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Abstract

In this paper we take the strip K` = [0,+∞[×[−`π, `π], where ` is a
positive integer. We consider, for a nonnegative real number α, two partial
differential operators D and Dα on ]0, +∞[×] − `π, `π[. We associate a
generalized Fourier transform Fα to the operators D and Dα. For this
transform Fα, we establish an Lp − Lq−version of the Morgan’s theorem
under the assumption 1 ≤ p, q ≤ +∞.
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1. Introduction

A rigourous formulation of the uncertainty principle in the framework
of the classical Fourier analysis on R is to investigate the Lp−Lq−sufficient
pairs of positive functions in the following meaning. A pair (g, h) of positive
functions is called an Lp−Lq−sufficient pair if, for every measurable function
f , the conditions g−1f ∈ Lp(R) and h−1f̂ ∈ Lq(R) imply that f = 0 almost
everywhere, where f̂ is the Fourier transform of f defined by

f̂(y) =
∫

R
f(x) e−ixydx .
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Several authors have studied this form of the uncertainty principle in
many situations. Let us to indicate some of such works. In 1933, Hardy
[9] showed that the pair (e−ax2

, e−bλ2
) is L∞ − L∞−sufficient if and only if

ab >
1
4
. After fifty years, M. Cowling and J.F. Price generalized Hardy’s

theorem to an Lp − Lq−version, where 1 ≤ p, q ≤ +∞. In 2001, M.
Ebata [5] has given a similar theorem for the group SU(1, 1). In 2003,
N.B. Andersen [1] has established an Lp − Lq−version of Hardy’s theorem
for the Jacobi transform. Also, L. Gallardo and K. Trimèche [8], in 2004,
have given an Lp − Lq−version of Hardy’s theorem related to the Dunkl
transform. Another famous result is Morgan’s theorem. For the classical
Fourier transform, this theorem was proved in 1934 by G.W. Morgan [11]
and it states that, for u > 2 and v =

u

u− 1
, the pair (e−a|x|u , e−b|λ|v) is

L∞ − L∞−sufficient if and only if

(au)1/u(bv)1/v >

(
sin

π(v − 1)
2

)1/v

.

Recently, in 2003, S. Ben Farah and K. Mokni [3] have generalized Mor-
gan’s theorem to an Lp − Lq−version, where 1 ≤ p, q ≤ +∞. Also, they
extended this result to the euclidien space Rn, to the Heisenberg group and
to noncompact real symmetric spaces. For the Dunkl transform, S. Ayadi
[2] in 2004, has given an Lp − Lq−version of Morgan’s theorem.

In this paper we take the strip K` = [0, +∞[×[−`π, `π], where ` ∈
N \ {0}, and for a nonnegative real number α, we consider the following
system of partial differential operators





D =
∂

∂θ

Dα =
∂2

∂y2
+ [(2α + 1)cothy + thy]

∂

∂y
− 1

ch2y

∂2

∂θ2
+ (α + 1)2

with (y, θ) ∈ ]0,+∞[×]− `π, `π[.

For α = n− 1, n being a positive integer, the operators D and [Dn−1 − n2]
with the identity generate the algebra D(G̃/K) of left invariant differential
operators on G̃/K, where G̃ is the universal covering group of G = U(n, 1)
and K is the subgroup U(n) (see [7]).
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These operators give rise to generalizations of many two variables struc-
tures, like the Fourier transform and the convolution (see [14]), the disper-
sion and Gaussian distributions (see [13]).

An harmonic analysis related to these operators was introduced, in 1991,
by K. Trimèche [14]. In particular, a generalized Fourier transform Fα

associated to the operators D and Dα is defined for a suitable function f
as follows

∀(λ, µ) ∈ 1
`
Z× C , Fαf(λ, µ) =

∫

K`

f(y, θ)ϕ−λ , µ(y, θ)dmα(y, θ) ,

where ϕλ , µ are eigenfunctions of the operators D and Dα, and mα is a
weighted Lebesgue measure on K` (see section 2).

The main result of this paper is an Lp − Lq−version, where 1 ≤ p, q ≤
+∞, of Morgan’s theorem related to the generalized Fourier transform Fα.
More precisely, take u > 2, v =

u

u− 1
and p, q ∈ [1, +∞]. If a measurable

function f on K` satisfies the conditions eayu
f ∈ Lp(mα) and for all λ ∈ 1

`
Z ,

eb|µ|vFαf(λ , .)|R ∈ Lq
?(|cα , λ(µ)|−2dµ) (see Section 3), where a, b ∈]0,+∞[,

then, whenever (au)1/u(bv)1/v >

(
sin

π(v − 1)
2

)1/v

, the function f is null

almost everywhere.

The contents of this paper is as follows: Section 2 is dedicated to
some properties and results concerning the eigenfunctions ϕλ , µ and the
generalized Fourier transform Fα. In Section 3 we establish a Phragmen-
Lindelöff type result that we need to prove the main statement of this paper.
In Section 4 we prove an Lp − Lq−version of Morgan’s theorem related
to the operators D and Dα under the assumption 1 ≤ p, q ≤ +∞ and

(au)1/u(bv)1/v >

(
sin

π(v − 1)
2

)1/v

. In the particular case where α =
1
2

and ` is even, we show that this last condition is sharp.

2. Generalized Fourier transform associated
with the operators D and Dα

This section is organized in the following way. First we introduce the
eigenfunctions ϕλ , µ and recall some of these properties. Next we deal with
the generalized Fourier transform Fα.
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Proposition 1. (See [14], Théorème I.1) For λ ∈ 1
`
Z and µ ∈ C, the

initial problem





DΦ = iλΦ
DαΦ = −µ2Φ

Φ(0, 0) = 1,
∂Φ
∂y

(0, θ) = 0, θ ∈]− `π, `π[

has a unique solution given by

ϕλ , µ(y, θ) = eiλθ(chy)λϕ(α , λ)
µ (y),

where ϕ
(α , λ)
µ is the Jacobi function defined by

ϕ(α , λ)
µ (y) = 2F1

(
α + λ + 1 + iµ

2
,
α + λ + 1− iµ

2
;α + 1; −sh2y

)
,

2F1 being the Gaussian hypergeometric function (see [6], ChII).

Properties. (See [14] and also [13])

i) For all λ ∈ 1
`
Z and µ ∈ C , ϕλ , µ is even with respect to the first

variable and 2`π−periodic with respect to the second variable.

ii) For all λ ∈ 1
`
Z , µ ∈ C and (y, θ) ∈ K` ,

ϕλ , µ(y, θ) = eiλθ(chy)−λϕ(α ,−λ)
µ (y). (1)

iii) For all λ ∈ 1
`
Z , µ ∈ C and (y, θ) ∈ K` ,

ϕλ , µ(y, θ) = ϕ−λ , µ(y, θ) and ϕλ,−µ(y, θ) = ϕλ , µ(y, θ).

iv) Consider the following set

Γ` =
{

(λ, µ) ∈ 1
`
Z× C | |=mµ| ≤ α + 1

}
∪ Ω̃,

where

Ω̃ =
⋃

m∈N

{
(λ, iη) ∈ 1

`
Z× C | η ≥ −(α + 1), λ = ±(α + 2m + 1 + η)

}
.

(2)
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Then we have
∀(λ, µ) ∈ Γ` , sup

(y , θ)∈K`

(y, θ)| = 1. (3)

v) According to [10] page 150, we can assert that, for all (λ, µ) ∈ 1
`
Z×C

and (y, θ) ∈ K` , we have

|ϕλ , µ(y, θ)| ≤ C(1 + y)e(|=mµ|−(α+1))y , (4)

where C is a positive constant.

Notations.

1) We consider the Lebesgue weighted measure on K` ,

dmα(y, θ) = 22(α+1)(shy)2α+1chy dydθ.

2) We designate by:

i) C(K`) the space of continuous functions on K`.
ii) Cc(K`) the space of continuous functions on K` compactly supported.

3) We denote by Lp(mα), 1 ≤ p ≤ +∞, the space of measurable func-
tions f on K` satisfying

‖f‖p , α =
{∫

K`

|f(y, θ)|pdmα(y, θ)
} 1

p

< +∞ if p < +∞ ,

and
‖f‖∞ , α = ess sup

(y , θ)∈K`

|f(y, θ)| .

Definition 1. We define the generalized Fourier transform Fα , asso-
ciated to the operators D and Dα , on K` by

∀(λ, µ) ∈ 1
`
Z× C , Fαf(λ, µ) =

∫

K`

f(y, θ)ϕ−λ , µ(y, θ)dmα(y, θ) , (5)

where f ∈ Cc(K`).

Remark 1. We notice that for all f ∈ L1(mα) and all (λ, µ) ∈
Γ` , Fαf is well defined.

The following two propositions are proved by K. Trimèche in [14].
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Proposition 2. (See [14], Proposition VI.5) Let p and q be real num-

bers such that 1 ≤ p < 2 and
1
p

+
1
q

= 1. We consider the following strip:

Sp =
{

µ ∈ C | |=mµ| <
(

2
p
− 1

)
(α + 1)

}
.

Then the function ϕλ , µ belongs to Lq(mα) in the following cases:

• λ ∈ 1
`
Z and µ ∈ Sp.

• µ ∈ C such that <eµ = 0 , =mµ > 0 and λ = ±(α + 1 + 2m + =mµ) ,

m ∈ N , with λ ∈ 1
`
Z.

Proposition 3. (See [14], Proposition VI.7) We have:

1) For all p ∈ [1, 2[ and q ∈ R such that
1
p

+
1
q

= 1

i) If f ∈ Lp(mα), then

|Fαf(λ, µ)| ≤ ‖f‖p , α ‖ϕλ , µ‖q , α

in the two following cases:

• λ ∈ 1
`
Z and µ ∈ Sp.

• µ ∈ C such that <eµ = 0 , =mµ > 0 and λ = ∓(α + 1 + 2m + =mµ) ,

m ∈ N , with λ ∈ 1
`
Z.

ii) If f ∈ L1(mα), then

|Fαf(λ, µ)| ≤ ‖f‖1 , α

in the two following cases:

• λ ∈ 1
`
Z and µ ∈ S1.

• (λ, µ) ∈ Ω̃ , where Ω̃ is given by (2).
2) For all p ∈ [1, 2], the generalized Fourier transform Fα associated to the
operators D and Dα is one to one on Lp(mα).

3. Phragmen-Lindelöff type result

In this section we provide an Lq−version of Phragmen-Lindelöff type
principle which we need for the proof of our main result. Firstly we state
the following lemma proved in [3].
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Lemma 1. (See [3], Lemma 2.3) Suppose that ρ ∈ ]1, 2[ , q ∈ [1,+∞] ,
σ > 0 and B > σ sin π

2 (ρ− 1). If g is an entire function on C satisfying the
conditions

|g(x + iy)| ≤ const eσ|y|ρ for any x, y ∈ R
and

eB|x|ρ g|R ∈ Lq(R) ,

then g = 0.

Notations. For λ ∈ 1
`
N we consider the following function defined in

R by

cα , λ(µ) =
2α+λ+1−i|µ| Γ(α + 1) Γ(i|µ|)

Γ
(

α+λ+1+i|µ|
2

)
Γ
(

α−λ+1+i|µ|
2

) .

We denote by Lp
?(|cα , λ(µ)|−2dµ), 1 ≤ p ≤ +∞, the space of measurable

even functions h on R satisfying

‖h‖p , c =
{∫ +∞

0
|h(µ)|p|cα , λ(µ)|−2dµ

} 1
p

< +∞ if p < +∞ ,

and
‖h‖∞ , c = ess sup

µ∈R+

|h(µ)| .

Lemma 2. Let ρ ∈ ]1, 2[ , q ∈ [1, +∞] , σ > 0 and B > σ sin π
2 (ρ− 1). If

g is an even entire function on C satisfying the conditions

|g(x + iy)| ≤ const eσ|y|ρ for any x, y ∈ R
and

eB|x|ρ g|R ∈ Lq
?(|cα , λ(x)|−2dx) ,

then g = 0.

P r o o f. Assume that 1 ≤ q < +∞. According to ([15], p.99) we
can assert that the function x 7−→ |cα , λ(x)|−2 is continuous on [0,+∞[
and there exist a positive constant γ such that γx2 ≤ |cα , λ(x)|−2 for all
x ∈ [0, +∞[. Therefore,

γ

∫ +∞

1
eqB|x|ρ |g(x)|qdx ≤

∫ +∞

1
eqB|x|ρ |g(x)|q|cα , λ(x)|−2dx < +∞.

This implies that eB|x|ρ g|R ∈ Lq(R). Consequently, by using Lemma 1, we
get the desired result.
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4. Morgan’s theorem related to
the operators D and Dα

Throughout this section ` designates a positive integer.

Proposition 4. Let p ∈ [1, +∞] , a ∈ ]0, +∞[ and let u be a real num-
ber such that u > 2. Assume that f is a measurable function onK` satisfying

eayu
f ∈ Lp(mα).

Then we have f ∈ L1(mα). Furthermore, Fαf(λ, µ) is well defined for every

λ ∈ 1
`
Z and µ ∈ C, and the function µ 7−→ Fαf(λ, µ) is analytic on whole

C for every λ ∈ 1
`
Z.

P r o o f.
First case : p = 1.

∫

K`

|f(y, θ)| dmα(y, θ) ≤
∫

K`

| eayu
f(y, θ)| dmα(y, θ) < +∞.

Second case : p = +∞.
∫

K`

|f(y, θ)| dmα(y, θ) ≤ 22α+3π ‖eayu
f‖∞ , α

∫ +∞

0
e−ayu+2(α+1)ydy < +∞.

Third case : 1 < p < +∞. We consider the real number p′ satisfying
1
p

+
1
p′

= 1. Using the Hölder inequality, we get

∫

K`

|f(y, θ)| dmα(y, θ) ≤ ‖eayu
f‖p , α

{∫

K`

e−ap′yu
dmα(y, θ)

} 1
p′

.

On the other hand we have
∫

K`

e−ap′yu
dmα(y, θ) ≤ 22α+3π

∫ +∞

0
e−ap′yu+2(α+1)ydy < +∞.

Consequently we have f ∈ L1(mα).
By virtue of relation (4) and the fact that (1 + y)e−(α+1)y ≤ 1 , for all

y > 0, we can write
∫

K`

|f(y, θ)ϕ−λ , µ(y, θ)|dmα(y, θ) ≤ C

∫

K`

|f(y, θ)| e|=mµ|ydmα(y, θ) ,
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where C is a positive constant.

By the same manner as above we show, for all λ ∈ 1
`
Z and µ ∈ C, that

we have ∫

K`

|f(y, θ)ϕ−λ , µ(y, θ)|dmα(y, θ) < +∞ .

Let us now to prove the analyticity of the function µ 7−→ Fαf(λ, µ) on C.

We have, for all (y, θ) ∈ K` and λ ∈ 1
`
Z, the function µ 7−→ ϕ−λ , µ(y, θ) is

analytic on C (see [13], Corollary 1.1). Again by a same manner as above,
we prove that, for all µ0 > 0, the function µ 7−→ Fαf(λ, µ) is analytic on
the strip {µ ∈ C | |=mµ| < µ0}.

This completes the proof of the proposition.

Theorem 1. Let p, q ∈ [1, +∞] , a, b ∈]0, +∞[ and let u, v be two real

numbers such that u > 2 and
1
u

+
1
v

= 1. Assume that f is a measurable

function on K` satisfying:

i) eayu
f ∈ Lp(mα) ,

ii) for all λ ∈ 1
`
Z , eb|µ|vFαf(λ , .)|R ∈ Lq

?(|cα , λ(µ)|−2dµ).

If (au)1/u(bv)1/v >

(
sin

π(v − 1)
2

)1/v

, then f is null almost everywhere.

P r o o f. As in the proof of Proposition 4, we have for all (λ, µ) ∈ 1
`
Z×C,

|Fαf(λ, µ)| ≤ C

∫

K`

|f(y, θ)| e|=mµ|ydmα(y, θ) , (6)

where C is a positive constant. Choose

δ ∈
]
(bv)−1/v

(
sin

π(v − 1)
2

)1/v

, (au)1/u

[
.

Applying the convex inequality |ξτ | ≤ 1
u
|ξ|u +

1
v
|τ |v to the real numbers

δy and
=mµ

δ
, we get

|=mµ| y ≤ δuyu

u
+
|=mµ|v

vδv
. (7)
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Next, by combining the relations (6) and (7) we obtain

|Fαf(λ, µ)| ≤ Ce
|=mµ|v

vδv

∫

K`

|f(y, θ)| e δuyu

u dmα(y, θ).

Put

I =
∫

K`

|f(y, θ)| e δuyu

u dmα(y, θ).

Thus we have

I =
∫

K`

|eayu
f(y, θ)| e( δu

u
−a)yu

dmα(y, θ).

Consider the function ψ
δ

defined on K` by ψ
δ
(y, θ) = e( δu

u
−a)yu

. Taking

account that
δu

u
< a, we can assert that ψ

δ
(y, θ) ∈ Lp(mα) for all p ∈

[1, +∞]. Take p′ ∈ [1, +∞] such that
1
p

+
1
p′

= 1. It is easy to see that

I ≤ ‖eayu
f‖p , α ‖ψδ

‖p′ , α.

Using this last inequality we can assert that we have

∀λ ∈ 1
`
Z , ∀µ ∈ C , |Fαf(λ, µ)| ≤ k e

|=mµ|v
vδv , (8)

where k is a positive constant.

We have 1 < v < 2 and b >
1

vδv
sin

π(v − 1)
2

. Moreover, for all λ ∈ 1
`
Z,

the function µ 7−→ Fαf(λ, µ) is analytic on C. The condition ii) and the
relation (8) allow us to assert that Fαf = 0, by using Lemma 2. Finally, by
applying 2) of Proposition 3, we find that f = 0 almost everywhere.

In the end of this section we shall prove, in the particular case where

α =
1
2

and ` is even, that the condition

(au)1/u(bv)1/v >

(
sin

π(v − 1)
2

)1/v

in Theorem 1 is sharp.
For this goal we need the following proposition proved in [3].
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Proposition 5. (See [3], Proposition 3.1.) Let p, q ∈ [1, +∞] , a >
0, b > 0, and let u and v be positive real numbers satisfying u > 2 and
1
u

+
1
v

= 1. If

(au)1/u(bv)1/v ≤
(

sin
π(v − 1)

2

)1/v

,

then there are infinity many even measurable functions on R satisfying the
conditions

ea|y|uf ∈ Lp(R) and eb|µ|v f̂ ∈ Lq(R) ,

where f̂ is the classical Fourier transform on R.

Theorem 2. Let p, q ∈ [1, +∞] , a, b ∈]0, +∞[ and let u, v be two real

numbers such that u > 2 and
1
u

+
1
v

= 1. Assume that

(au)1/u(bv)1/v <

(
sin

π(v − 1)
2

)1/v

.

If ` is even, then there exists a nonzero measurable function f on K` satis-
fying the conditions:

i) eayu
f ∈ Lp(m1/2) ,

ii) eb|µ|vF1/2f(λ , .)|R ∈ Lq
?(|c1/2 , λ(µ)|−2dµ) , for all λ ∈ 1

`
Z.

P r o o f. Let a′, a′′ and b′ be real numbers such that a′ > a′′ > a, b′ > b,
and

(a′u)1/u(b′v)1/v <

(
sin

π(v − 1)
2

)1/v

.

From Proposition 5, there exists a nonzero even measurable function h on
R such that

e2a′|y|uh ∈ Lp(R) and eb′|µ|v ĥ ∈ Lq(R).

Choose k an infinitely differentiable function compactly supported and odd
on R. Let g = h ? k be the classical convolution product of h and k. g is an
odd function on R. Since k̂ is bounded on R we have

eb′|µ|v ĝ ∈ Lq(R). (9)

Suppose that Suppk ⊂ [−A,A] , A > 0. For p = +∞, by using the fact that
the function ξ 7−→ e2a′′(ξ+A)u

e−2a′ξu
is bounded on [0,+∞[ we conclude that
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e2a′′|y|ug ∈ L∞(R). For 1 ≤ p < +∞, the generalized Minkowski inequality
(see [12], page 21) and the fact that the function ξ 7−→ e2pa′′(ξ+A)u

e−2pa′ξu

is bounded on [0, +∞[ allow us to conclude again that e2a′′|y|ug ∈ Lp(R). In
all cases we have

e2a|y|ug ∈ Lp(R). (10)

Take the function f defined on K` by

f(y, θ) =
eiθ/2g(y)(chy)1/2

sh2y
.

It is easy to check, by using (10), that we have

eayu
f ∈ Lp(m1/2).

According to (5) and (1) we can write, for all λ ∈ 1
`
Z and all µ ∈ R,

F1/2f(λ, µ) = 4
(∫ `π

−`π
ei(1/2−λ)θdθ

)(∫ +∞

0
g(y)ϕ(1/2 , λ)

µ (y)shy(chy)λ+1/2dy

)
.

Thus it follows that, for all λ 6= 1
2

and all µ ∈ R , F1/2f(λ, µ) = 0.
On the other hand we have

F1/2f(1/2, µ) = 4`π

∫ +∞

0
g(y)ϕ(1/2 , 1/2)

µ (y)sh2ydy ,

where ϕ
(1/2 , 1/2)
µ is the Jacobi function which is the unique solution of the

following initial problem




d2ψ

dy2
+ 4

ch2y
sh2y

dψ

dy
= −(µ2 + 4)ψ

ψ(0) = 1 and ψ′(0) = 0

.

Hence we have

∀y > 0 , ϕ(1/2 , 1/2)
µ (y) =

2 sinµy

µsh2y
,

then, since g is odd, we get

F1/2f(1/2, µ) =
4`π

µ
ĝ(µ).
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Furthermore, a straightforward calculation, using well known formulas of
gamma function, gives us

|c1/2 , 1/2|−2 =
µ2

4
.

Thus, by using the relation (9), we obtain

∀λ ∈ 1
`
Z , eb|µ|vF1/2f(λ , .)|R ∈ Lq

?(|c1/2 , λ(µ)|−2dµ).
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