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Abstract

The paper presents an abstract linear second kind Fredholm integral
equation with degenerated kernel defined by means of the Bittner ope-
rational calculus. Fredholm alternative for mutually conjugated integral
equations is also shown here. Some examples of solutions of the considered
integral equation in various operational calculus models are also given.
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1. Operational calculus

In accordance with the notation used e.g. in Bittner [2], the Bittner
Operational Calculus is a system

CO(L°, L, S, T,, 54, Q), (1)

where L? and L' are linear spaces over the same field I, the linear operation
S : L' — LY (written as S € L(L', L?)), called the (abstract) derivative, is
a surjection. Moreover, () is a nonempty set of indices ¢ for the operations
T, € L(L° L"), s, € L(L', L") called integrals and limit conditions, respec-
tively, and such that ST, f = f, f € LY, s,o = x — T;Sx,x € L. The kernel
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of S, i.e. KerS := {c € L': Sc =0}, is called the set of constants for the
derivative S.
Limit conditions s4,q € @ are projections from L' onto the subspace
Ker S. Hence
s¢c=c¢, qe€Q, ceKerS. (2)

EXAMPLE 1. Let LY := R, L' := R” with common number and vector
operations. Moreover, let

n
Q= {q: [g1,q2,- ] ER™ ) i = 1}
i=1
and (x,y) := i Y, «,y € R™. It is easy to see that the operations
=1 Sx .= (a,z), x=clL',
where a € L', a; #0,i € I,n:= {1,2,...,n} is given, and

qu:: |:Q1f7q2f77qnf:|)
aq a9

Qn

qg\a,x qela,x gnla,x
SqT = [ml— (al’ ),ZL‘Q— (a2’ ),...,xn—n(a’ )],
n

where ¢ € Q, f € L, & € L', form an operational calculus. We also have
L' ¢ LY and card Q = c.
EXAMPLE 2. Similarly, if
L% :=C%a,b],R), L':={x==u(t) € L°: 2'(a) exists},
where @ := {a}, [a,b] C R, then it is not difficult to see that the operations
t —
M for t>a
Sz = ¢ , x=ux(t)c L,

2 (a) for t=a

T.f = (t—a)f(t), f=f@)e L,
sax = x(a), x=uxz(t)e L

form an operational calculus (cf. Ex. 5.4 in Przeworska-Rolewicz [7]). Here
we have L' ¢ L° and card Q = 1.

The assumptions that L' ¢ L° and @ has more than one element will
be used throughout the paper.
The mapping I¢? € L(L°, Ker S) defined by the formula

1312 = (Tq1 - Tq2)f7 q1,q2 S Q7 f € LO
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is called the operation of definite integration.
It is easy to verify that

I2f =s,Ty, f, f €Ll (3)
Therefore

18(LY) C Ker S. (4)

If L9 is an algebra (a linear ring) and L! is its subalgebra, then we say
that the derivative S satisfies the Letbniz condition if

Sx-y)=Sxr-y+=z-Sy, zyelL (5)
and the limit condition sy, q € Q is multiplicative if

sg(x-y) = sqx - sqy, x,y€ L (6)

2. Abstract Fredholm integral equation

Consider the operational calculus (1) in which
— LY is a commutative algebra with unity e € L!, and L' is its subalgebra;
— the derivative S satisfies the Leibniz condition (5);

— the limit conditions sg,, s¢,, Where ¢1,q2 € @, satisfy the multiplication
condition (6).

It is not difficult to see that
IE(c-f)=clf, q,0€Q, cecKersS, felLb. (7)

We also have
(c,deKerS )= (cd € KerS).

If Inv(Ker S) denotes the set of constants ¢ € Ker S, which are invertible
elements in the algebra Ker.S, then

(cenv(KerS)) = (¢ ' €KerS).

The determinant of a matrix C' = [¢jj]nxn, Where ¢;; € Ker S, 4,5 €
1,n,n € N, is defined similarly to the numerical determinant. Namely, it is
an element of the algebra Ker S defined by the formula

det C = Z(—l)lpcl_hc?jz “ Cngin
p
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where the summation is extended to all permutations p = (j1,72,---,jn)
of numbers 1,2,...,n, whereas I, denotes the number of inversions in the
permutation p. The rules of computing det C' are the same as for a numerical
determinant.
In particular, if

D = [dijlnxn and W =det D, (8)

where
dij = 5@‘6 — )\Igfajﬁi,
0;; is the Kronecker symbol and
ANeKerS, a8 €L’ ijeln,
then W € Ker S. If W € Inv(Ker S), then W~! € Ker S. Moreover,
n

Ker S > ¢; := wt Z Wjibja 1€ 1,777/, (9)
j=1
where b; € Ker S,j € 1,n and Wj; are algebraic complements of elements
dji,i,j S 1,771 of D.
The abstract linear integral equation
T — Mar P2z + aoll2 oz + - + a2 Brz) = f, (10)
where
)\EIHV(KGI‘S), f?aiaﬁi eLov 261,771
are given and x € L°, will be called the Fredholm integral equation of the

second kind with degenerated kernel.
The abstract integral equation

Y= ANBIEory + Bl oy + - + Bul any) = g, (11)
where
Aenv(KerS), ¢g,0;,8 €L’ ieln
are given and y € L°, will be called the conjugate equation to (10).
The element of the space L) := é LY given in the form

=1
Xy + cxa + -+ + Cp Ty,

where c1,¢2,...,¢m € Ker S, @1, xo,..., ), € Lg and
CiT14
CiT2; 0 R
CGT; = ) eL,, it€lm,

CiTn;
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will be called the S-linear combination of ®1,x9,..., &, € L?l.

The vectors @1, X2, ..., T, € LY will be called S-linearly independent if
the condition

Tl +coxo+ -+ epmTm =0, ¢ €KerS, iclm
implies
co=cp=---=c¢cyp=0.

The vectors which are not S-linearly independent will be called S-linearly
dependent (cf. Przeworska-Rolewicz [6]).

If Ker S ~ R, then the S-linear independence of vectors @1, ®s, ..., Ty €
LY means their linear independence in LY over R.

The elements z,y € L° will be called orthogonal if
IPxy = 0.

1

THEOREM 1 (Fredholm alternative). Let
a17a27"’7aneL07 ﬂlvﬂ?)"'aﬂn€LO

state two systems of S-linearly independent elements, respectively.

The integral equations (10), (11) either have the unique solutions x and
y for any f and g (in particular, for f =0 and g =0, x =0 and y = 0 are
the only solutions), or the homogeneous equations

r— Mo [ Bz + aolZ fox + -+ - + an [2 Brx) = 0, (12)
y — MO IPary + Bolagy + -+ BulPany) =0 (13)

1 1

corresponding them, have an infinite number of solutions (dependent on the
same number of parameters).

If the homogeneous equations (12) and (13) have non-zero solutions,
then a fact that the element f is orthogonal to all solutions y of the ho-
mogeneous conjugated integral equation (13) is the necessary and sufficient
condition of having solution by the non-homogeneous integral equation (10).
Analogously, the non-homogeneous conjugated integral (11) has a solution
when the element g is orthogonal to all solutions x of the homogeneous
integral equation (12).

Proof. Let
ci =123z, ieln. (14)
Hence and from (4) we get
ci€KerS, iel,n. (15)
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Now (10) becomes as follows
x — Mager + ageg + -+ - + apey) = f. (16)
Multiplying (16) by (1, B2, ..., Bn, respectively, we obtain

Brx — Acron B + coaafBr + -+ -+ cpanB1) = Bif
Box — A(croqfa + coaafa + - - - + cpanB2) = Paf .

(17)
B — AeroaBn + ca0afn + -+ + cnanfn) = Buf
As X € Ker S and (14) holds, on the basis of (7) from (17) we get
IE Bre — MelIF anfpr + ol anfr + -+ + eplf o) = IH6f
I Box — NerIgi an o + colfianfo + - - + colfanf) = I fBof
IE B — Ner I on B + ol cofn + -+ + enlfianfn) = 15 6nf
Thus, using (14) and
aj =128, b= I26f, ijeln, (18)
we obtain the system of n equations with n unknowns ci,cs, ..., ¢,
(6 — )\an)cl — Aa1202 — e — )\alncn = b1
—)\aglcl + (6 — )\CLQQ)CQ — = )\agncn = b2 (19)
—Aap1C1 — Aapaca — -+ (e — Aapp)cn = by

Considerations concerning solving the systems of linear equations with
real or complex coefficients carry over the systems with coefficients from real
or complex commutative linear ring (algebra), here from Ker S (Bourbaki
[4], Przeworska-Rolewicz [6], cf. Wysocki [8]).

Therefore, if the main determinant W of (19), i.e. the determinant (8)
is an invertible element, (19) is a Cramer system and its only solution is

c=W1W;, ieln, (20)

where "
W, = Z I/Vjibj, 1€ 1,771 (21)

j=1

Hence and from (9) it follows, that ¢; € Ker S, € 1,n. From (16) and (20)
we have

a:zf%—AZaici:f—i—)\ZaiW*lWi. (22)
i=1 i=1

Taking (21) into account, finally we obtain
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r=f+ AW L Z Wjiaibj- (23)
ig=1

Now we are going to verify if the element x of the form (22) states the
solution of (10). Substituting (22) to the left side of (10)

L = z—XNaalEfix+ a2l fox + - + anId Bpx)
= [HAY aiei =Dl Bi(f+ 2D aue)
i=1 i=1
— Al Bo(f+ A i) — - = Ao I Bu(f + A X aicy)
i=1 i=1

yields. Using (7) in the obtained expression we have

L = f + )\ Z o C; — )\Oéllgfﬁlf — )\2041 Z(Igfﬁlal)cl
=1 =1

— AlfBof — Nag > (I Bra)e; — -+ (24)
=1

n

Ao I B f — ay, Z (132 Bnovi)ci.

i=1
Combining the notations (18) in (24) we see that

n n
L = f + A Z ;C; — )\Oélbl — )\2051 Z a1;C;
i=1 =1

— Aagby — N2an Y agici — - — Aapb, — Nay Y anic;
i=1 i=1 (25)

f + /\041 (Cl - )\ancl - )\algcg — )\alncn) — )\albl
)\042(—)\(12101 + o — Aagacy — -+ — )\CLann) — daoby + - -+
Ao (—Aapicr — Aapaca — -+ + ¢ — Aapncn) — A by,

+ + |

Since the constants ci,ca,...,c,, determined by (20) state the solutions
of (19), the expressions in parentheses in (25) are equal to by, ba,. .., by,
respectively. Therefore, from (25) L = f.
We have proved, that in case when W € Inv(Ker S) the only solution of
non-homogeneous integral equation (10) has been expressed by (23).
Applying the following notations

¢ =Iray, i€ln,
we rewrite (11) to the form of

Y — A(Biet + Bacy + -+ + Bucy,) = g (26)
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Multiplying the last equality by a1, as, . . ., ay, respectively and acting mem-
ber by member on the given equation by the operation of definite integration
Igf, we come to a system

(6 — )\an)c’{ — )\aglc§ — e = )\anlc; = b’f
—Aa12¢] + (e — Xaga)cy — - -+ — Aapacl, = b (27)
Aalncf - )\a2nC§ -t (6 )‘a’m’b)cn = b’fL

where

ajj == Igfajﬂi, b == Igfaig, i€l n.
Let D* be the matrix of that system. It is easy to notice, that D* = D¢,
where ’t’ denotes the transposition of a matrix. Taking W* = det D*, we
obtain W* = W.

Therefore, if (10) has only one solution, then (11) has also a unique
solution.

If W € Inv(KerS), the homogeneous integral equations (12) and (13)
have only zero solutions, i.e. z = 01y = 0. When W ¢ Inv(KerS),
the equations have an infinite number of solutions dependent on the same
number of parameters.

From (22) and (26) it follows, that (10) and (13) have solutions

n
x:f—l—)\Zaici, (28)
i=1
n
y=AY_ B, (29)
i=1
respectively.
Let W ¢ Inv(Ker S). Then the homogeneous system
n
> (Bjie — Aazi)c; =0, ielnm, (30)
j=1
which corresponds to (27), has the infinite number of non-zero solutions. As
081, B2, - .., Bn are by assumption, S-linearly independent, the homogeneous

conjugated integral equation (13) corresponding to (30), has also an infinite
number of non-zero solutions of (29) form. We prove that in this case the
system (19) has a solution

C1

C2

Cn
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(whereas the solution of the non-homogeneous integral equation (10), which
corresponds to it, is (28)) if and only if for any solution

A
E3
Ca

*

Cp

of the homogeneous conjugated system (30)

(b,c*) := Y bic; =0, (31)
=1

holds, where

Notice, that we can rewrite (19) in the form of

chdj = b, (32)
j=1

where
e — )\au —)\alg —)\aln
*)\CLQl € — >\CL22 *)\agn
dy := . ,do = . B
—Aan1 —Aan2 e — ANnn,

It follows that (19) has the solutions ci,¢a,. .., ¢, if and only if b is an S-

linear combination of vectors dy,do, ..., d, € 6% Ker S C L.. The constants
i=1
c1,Co,...,cn are coefficients of that combination.
The fact, that ¢* is a solution of (30) can be written as
(6*7 d]) =0, j¢€ ]-77” (33)

Therefore, if ¢ and ¢* state the solutions of (19) and (30), respectively, then
due to (32) and (33) we get.

(b,c") = (D_cjdj c) =Y ¢lc’,d;) =0,

7j=1 7j=1
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and so (31) holds.
Suppose that (31) and (33) hold.
On the basis of (33) for any ¢y, ¢, ..., ¢, € Ker S we have
ci(c*,dy) 4+ cao(c,da) + -+ - + cn(c*,dy) =0,
and then, after some operations, we get
[Cl (e — )\an) + CQ(—)\a12) + -+ Cn(—/\aln)]c“{
+le1(—=Aag1) + ca(e — Xaga) + -+ - + cn(—Aagp)|c5 + - -
+[C1(—)\an1) + co(=Aap2) + -+ eple — )\ann)]c;; =0.
Hence and from the assumption (31) it follows that we can admit that

by = ci(e—Aai) + ca(=Aaiz) + - + cp(—Aa1y),
by = Cl(—)\azl) + 02(6 — )\a22) + -+ Cn(—)\agn),
b = ci(=Aan1) + ca(—=Aan2) + -+ - + cnle — Aann),

which assures us that b is the S-linear combination (32).
Notice, that the condition (31) denotes the orthogonality of f and y.
Indeed, using (29) and (7), we have

IZfy =TI2(f- XD pich) = Zw Bif)ci —)\Zbc = A(b,c") =
=1

=1

if and only if (b,c*) =0, as A € Inv(Ker S). It gives us the second part of
the Fredholm alternative concerning the integral equations (10) and (13).
The proof of that part of the theorem for (11) and (12) runs as before. m

The following equation
r— AallBz = f, (34)
where A € Inv(Ker S) and f, o, 8,2 € L, states the particular case of (10).
If e — MJiaf € Inv(Ker S), then from (23) it follows that

r=f+MNe—MTaB)” algfﬂf (35)
is the only solution of (34).

3. Examples

A. Let be given a classical model of the operational calculus (Bittner
[2]), in which
0= C%a,b],R), L':=C"[a,b],R), Q:=]a,b]CR
and
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d

t
S = TR Tq = / y  Sq = ’t:(p qc Q
dt ;

In that case, for ¢; = a, g2 = b, the abstract integral equation (34) takes the
form of

b
£(t) - Aalt) / B(r)z(r)dr = (1), (36)
where
AMeER~KerS, f(t),alt),B(t),z(t) € C°a,b],R).

With a common multiplication of functions, for the derivative S and the
limit conditions sg4, ¢ € @ the formulas (5) and (6) take place, respectively.
Therefore, from (35) we obtain the solution of (36):

Aa(t) [, B(r)f(r)dr
1-— )\f;a(T)ﬂ(T)dT’
if only 1— A [Pa(7)3(7)dr # 0 (cf. Piskorek [5]).

B. Let £ : L — L% and E‘Ll : L' — L' be automorphisms of

algebras L? and L', respectively.
It is a simple matter to verify that the operations

a(t) = f(t) +

Sz:=E'SEz, zell,
T,f=E'T,Ef, q€Q,fel’
54T 1= E_lqua:, geQ,xe Lt

form the operational calculus
@(L()?LlagquvgﬂpQ)l? (37)

in which S satisfies the Leibniz condition and 54, where ¢ € @, are multi-
plicative.
If we define isomorphisms

P = E7Y ¢:=EY

‘Ll7
we get B B
S=ySp~", Ty=¢TW™", 55=gpsqp"

'S := ESE~',T, := ET,E~',5, := Es,E~" also form the operational calculus.
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and we say, that operational calculi (1) and (37) are equivalent (Bittner
1.2]).
Let
L°:=C°R,R), L':=CYR,R), Q:=R.

Moreover, let S, T}, sq,q € Q be defined as in Ex. A.
Taking
Ex:=z(g(t)), ==ux(t) €L,
where g = g(t) € CY(R,R),¢'(t) > 0,t € R is a given function, we obtain
the model of the operational calculus in which

5 [dw(g(t)) Cdg(D) . w=at) e L,

dg di :|t:g1(t)
_ gt (t)
Tof = / flo(m)dr, q€Q.f=f(t)e L,
q

5z =(9(q), q€Q.z=ua(t)eL’

(cf. Ex. 5.2.3 in Przeworska-Rolewicz [6]).
In the considering model the abstract integral equation (34) takes the
form of

b
o(t) = Aalt) [ Bla(ralo(r)dr = £(t),
for 1 = a,qs = b, where
ANeR~KerS, f(t),a(t),B(t),z(t) € CO(R,R).

From (35) we get its solutions

xa(t) [PB(g(r)) f(g(r))dr
1=\ [Pa(g(r))Bg(r))dr

if only 1=\ [Ja(g(7))B(g(r))dr # 0.
C. Let be given an operational calculus in which

0 0
0. 1 .
L' :=C (R xR,R), S.—8€+Uan,veR\{0},

£(t) = f(t)+

)

3
L':={zeLl’: Sxecl’, T,f:= /£ f(r,m—v(§—7))dr,

sqr = x(&0,n —v(§ — &), q=2¢& €Q =R,
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where f = f(&,n) € LY, 2 = x(¢,n) € L' (see Bittner, Mieloszyk [3]).

With a common multiplication of functions, for the derivative S and the
limit conditions sy, ¢ € @ the formulas (5), (6) hold, respectively.

Since

Ker S = {z(&,n) : z(&,n) = p(n—vé), ¢ € CR,R)},

so for ¢ = a, g2 = b the equation (34) takes the form
b
z(&,m) — A —v€)a(§,m) / B(r,n—v(§ —7))x(r,n—v(—T7))dr = f(&n),

where

An —v€) eKerS,  f(&n),a&,n)B(En),z(&n) € C'(R x R,R).

From (35) we obtain the solution of the equation

(n —v€)a(€,n) [2B(r,n —v(€ — 1) f(r, 1 —v(€ —T))dr
1= A —v8) fPalr,n —v(€ —7)B(r,n —v(€ —7))dr

z(&,m) =f(§ﬂ7)+A

determined in
b
QzﬁameR%1—meo/avm—v@—ﬂwwm—v@—ﬂMT#@.

D. Let us examine the solvability of an equation

() — ? / (13670 1 192012 0(3)dr = F(2), (38)
0

For this purpose we use the model of the operational calculus from Ex. B,
accepting g(t) =t3,a = 0,b =1 and

ar(t) =t, ao(t) =192, Bi(t) = —13t3, Bo(t) =t".

Thus (38) has the form of (10) of the integral equation with degenerated
kernel

_E 1_ 7_9 1'7-3 T 2 17_12’:17 7_3 r o
o(t) ~ % <t/0( 1379 2()d +19t/0 ( )d)-f(t), (39)
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and the system (19) corresponding to (39) is of the form

Bc —i—gc = b

31 3¢ = 0
(40)

LU

361 3 c2 = 02

Since its main determinant W = 0, there exist non-zero solutions of the
homogeneous equation

(1) — 136 < /0 (1370 (%) dr + 1912 /O 1712:r(r3)d7> —0

and of the conjugated homogeneous one

y(t) — 136< 1363 /0 y(7)dr + ¢ /0 1197'6y(r3)d7> —0. (41

The system (30) corresponding to (41) is of the form

19, 1.,
§C1 — §C2 =0
247 . 13,
3 a-ge =0
Hence
1

—C, &=C CeR

So, from (29) it follows that the solutions of the conjugated homogeneous
equation (41) are expressed as

16 13 4
t)=—C(t*" — = C eR. 42
y(t) = SOt - ), (42
On account of the second part of the Fredholm alternative, the non-homogeneous
equation (39) has a solution if and only if a function f(¢) is orthogonal to
all solutions (42) of (41), i.e. if

139

Iofy—C/f T2 — )dT = 0.

For example, the function
49 , . 45

== = 4
13 11 (43)
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satisfies the equation. In that case

19 1

Ty = ——
227 2

b= 22

and the system (40) has solutions

3
c1 = 5*130 =0, CeR

From (28) it follows, that the solutions of the non-homogeneous equation
(39) with its right member given by formula (43), have the form of

49t§163

= 2
x(t) = 13 +3[(22 130t +19Ct°], C eR.

E. Now we determine the solution of

1 1
z(&n)+¢€ (n—£+7)$(77n—€+7)d7+77/ Tx(7T,n—§+7)dT = 5§+ 2.
-1 -1
(44)
To this end, consider the operational calculus model from Ex. C. If we take
v=1,A=1,a=-1,b=1 and

ar(§,m) =& aa(&n) = -,
51(5777) = -, 62(6777) = 57

then (44) admits the form of (10) — the Fredholm integral equation with de-
generated kernel. Functions £ and —n are (8—5 + ) -linearly independent.
Indeed, if for all (&,7) € R?

Ep1(n—&) —mpa(n—€) =0, where 1,00 € CHR,R)  (45)

yields, then

0
0 Y

e1(n—&) = Ly (n — &) +nph(n — &)
§o1(n — &) — wa(n — &) —nph(n — &)

and hence ¢1(n — &) = ¢2(n — &). Finally, from (45) we get

(n—E¢1(n—€ =0 foreach (&n)eR?,
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which, due to ¢; € CY, means that ¢1(n — &) = 0.
The system (19) corresponding to (44) is of the form

5 9 2 5 14
Zer —[2(p — z — _4(p— _
e - [201- € + Fles (-6 - 5
(46)
2 5, _ U
3132 T 73
Its determinant
7 4
= = — — — — 2
W =W(,n) 3 3(77 )

is not an invertible element, because W =0 for n = & £ g

For all (£,7) € R? which lie on the straight line = &+ g, the equation
(44) reduces itself to

1 1
x(&) +§/_1(T + \f)l'(T)dT + &+ \f) /_1Tm(7)d7 =T7E4+VT. (47

In that case the system (30) takes the form of

gCT §C§ =0
%, 5.
—FCI + 502 =0

Hence
2
CT:3C, =0, CeR.

Due to that, on the basis of (29), we get solutions of the conjugated homo-
geneous equation corresponding to (47)

y(€) = gog _ fc, CeR (48)

Functions f(&) = 7¢ + /7 and (48) are orthogonal, since

/1(77 V- Y o,
B 57 5
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Therefore there exist solutions of (47). For n = £+ 4 the system (46) takes
the form of

5,_2%_ _ _3
3T 62 T T3

(49)
31T 3% T 3

and it has solutions
5
01:50—7, co=C, CeR.

Hence and from (28) it follows, that the functions

3 V7

=_-C¢— —
z(§) = 506~

are solutions of the non-homogeneous equation (47).

For all (¢&,7) € R? which lie on the straight line n = & — 4, the equation
(44) reduces itself to

C+V7, CeR

1 1
z(§) +f/_1(7' - \f)l‘(T)dT + (& — \f) / 17'13(T)d7' = 76— V7. (50)

In that case solutions of the conjugated homogeneous equation correspon-
ding to (50) are given by the formula

3 7
y(&) = gC'f + \5[6‘, CeR. (51)
Functions f (&) = 7¢—+/7 and (51) also satisfy the condition of orthogonality.

Therefore (50) have solutions. For n = £ — % the system (46) also takes
the form of (49). Hence and from (28) it follows that functions

3 \/?

==-C —
#(€) = 50+ %

are solutions of the non-homogeneous equation (50).

For those (&,7) € R? which satisfy the condition 1 # & + 4, (46) is a
Cramer system and its solution is

C—V7, CeR

cp=-2, co=2.
Hence and from (22) it follows that the function
z(§,m) = 3¢
is the only solution of (44) for £ #n + g, where £, n € R.
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