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Abstract

This paper refers to a fractional order generalization of the classical Ja-
cobi polynomials. Rodrigues’ type representation formula of fractional order
is considered. By means of the Riemann–Liouville operator of fractional cal-
culus fractional Jacobi functions are defined, some of their properties are
given and compared with the corresponding properties of the classical Ja-
cobi polynomials. These functions appear as a special case of a fractional
Gauss function, defined as a solution of the fractional generalization of the
Gauss hypergeometric equation.
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1. Introduction

The fractional calculus becomes one of the most intensively developing
areas of mathematical analysis. Its fields of application range from biology
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through physics and electrochemistry to economics, probability theory and
statistics. On behalf of the nature of their definition, the fractional deriva-
tives provide an excellent instrument for modeling of memory and hereditary
properties of various materials and processes. For example, the half-order
derivatives and integrals prove to be more useful for the formulation of cer-
tain electrochemical problems than the classical methods [3]. Fractional
differentiation and integration operators are also used for extensions of the
diffusion and wave equations [7] and, recently, of the temperature field prob-
lem in oil strata [1].

Generalizing Rodrigues’ formula for the classical Jacobi polynomials by
means of the Riemann–Liouville fractional differentiation operator, we de-
fine the so-called fractional Jacobi functions. We also show that these func-
tions appear as a special case of a solution of the fractional Gauss differential
equation, obtained by a modified power series method.

Definition 1. Let f(t) be piecewise continuous on (0,∞) and inte-
grable on any finite subinterval of [0,∞). Let ν > 0 and m ∈ N such that
m− 1 ≤ µ < m.

(i) The Riemann–Liouville fractional integral of f(t) of order ν is defined
by

Jνf(t) ≡ 1
Γ(ν)

∫ t

0
(t− τ)ν−1f(τ)dτ.

(ii) The Riemann–Liouville fractional derivative of f(t) of order µ is de-
fined by

Dµf(t) ≡ Dm
[
Jm−µf(t)

]
.

The main properties of the Riemann–Liouville operators for fractional
integration and differentiation are described in [4], [5] and [6].

For our later considerations we need just to mention that if µ ≥ 0, t > 0
and α > −1, then the fractional derivative of the power function tα is given
[4] by

Dµtα =
Γ(α + 1)

Γ(α− µ + 1)
tα−µ. (1)

Using the same idea, it can be shown ([4], [5]) that formula (1) holds for
negative values of µ as well. In this case, Dµ is to be considered as J−µ.

Also, we essentially use the Leibniz rule for fractional differentiation [5,
pp. 91-97], that for a continuous on [0, t] function f(τ) and continuously
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differentiable on the same interval function ϕ(τ) takes the form

Dµ [ϕ(t)f(t)] =
∞∑

k=0

(
µ

k

)
ϕ(k)(t)Dµ−kf(t). (2)

Consider also the Gauss hypergeometric differential equation

x(1− x)y′′ + [c− (a + b + 1)x]y′ − aby = 0 (3)

which has as a solution the Gauss hypergeometric function defined as

2F1(a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
, (4)

where the power series converges for |x| < 1 ([8, p. 63], [10, p. 283]) and
(x)n is the Pochhammer symbol

(x)n ≡ Γ(x + n)
Γ(x)

= x(x + 1) . . . (x + n− 1).

2. Fractional Jacobi functions

The classical Jacobi polynomials are usually defined by means of Ro-
drigues’ formula

P (α,β)
n (x) ≡ (−2)n(n!)−1(1− x)−α(1 + x)−β dn

dxn

[
(1− x)n+α(1 + x)n+β

]
,

(5)
where α > −1, β > −1 [2]. Their basic properties ([2], [8]) are given
in Table 1. We generalize the Jacobi polynomials by setting in (5) the
Riemann–Liouville fractional derivative Dν .

Definition 2. The fractional Jacobi functions are defined by the
formula

Pα,β
ν (t) ≡ (−2)−νΓ(ν + 1)−1(1− t)−α(1 + t)−βDν

[
(1− t)ν+α(1 + t)ν+β

]
,

(6)
where ν > 0, α > −1, β > −1.

Taking into account that the binomial coefficients with real arguments
are defined [6] as (

α

β

)
≡ Γ(1 + α)

Γ(1 + β)Γ(1 + α− β)
, (7)

it is possible to derive the following properties of the fractional Jacobi func-
tions, similar to the properties of the classical Jacobi polynomials.



434 E. Gogovcheva, L. Boyadjiev

Theorem 3. For the fractional Jacobi functions the following repre-
sentation holds:

P (α,β)
ν (t) = 2−ν

∞∑

k=0

(
ν + α

ν − k

)(
ν + β

k

)
(t− 1)k(t + 1)ν−k. (8)

P r o o f. Since (1 + τ)ν+β is continuously differentiable on [0, t], the
Leibniz rule (2) applied to the fractional derivative in (6) yields

P (α,β)
ν (t) =

(−2)−ν

Γ(ν + 1)
(1− t)−α(1 + t)−β

∞∑

k=0

(
ν

k

){
Dk

[
(1 + t)ν+β

]}

×
{

Dν−k
[
(1− t)ν+α

]}
.

Then from the generalized binomial theorem it follows

Dν−k
[
(1− t)ν+α

]
=

∞∑

r=0

(
ν + α

r

)
(−1)ν+α−rDν−k

[
tν+α−r

]
.

Further, formulas (1) and (7) yield

P (α,β)
ν (t) = 2−ν(t− 1)−α

∞∑

k=0

{(
ν + β

k

)
(t + 1)ν−k

(
ν + α

ν − k

)

×
∞∑

r=0

(
α + k

r

)
tα+k−r(−1)r

}

= 2−ν(t− 1)−α
∞∑

k=0

(
ν + β

k

)(
ν + α

ν − k

)
(t + 1)ν−k(t− 1)α+k,

that proves the desired result.
Applying (4) and (7) it is possible to prove the following statement.

Theorem 4. The fractional Jacobi functions can be represented as

P (α,β)
ν (t) =

(
ν + α

ν

)
2F1

(
−ν, ν + α + β + 1;α + 1;

1− t

2

)

=
1

Γ(1 + ν)

∞∑

k=0

(
ν

k

)
Γ(1 + ν + α + β + k)

Γ(1 + ν + α + β)
Γ(1 + α + ν)
Γ(1 + α + k)

(
t− 1

2

)k

.

From the fact that the Gauss hypergeometric function (4) satisfies the
Gauss hypergeometric differential equation (3) it follows the validity of the
following assertion.
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Theorem 5. The fractional Jacobi functions satisfy the linear homo-
geneous differential equation of the second order

(1− t2)y′′ + [β − α− (α + β + 2)t]y′ + ν(ν + α + β + 1)y = 0,

or

d

dt

{
(1− t)α+1(1 + t)β+1y′

}
+ ν(ν + α + β + 1)(1− t)α(1 + t)βy = 0.

Theorems 3 and 4, together with some properties [9] of the Gauss hyper-
geometric function (4), imply further interesting properties of the fractional
Jacobi functions, namely:

Theorem 6. For n− 1 ≤ ν < n (n ∈ N) the fractional Jacobi functions
satisfy the following properties:

(i) lim
ν→n

P (α,β)
ν (t) = P (α,β)

n (t);

(ii) P (α,β)
ν (−t) = (−1)νP (β,α)

ν (t);

(iii) P (α,β)
ν (1) =

(
ν + α

ν

)
;

(iv) P (α,β)
ν (−1) =

(
ν + β

ν

)
;

(v)
d

dt
P (α,β)

ν (t) =
1
2
(ν + α + β + 1)P (α+1,β+1)

ν−1 (t).

To compare the classical Jacobi polynomials and the fractional Jacobi
functions, a summary of their properties is provided in Table 1. If ν is
approaching to a natural number, the fractional Jacobi functions become
the classical Jacobi polynomials and their properties remain unchanged.
Therefore, the fractional Jacobi functions may be considered as fractional
indices generalizations of the classical Jacobi polynomials.

3. Fractional Gauss functions

In this section we generalize the Gauss hypergeometric function (4) by
solving the fractional generalization of the differential equation (3).
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Definition 7. The linear homogeneous fractional differential equation

tµ(1− tµ)D2µy(t) + [c− (a + b + 1)tµ] Dµy(t)− aby = 0, 0 < µ ≤ 1 (9)

is called the fractional Gauss hypergeometric equation.

Definition 8. The fractional Gauss function is defined as the series

µ
2F1(a, b; c; t) = y0t

ρ
∞∑

k=0

k∏

j=0

gj(ρ)
fj+1(ρ)

tkµ, 0 < µ ≤ 1, (10)

where

fk(ρ) ≡ Γ(1 + ρ + kµ)
Γ(1 + ρ + (k − 2)µ)

+ c
Γ(1 + ρ + kµ)

Γ(1 + ρ + (k − 1)µ)
, (11)

gk(ρ) ≡ Γ(1 + ρ + kµ)
Γ(1 + ρ + (k − 2)µ)

+ (a + b + 1)
Γ(1 + ρ + kµ)

Γ(1 + ρ + (k − 1)µ)
+ ab, (12)

and ρ > −1 satisfies the equation

f0(ρ) =
Γ(1 + ρ)

Γ(1 + ρ− 2µ)
+ c

Γ(1 + ρ)
Γ(1 + ρ− µ)

= 0. (13)

By means of a modified power series method we establish the validity
of the following assertion.

Theorem 9. The fractional Gauss function (10) is a solution of the
fractional Gauss hypergeometric equation (9).

The relation between the fractional Jacobi functions and the fractional
Gauss functions is a consequence of Theorem 4, and is given by the formula

P (α,β)
ν (t) =

(
ν + α

ν

)
1
2F1

(
−ν, ν + α + β + 1; α + 1;

1− t

2

)
.
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