these Saigo’s operators
as cases of generalized fractional integration operators, and show that the
techniques of the generalized fractional calculus and special functions are
helpful to obtain explicit sufficient conditions that guarantee mappings as:
S 7→ S and K 7→ S, that is, preserving the univalency of functions.
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1. Definitions and introduction

Definition 1. For real numbers α > 0, β and η, the Saigo hypergeo-
metric fractional integral operator Iα,β,η

0,z f(z) is defined by

Iα,β,η
0,z f(z) =

z−α−β

Γ(α)

z∫

0

(z − ζ)α−1
2F1

(
α + β,−η;

α;
1− ζ

z

)
f(ζ)dζ, (1)

with the Gauss hypergeomteric function 2F1(a, b; c; z) in the kernel, as a
special case of the generalized hypergeometric function (see for example, [7],
Vol.1; [28]):

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k
·z

k

k!
, (a)k := Γ(a+k)/Γ(a).

(2)
Here f(z) is an analytic function in a simply-connected region of the z-plane
containing the origin (as such is the unit disk U), of the order

f(z) = O(|z|ε) (z → 0),
where

ε > max{0, β − η} − 1,

and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to be
real when z − ζ > 0.

This operator has been initially introduced by Saigo in a series of his
papers for studying boundary value problems for partial differential equa-
tions, especially for the Euler-Darboux equation, see [30], [31], [32], [39], or
equations of mixed type, as in [12], [34]. Later on, the Saigo hypergeometric
operator and its modifications have been used in many papers by him and
his collaborators, to study various problems of univalent functions theory,
see for example [40], [24], [38], [6], [16], etc.

Operator (1) contains as special cases the Riemann-Liouville (R-L) and
Erdélyi-Kober (E-K) operators of fractional integration of order α > 0, in
the classical fractional calculus (FC), see [36], [14]:

Rαf(z) = zα

1∫

0

(1− σ)α−1

Γ(α)
f(zσ)dσ, (3)

Iγ,α
β f(z) =

1∫

0

(1− σ)α−1

Γ(α)
σγ f(zσ1/β)dσ (α > 0, γ ∈ R, β > 0), (4)
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namely:

Rαf(z) = Iα,−α,−α
0,z f(z) , Iγ,α

1 f(z) = z−α−γ Iα,−α−γ,−α
0,z f(z).

Saigo’s hypergeometric fractional integral, itself, can be represented as a
composition of two E-K fractional integrals, for example:

Iα,β,η
0,z f(z) = z−βIη−β,−η

1 I0,α+η
1 f(z). (5)

For negative values of α, the operator (1) is extended as a fractional
derivative operator similarly to the way of introducing of classical Riemann-
Liouville and Erdélyi-Kober fractional derivatives, namely:

Iα,β,η
0,z f(z) =

dn

dzn
Iα+n,β−n,η−n
0,z f(z), (6)

where n = [−<(α)] + 1 with [α] denoting the integer part of α.
Further in this paper, for the sake of denotations’ brevity, we shall omit

the subindex 0, z and write the Saigo hypergeometric integral operator sim-
ply as

Iα,β,η instead of Iα,β,η
0,z .

Operator (1) is a typical representative of the so-called hypergeometric
fractional integral operators of the general form

Hf(z) (7)

=

1∫

0

σγ2(1−σ)α1+α2−1

Γ(α1+α2)
2F1(γ2+α2−γ1, α−1;α1+α2; 1− σ) f(zσ1/β)dσ.

Such operators were studied also by Love [19], Kalla and Saxena [11], Sri-
vastava and Buschman [37], McBride [23], Hohlov [8, 9], and other authors.

Definition 2. Let α, α′, β, β′, γ ∈ C , <(γ) > 0, and F3 denote the
Appell third function, known also as Horn’s F3-function

F3(α, α′; β, β′; γ; z, ξ)=
∞∑

m,n=0

(α)m(α′)n(β)m(β′)n

(γ)m+n

zmξn

m!n!
for |z| < 1, |ξ| < 1,

(8)
which reduces to the Gauss function, as: F(α, β; γ; z)

=F3(α, α′; β, β′; γ; z, 0)=F3(α, 0;β, β′; γ; z, ξ)=F3(α, α′; β, 0; γ; z, ξ).
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The F3-operator is defined by

I(α, α′, β, β′; γ)f(z)

= z−α

z∫

0

(z − ξ)γ−1

Γ(γ)
ξ−α′ F3

(
α, α′, β, β′; γ; 1− ξ

z
, 1− z

ξ

)
f(ξ)dξ. (9)

Similar fractional integration operator involving the F3-function was
introduced first by Marichev [22] in a study on Volterra integral equations
of convolutional type. Saigo [33] introduced operator (9) as a generalization
of the hypergeometric integral operator (1), as well as a composition (in
view of Mellin transform techniques) of two such operators, for example (if
<(γ) > <(κ) > 0):

I(α, α′, β, β′; γ)f(z) = Iκ,α−κ,−β Iγ−κ,α′−γ+κ,β′−γ+κf(z). (10)

Saigo and Maeda [35] studied some relations of operators (9) with the Mellin
transforms, hypergeometric operators (1), their decompositions and prop-
erties in the McBride spaces ([23]) Fp,µ.

Both Saigo’s operators (1) and (9) can be considered as examples of the
operators for generalized fractional integration (of Riemann-Liouville type),
first introduced as such a notion by Kalla [10], in the form

Rf(z) = z−γ−1

z∫

0

Φ(
ζ

z
)ζγ f(ζ)dζ =

1∫

0

Φ(σ) σγf(zσ)dσ, (11)

with a kernel-function Φ(z) an arbitrary continuous (resp. analytic) function
so that the above integral makes sense. By special choices of Φ(z), as some
elementary or special functions, the particular known operators of fractional
calculus can be obtained. If one takes the kernel to be an arbitrary Meijer’s
G-function (details of definitions, conditions on the parameters and types
of contour L ∈ C, see in [7], Vol.1; [28]; [14], App.):

Gm,n
p,q (z) = Gm,n

p,q

[
z

∣∣∣∣∣
a1, · · · , ap

b1, · · · , bq

]
= Gm,n

p,q

[
z

∣∣∣∣∣
(aj)

p
1

(bj)
q
1

]

=
1

2πi

∫

L

m∏

j=1

Γ(bj − s)
n∏

j=1

Γ(1− aj + s)

p∏

j=n+1

Γ(aj − s)
q∏

j=m+1

Γ(1− bj + s)

zs ds (z 6= 0), (12)
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then a great extent of generality is achieved. But this has been also a trouble
to develop an efficient and detailed theory of such operators of generalized
fractional calculus that could be studied and used efficiently for applications.

However, using for Φ(σ) in (11) a suitable Meijer’s G-function of a par-
ticular order (m, 0,m, m), in Kiryakova [14], we have been able to develop
a generalized fractional calculus that includes, as special cases, almost all
the known operators of fractional integration and differentiation studied
by many authors. This theory has already found various applications in
solving problems in the theory of special functions, integral transforms and
operational calculus, differential and integral equations, series expansions,
etc.

Definition 3. Let m > 1 be an integer, β > 0; γj (j = 1, . . . , m)
be real and δj = 0 (j = 1, . . . , m). The set δ = (δ1, . . . , δm) is considered
as a fractional multiorder of integration. The following basic notion of a
generalized operator of fractional integration (generalized fractional integral
operator) is introduced:

I
(γj),(δj)
β,m f(z)

=





1∫

0

Gm,0
m,m

[
σ

∣∣∣∣∣
(γj + δj)m

1

(γj)m
1

]
f

(
zσ1/β

)
dσ, if

m∑

j=1

δj > 0;

f(z), if
m∑

j=1

δj = 0.

(13)

The corresponding generalized fractional derivative is denoted by D
(γj),(δj)
β,m

and defined by means of a suitable explicit differintegral expression, see [14].
An important and useful characterization property of the operators of the
Generalized Fractional Calculus (GFC) in [14] is their alternative represen-
tation as products of commuting E-K fractional integrals (4), namely:

I
(γj),(δj)
β,m f(z) = Iγ1,δ1

β . . . Iγm,δm

β f(z)

=

1∫

0

· · ·
1∫

0




m∏

j=1

(1− σj)δj−1σ
γj

j

Γ(δj)


 f

[
z(σ1 . . . σm)1/β

]
dσ1 . . . dσm. (14)

Our operators I
(γj),(δj)
β,m and D

(γj),(δj)
β,m are shown to incorporate in the

scheme of GFC all the other known operators of fractional integration and
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differentiation, studied by other authors. Especially, using the representa-
tion of the Gauss hypergeometric function 2F1 as a Meijer G2,0

2,2-function
([28], p. 720, §8.4.49, eq. (22)) as well as comparing the decompositions (5)
and (14), one can easily see that Saigo’s hypergeometric integral operator
(1) is a generalized fractional integral in the sense of (13) with m = 2:

Iα,β,η
0,z f(z) = z−βI

(η−β,0),(−η,α+η)
1,2 f(z). (15)

Similarly, the representation of the F3-function (8) as a Meijer G3,0
3,3-function

(see [28], p. 727, §8.4.51, eq. (2)), shows the Saigo F3-operator (9) as a
generalized fractional integral with m = 3:

I(α, α′, β, β′; γ)f(z)

= z−α−α′+γ

1∫

0

G3,0
3,3

[
σ

∣∣∣∣∣
α− α′ + β, γ − 2α′, γ − α′ − β′

α− α′, β − α′, γ − 2α′ − β′

]
f(zσ)dσ

(16)
= z−α−α′+γI

(α−α′,β−α′,γ−2α′−β′),(β,γ−α′−β,α′)
1,3 f(z).

Definition 4. By A we denote the class of functions of the form:

f(z) = z +
∞∑

k=2

akz
k, (17)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let S be
the subclass of A consisting of all functions which are also univalent in U .
Further, a function f(z) belonging to S is said to be convex, if it satisfies
the inequality:

Re
{

1 +
zf ′′(z)
f ′(z)

}
> 0 (z ∈ U) (18)

and this subclass of S is denoted by K.

Definition 5. The Hadamard product (convolution) of two analytic
functions in U :

f(z) =
∞∑

k=0

akz
k and g(z) =

∞∑

k=0

bkz
k

is defined by

(f ∗ g)(z) :=
∞∑

k=0

akbkz
k. (19)
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Many papers studying the class of univalent functions and its subclasses,
as those of the starlike and convex functions, make use of various linear
integral or integro-differential operators. These include the familiar oper-
ators of Biernacki [3], Libera [20], Bernardi [2], Ruscheweyh [29], Carlson
and Shaffer [5], Hohlov [8, 9], Srivastava and Owa [25, 26], and others. In
[13, 14, 15, 16] we have shown that all such operators are special cases of
the operators (13) of the generalized fractional calculus [14]. In a previ-
ous paper [16], joint with Saigo and Owa, we have found some distortion
inequalities and other characterization theorems for the functions of the
above-mentioned classes, thus showing that the classical techniques used in
other papers (cf. [40, 24]) on univalent functions, work quite easily also for
the class of our generalized fractional integrals and derivatives.

One of the important problems in the theory of univalent functions is
the construction of linear operators preserving the class S and some of
its subclasses. Biernacki [3] claimed that a certain integral operator maps
S into itself, but later a counterexample by Krzyz and Lewandowski [18]
showed that he was wrong. However, another linear integral operator, in-
troduced by Libera [20], maps each of the subclasses of the convex, starlike
and close-to-convex functions into itself. Bernardi [2] generalized Libera’s
operators, but also studied operators preserving only some subclasses of
S. Ruscheweyh [29] and Livingston [21] investigated differential operators,
inverse to Biernacki’s and Libera’s ones, but could not find operators pre-
serving the univalence of the whole class S.

In this connection, the works of Hohlov [8, 9] seem to be pioneering.
By means of a Hadamard convolution (19) with the Gauss hypergeometric
function, he introduced a three-parameter family of operators F(a, b, c):

F(a, b, c)f(z) =
(
{z 2F1(a, b; c; z)} ∗ f

)
(z). (20)

These are hypergeometric operators of the form (7) that could be repre-
sented also as generalized fractional integrals (13) with m = 2:

F(a, b, c)f(z) =
Γ(c)

Γ(a)Γ(b)

1∫

0

(1− σ)c−a−b

Γ(c− a− b + 1)
σb−c (21)

× 2F1(c− a, 1− a; c− a− b + 1; 1− σ)f(zσ)dσ

=
Γ(c)

Γ(a)Γ(b)
Ia−2,1−a
1 Ib−2,c−b

1 f(z) =
Γ(c)

Γ(a)Γ(b)
I

(a−2,b−2),(1−a,c−b)
1,2 f(z).

Hohlov found sufficient conditions on the parameters a, b, c for the operators
(19)-(20) to preserve the whole class S of univalent functions or to map its
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subclass K of convex functions into S. Since these operators generalize
the above-mentioned operators, he could easily explain the reasons for the
failure of the previous authors.

In our paper [17], joint with Saigo and Srivastava, we generalized the
approach of Hohlov to the operators (13)-(14) of the generalized fractional
calculus, finding there explicit sufficient conditions (inequalities that should
be satisfied by the parameters γk, δk, k = 1, . . . ,m) for preserving the class
S or mapping class K into class S, see Theorems 3 and 4 therein.

Here, we show the corollaries of these rather general results, for the
specific cases of the Saigo operators (1) and (9). In order to keep in the
frames of a survey paper, we shall omit the proofs. They can be done easily
as consequences of the general scheme in [17] (for the operators of GFC)
or following a pattern similar to this in Hohlov [8, 9], but by using another
case of Gauss hypergeometric function.

2. Saigo’s hypergeometric fractional integration operator
in the classes A, S, K

One can easily obtain the following lemma, due to Srivastava, Saigo and
Owa [40], that is a simple corollary also from our general Lemma 1 in [17]:

Lemma 0. Let α > 0, β and η be real, and let κ > β − η − 1. Then

Iα,β,η
0,z zκ = ck zκ−β with ck =

Γ(κ + 1)Γ(κ− β + η + 1)
Γ(κ− β)Γ(κ + α + η + 1)

> 0. (22)

Since we consider preserving the functions in the class A, it is suitable
to normalize the operator (1), according to (22), by means of multiplication
by [c1]−1 zβ. Thus, further we consider the normalized Saigo’s fractional
integrals (using the same name for the normalized version, but stressing
this fact by a tilde in its notation: Ĩα,β,η

0,z := [c1]−1zβIα,β,η
0,z ),

Ĩα,β,η
0,z f(z) :=

Γ(2− β)Γ(2 + α + η)
Γ(2− β + η)

zβ Iα,β,η
0,z f(z). (23)

Then, from Lemma 0 and the more general results in [17], we easily obtain

Theorem 1. Under the parametric constraints

α > −η > 0, β − η < 2, (24)
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Saigo’s (normalized) hypergeometric fractional integral Ĩα,β,η
0,z maps the class

A into itself, and the image of a power series (17) has the form:

Ĩf(z) = Ĩα,β,η
0,z

{
z +

∞∑

k=2

akz
k

}
= z +

∞∑

k=2

Ψ(k)akz
k ∈ A, (25)

where the multiplier sequence is given by

Ψ(k) =
(2− β + η)k−1(1)k

(2− β)k−1(2 + α + η)k−1
> 0 (k = 2, 3, 4, . . . ) (26)

with (a)k = Γ(a + k)/Γ(a) denoting the Pochhammer symbol.

Theorem 2. In the class A, Saigo’s (normalized) hypergeometric frac-
tional integral operator (23) can be represented by the Hadamard product

Ĩα,β,η
0,z f(z) = (h ∗ f)(z), (27)

where the function h(z) ∈ A is the following 3F2- generalized hypergeomet-
ric function (2):

h(z) = z +
∞∑

k=2

Ψ(k)zk = z 3F2

(
1,−β + η + 2, 2;

−β + 2, α + η + 2;
z

)
. (28)

Using the above representation, and the more general results in [17],
or in the particular case of hypergeometric fractional integral operators,
the lines of proof analogous to these done by Hohlov [8], we can state the
following

Theorem 3. Criteria for univalence of Saigo’s hypergeometric frac-
tional integral operators Ĩα,β,η

0,z : The conditions

α = − η = 0 , β − η < 2 , α > 3
and

12(η − β + 2)(η − β + 3)
(−β + 2)(−β + 3)(α + η + 2)(α + η + 3) 3F2

(
3, η − β + 4, 4;

−β + 4, α + η + 4;
1

)

+
6(η − β + 2)

(−β + 2)(α + η + 2) 3F2

(
2, η − β + 3, 3;

−β + 3, α + η + 3;
1

)

+ 3F2

(
1, η − β + 2, 2;

−β + 2, α + η + 2;
1

)
< 2, (29)

imply that Ĩ = Ĩα,β,η
0,z : S 7→ S.
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Theorem 4. The parameters’ conditions

α = − η = 0 , β − η < 2 , α > 2
and

2(η − β + 2)
(−β + 2)(α + η + 2) 3F2

(
2, η − β + 3, 3;

−β + 3, α + η + 3;
1

)

+ 3F2

(
1, η − β + 2, 2;

−β + 2, α + η + 2;
1

)
< 2 (30)

imply that Ĩ = Ĩα,β,η : K 7→ S.

P r o o f. The proofs of Theorems 3 and 4 are based on the following
ideas: For the operator Ĩ to preserve the class S of univalent functions, we
require for the image-function

Ĩf(z) = z +
∞∑

k=2

bkz
k,

where bk = Ψ(k)ak and Ψ(k) as in (26), that the following sufficient condi-
tion (see [1])

σ1 =
∞∑

k=2

k|bk| =
∞∑

k=2

kΨ(k)|ak| < 1 (31)

is satisfied. In the case of Theorem 3, we use the known estimate given
by de Branges’ theorem [4], formerly known as a Bieberbach’s conjecture:
|ak| 5 k. Thus we can estimate the sum σ1 as

σ1 =
∞∑

k=2

kΨ(k)|ak| 5
∞∑

k=2

k2Ψ(k) =
∞∑

k=2

k2

(1)k−1
[Ψ(k)(1)k−1] < 1.

Then, following the lines of Hohlov’s proof [8], we transform the above
series into a sum of three terms including values at the point z = 1 of 3F2-
hypegeometric functions, all of which are representable by convergent series,
due to the imposed parameters’ conditions.

The proof of Theorem 4 is much akin to above, again requiring (31), but
in this case, instead of the estimate |ak| 5 k, we use the estimate |ak| 5 1
(see [27]) for the coefficients of convex functions f(z) defined by (1).

Here, unlike the case of Hohlov operators and the criteria given in [8, 9],
the functions 3F2(1) in Theorems 3 and 4 cannot be reduced to 2F1(1),
and thus evaluated explicitly. However, for some special choices of the
parameters α, β, η, it is possible to simplify the conditions in Theorems 3
and 4 to explicit inequalities for the parameters α, β, η.
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Corollary 5. For β = 1, the normalized Saigo operator (23) turns
into a special case of the Hohlov operators (200-(21) with a = η + 1, b =
2, c = α + η + 2 in the class A :

Ĩα,1,ηf(z) = F(η + 1, 2;α + η + 2)f(z). (32)
Then, if −1 < η 5 0, α > 3 and

(α + η)(α + η + 1)(α2 + 6αη + 6η2 + α)
α(α− 1)(α− 2)(α− 3)

< 2, (33)

Ĩα,1,η : S 7→ S. The conditions −1 < η 5 0, α > 2 and

(α + η)(α + η + 1)(α + 2η)
α(α− 1)(α− 2)

< 2 (34)

imply that Ĩα,1,η : K 7→ S.

There are two other cases when the Saigo operators can be simplified
and the 3F2 functions can be reduced to computable 2F1(1) series.

Corollary 6. Let β = 0. Then the conditions −2 < η 5 0, α > 3 and

(α + η + 1)(α2 + 3αη + 2η2 + α + η)
(α− 1)(α− 2)(α− 3)

< 2 (35)

imply that Ĩα,0,η : S 7→ S. Similar conditions can be deduced for the case
K 7→ S.

Corollary 7. Let β = −α. Then the conditions η 5 0, α > 3, α +
η = 0 and

α(α + 1)2

(α− 1)(α− 2)(α− 3)
< 2 (36)

imply that Ĩα,−α,η : S 7→ S.

The conditions (29), (30) in Theorems 3 and 4 may look, in the general
case, somewhat complicated to be solved explicitly. However, for given
particular values of the parameters α, β, η, it is easy to check whether these
conditions are satisfied or not. This is demonstrated by the above Corollaries
5, 6, 7.

Here we give one more example, with criteria for univalence of the
well-known Erdélyi-Kober (E-K) fractional integral operators (4) that fol-
lows from Theorems 3 and 4 by using the relation mentioned in beginning:
Iγ,α
1 f(z) = z−α−γ Iα,−α−γ,−α

0,z f(z).
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Corollary 8. Let Ĩ = Ĩγ,α
1 = [Γ(γ + α + 2)/Γ(γ + 2)]Iγ,α

1 be the
normalized Erdélyi-Kober fractional integral (4). If the inequalities

γ > −2, α > 3,

(γ + α + 1)(2γ2 + 3γα + α2 + γ + α)
(α− 1)(α− 2)(α− 3)

< 2 (37)

hold true, then Ĩγ,α
1 preserves the univalency, i.e. Ĩγ,α

1 : S 7→ S. Analo-
gously, the conditions

γ > −2, α > 2, γ2 + 2γα− α2 + γ + 7α− 4 < 0 (38)

imply that Ĩγ,δ
1 : K 7→ S.

One can state yet more simplified similar conditions for the Riemann-
Liouville operator Rαf(z) = Iα,−α,−α

0,z f(z) by setting γ = 0 in the above
inequalities (37) and (38).

3. Saigo’s F3-operators in the classes A,S,K

Results similar to those in Theorems 3 and 4 can be stated also for the
F3-operators (9), involving Appell’s third function.

A starting point for these will be the following auxiliary lemma (can be
found as Remark, on p. 394, Saigo and Maeda [35].

Lemma 9. Let Re(γ) > 0, k > max[0, Re(α+α′+β−γ), Re(α′−β′)]−1,
then

I(α, α′, β, β′; γ) xk (39)

= Γ

[
k + 1,−α− α′ − β + γ + k + 1,−α′ + β′ + k + 1

−α− α′ + γ + k + 1,−α′ − β + γ + k + 1, β′ + k + 1

]
xk−α−α′+γ .

Then, from the representation (16) of the F3-operator as a generalized
fractional integration operator of form (13) with m = 3 and our general
results in Kiryakova, Saigo, Srivastava [17], one can obtain

Theorem 10. The the normalized F3-operator is represented by the
Hadamard product:

Ĩf(z) = Ĩ(α, α′, β, β′; γ)f(z) := zα+α′−γ I(α, α′, β, β′; γ)f(z) = (h ∗ f)(z),
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where the function h(z) ∈ A is the following 4F3- generalized hypergeomet-
ric function (2):

h(z) = z 4F3

(
1, α− α′ + 2, β − α′ + 2, γ − 2α′ − β′ + 2;

α− α′ + β + 2, γ − 2α′ + 2, γ − α′ − β′ + 2;
z

)
. (40)

According to (16), we have to set the following denotations:

γ1 := α−α′, γ2 := β−α′, γ3 := γ−2α′−β′; δ1 := β, δ2 := γ−α′−β, δ3 := α′,

leading to δ1 + δ2 + δ3 = γ, and to require the conditions

α−α′ > −2, β−α′ > −2, γ−2α′−β′ > −2; β > 0, γ−α′−β > 0, α′ > 0 (41)

Then the corresponding inequalities from Theorems 3 and 4 in [17] for
S 7→ S and K 7→ S, in this case involve 4F3(1) series.

Theorem 11. Let the conditions (41) be satisfied. Let additionally,

γ > 3 (42)

and

2




3∏

j=1

(γj + 2)(γj + 3)
(γj + δj + 2)(γj + δj + 3)


 4F3

(
3, (γj + 4)31;

(γj + δj + 4)31;
1

)

+3




3∏

j=1

γj + 2
γj + δj + 2


 4F3

(
2, (γj + 3)31;

(γj + δj + 3)31;
1

)

+4F3

(
1, (γj + 2)31;

(γj + δj + 2)31;
1

)
< 2, (43)

with parameters as in (41). Then for each univalent function f in A, the
image Ĩf is also univalent, i.e. Ĩ : S 7→ S.
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Theorem 12. Let the conditions (41) be satisfied. Let additionally,

γ > 2 (44)

and



3∏

j=1

γj + 2
γj + δj + 2


 4F3

(
2, (γj + 3)31;

(γj + δj + 3)31;
1

)

+ 4F3

(
1, (γj + 2)31;

(γj + δj + 2)31;
1

)
< 2. (45)

with parameters as in (41). Then Ĩ maps a convex function f(z) into a
univalent function, i.e. Ĩ : K 7→ S.

References

[1] F. G. A v h a d i e v, L. A. A k s e n t ’ e v, Basic results in sufficient
conditions for univalency of analytic functions (In Russian). Uspehi
Matematicheskih Nauk 30, No 4 (1975), 3-60.

[2] S. D. B e r n a r d i, Convex and starlike univalent functions. Trans.
Amer. Math. Soc. 135 (1969), 429-446.
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