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Abstract

In this paper we take the strip K, = [0, +-00[x[—{7, ¢x], where / is a
positive integer. We consider, for a nonnegative real number «, two partial
differential operators D and D, on |0,+oo[x] — ¢, ¢n[. We associate a
generalized Fourier transform F, to the operators D and D,. For this
transform F,, we establish an LP — L?—version of the Morgan’s theorem
under the assumption 1 < p,q < +00.
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1. Introduction

A rigourous formulation of the uncertainty principle in the framework
of the classical Fourier analysis on R is to investigate the LP — L9—sufficient
pairs of positive functions in the following meaning. A pair (g, h) of positive
functions is called an LP— L9—sufficient pair if, for every measurable function
f, the conditions g~' f € LP(R) and h—lfe L%(R) imply that f = 0 almost
everywhere, where ]?is the Fourier transform of f defined by

Fly) = /R f(@) ez
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Several authors have studied this form of the uncertainty principle in
many situations. Let us to indicate some of such works. In 1933, Hardy
[9] showed that the pair (797" ¢~} is L — L —sufficient if and only if

ab > 1 After fifty years, M. Cowling and J.F. Price generalized Hardy’s

theorem to an LP — Li—version, where 1 < p,q < +oco. In 2001, M.
Ebata [5] has given a similar theorem for the group SU(1,1). In 2003,
N.B. Andersen [1] has established an LP — L?—version of Hardy’s theorem
for the Jacobi transform. Also, L. Gallardo and K. Trimeche [8], in 2004,
have given an LP — L9—version of Hardy’s theorem related to the Dunkl
transform. Another famous result is Morgan’s theorem. For the classical
Fourier transform, this theorem was proved in 1934 by G.W. Morgan [11]
and it states that, for u > 2 and v = %, the pair (e~ =" e=bN") ig
L% — [*°—sufficient if and only if

(au)/"(bv)'/? > <sin ”“’;”)w .

Recently, in 2003, S. Ben Farah and K. Mokni [3] have generalized Mor-
gan’s theorem to an LP — LY—version, where 1 < p,q < 4o00. Also, they
extended this result to the euclidien space R", to the Heisenberg group and
to noncompact real symmetric spaces. For the Dunkl transform, S. Ayadi
[2] in 2004, has given an LP — L?—version of Morgan’s theorem.

In this paper we take the strip K, = [0, +oo[x[—¢m, ], where { €
N\ {0}, and for a nonnegative real number «, we consider the following
system of partial differential operators

0
b= 5
H? 0 1 92 9
( with (y,0) €]0,400[x] — &, fx].

For a =n —1, n being a positive integer, the operators D and [Dyp_1 —n?]
with the identity generate the algebra D(G/K) of left invariant differential
operators on G/K, where G is the universal covering group of G = U(n, 1)

and K is the subgroup U(n) (see [7]).
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These operators give rise to generalizations of many two variables struc-
tures, like the Fourier transform and the convolution (see [14]), the disper-
sion and Gaussian distributions (see [13]).

An harmonic analysis related to these operators was introduced, in 1991,
by K. Trimeche [14]. In particular, a generalized Fourier transform F,
associated to the operators D and D, is defined for a suitable function f
as follows

V(A ) € %Z xC, Fof(A\p)= ; F(@,0)p-x, u(y,0)dma(y,0),

where ¢, are eigenfunctions of the operators D and D,, and m, is a
weighted Lebesgue measure on Ky (see section 2).

The main result of this paper is an LP — L?—version, where 1 < p,q <
400, of Morgan’s theorem related to the generalized Fourier transform F.

More precisely, take u > 2, v = 4 1 and p,q € [1,+oc]. If a measurable
U —

u 1
function f on Ky satisfies the conditions e®¥" f € LP(m,) and for all A € ZZ’

Pl Fof (X, IR € Li(Jca,A(1)|"2dp) (see Section 3), where a,b €0, +o0],

m(v—1

1/v
then, whenever (au)"(bv)"/" > <sin ) )> , the function f is null

almost everywhere.

The contents of this paper is as follows: Section 2 is dedicated to
some properties and results concerning the eigenfunctions ¢y , and the
generalized Fourier transform F,. In Section 3 we establish a Phragmen-
Lindeloff type result that we need to prove the main statement of this paper.
In Section 4 we prove an LP — L9—version of Morgan’s theorem related
to the operators D and D, under the assumption 1 < p,q < +o0o and

m(v—1) v 1

(au)/" (bv)'/? > (sin2 . In the particular case where a = 5

and /¢ is even, we show that this last condition is sharp.

2. Generalized Fourier transform associated
with the operators D and D,

This section is organized in the following way. First we introduce the
eigenfunctions @), and recall some of these properties. Next we deal with
the generalized Fourier transform F,.
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1
PROPOSITION 1. (See [14], Théoreme I1.1) For \ € ZZ and p € C, the

initial problem

D® =i\®
Dy® = — 20
0P
®(0,0) =1, a—y(O,H) =0, 0¢]—{nin|

has a unique solution given by

ox,u(y,0) = €2 (chy) ol M (y),

where gpff")‘) is the Jacobi function defined by

O+ A+14ip a+A+1—i
PV (y) = 2F1( 5 = 5 Biati —shzy) ;

oF being the Gaussian hypergeometric function (see [6], ChII).

PROPERTIES. (See [14] and also [13])

1
i) For all \ € ZZ and p € C, ¢, , is even with respect to the first
variable and 2¢w—periodic with respect to the second variable.

1
ii) For all A € EZ,,uGCand (y,0) € Ky,

ox,u(y,0) = e (chy) Aol M (y). (1)

1
iii) For all \ € ZZ,uE(Cand (y,0) € Ky,

Ox,u(y,0) = px u(y,0) and px_u(y,0) = ox, u(y,0).

iv) Consider the following set

1 ~
Fg:{()\,,u)EKZX(C ] \%mulga—i—l}uﬁ,

where

~ 1
Q= U {(A,in)egZx(C | n> —(a+1), /\:i(a+2m+1+n)}.
meN

(2)
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Then we have

V()\,/,L) € Ff? sup (y79)| =1 (3)
(yve)eKZ

1
v) According to [10] page 150, we can assert that, for all (A, u) € ZZ xC
and (y,0) € K;, we have

lox. u(y,0)] < C(1 + y)elSmul=lati)y (4)

where C' is a positive constant.
NOTATIONS.
1) We consider the Lebesgue weighted measure on Ky,

dme(y, 0) = 227D (shy) 2+ chy dydd.

2) We designate by:

i) C(Ky) the space of continuous functions on K.
ii) C.(Ky) the space of continuous functions on K, compactly supported.

3) We denote by LP(m,), 1 < p < +o0, the space of measurable func-
tions f on K, satisfying

T {/K |f<y,e>rpdma<y,e>}” <400 if p<+oo,

and

[flloo, o = esssup [f(y,0)].
(y,O)GKg

DEFINITION 1. We define the generalized Fourier transform F, , asso-
ciated to the operators D and D, , on K; by

YO € GEXCo Faf o) = [ F0.00p-x 0 0)dma(u0).  (5)

where f € C.(Ky).

REMARK 1. We notice that for all f € L'(mg) and all (A, u) €
Iy, Faf is well defined.

The following two propositions are proved by K. Trimeche in [14].
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PROPOSITION 2. (See [14], Proposition VI.5) Let p and q be real num-

1 1
bers such that 1 < p < 2 and — + — = 1. We consider the following strip:
P q

sp:{uec | |%mu|<<;—1>(a+1)}.

Then the function ¢y, belongs to L(m,) in the following cases:

. Ae%ZamdueSp.

o € C such that Repp =0, Smp >0 and A = t(a+ 1+ 2m + Smpy),
meN, wjthAe%Z.

PROPOSITION 3. (See [14], Proposition VI.7) We have:
1 1
1) For all p € [1,2[ and ¢ € R such that — + — =1
p q
i) If f € LP(my,), then

[Faf A ) < [ fllp,a llon, ullg,a

in the two following cases:
. Ae%ZandueSp.
e € C such that Repp =0, Smp >0 and A = F(a+ 1+ 2m + Smpy),
meN, thh)\eéZ.
i) If f € L*(my,), then

[Faf (X w)l < £

1,

in the two following cases:
1
° )\EZZaHdMGSL
o (A\pu)eQ, whereQ is given by (2).
2) For all p € [1,2], the generalized Fourier transform F, associated to the
operators D and D,, is one to one on LP(my,).

3. Phragmen-Lindeloff type result

In this section we provide an L?—version of Phragmen-Lindeloff type
principle which we need for the proof of our main result. Firstly we state
the following lemma proved in [3].
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LEMMA 1. (See [3], Lemma 2.3) Suppose that p €]1,2[, q € [1,4o0],
o >0 and B > osin§(p —1). If g is an entire function on C satisfying the
conditions
lg(x +iy)| < conste?™”  for any z,yeR
and
€B|I‘p g‘R € LQ(R) )
then g = 0.

1
NoTATIONS. For A € ZN we consider the following function defined in
R by ‘
20\ +1=ilul T (o 4 1) D)
FA+1+ip] — ALl )
() ()

We denote by L(|ca a(p)|72dp), 1 < p < +o0, the space of measurable
even functions i on R satisfying

Ca,A(M) =

1
“+00 E
\hup,c—{ / rhm)\prca,mﬂdﬂ} <400 if p< oo,

and

[1h]loo,c = esssup [h(p)] .
HERY

LEMMA 2. Let p€]1,2[, g€ [1,+00], 0 >0 and B > osin5(p—1). If
g Iis an even entire function on C satisfying the conditions

lg(x +iy)| < conste’™”  for any z,yeR

and
eB|fE‘p Q‘R S LZ(’CQ’)\(Z’)‘_deJ) )

then g = 0.
P r o o f. Assume that 1 < g < +oo. According to ([15], p.99) we
can assert that the function  — |c, x(z)|72 is continuous on [0, 400

and there exist a positive constant v such that vz? < |cq A(z)|72 for all
x € [0,400]. Therefore,

+o0 , +oo o
v / eIl o) 9 < / e g()|%]ca 3 ()| dar < +o0.
1 1

This implies that eZ#l” gr € LYR). Consequently, by using Lemma 1, we
get the desired result. n
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4. Morgan’s theorem related to
the operators D and D,

Throughout this section ¢ designates a positive integer.

PROPOSITION 4. Let p € [1,4+00], a €]0,+00[ and let u be a real num-
ber such that u > 2. Assume that f is a measurable function on K, satisfying

e f e LP(my).
Then we have f € L'(m,). Furthermore, F, f(\, i) is well defined for every

1
A€ ZZ and p € C, and the function p — Fo f(\, p) is analytic on whole

1
C for every \ € ZZ'

Proof.
First case : p = 1.

/ 1 (5.0)] dima(y,0) < / " £ (y,8)| dma(y, 6) < +oo.
Ky Ky

Second case : p = +00.
| 100 () < 2050 e flo o [ e 2y < o,
K, 0

Third case : 1 < p < +oo. We consider the real number p’ satisfying
1 1
—+ — = 1. Using the Holder inequality, we get
p p

e

£ (5, 0)] dma(y,0) < [[€™" fllp,a {/ eV dma(y, e>}
Ky Ky
On the other hand we have

+oo
/ e*aplyudma(y,e) < 22°‘+37r/ e*ap/yu“(o‘ﬂ)ydy < +o0.
K, 0

Consequently we have f € L'(m,).
By virtue of relation (4) and the fact that (1 + y)e~(@+t¥ < 1, for all
y > 0, we can write

£ 0)0rn(y, 0)|dma(y,0) < C / F(.0)| 5™ W (y.,6)
Ky Ky
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where C' is a positive constant.

1
By the same manner as above we show, for all A € ZZ and p € C, that

we have

; |f(y, 0)o-x, u(y, 0)|dma(y, 0) < +oo.
¥4

Let us now to prove the analyticity of the function u —— F, f(A, 1) on C.
1
We have, for all (y,0) € Ky and X € ZZ’ the function p — @_yx ,(y,0) is

analytic on C (see [13], Corollary 1.1). Again by a same manner as above,
we prove that, for all ug > 0, the function p — F, f(\, 1) is analytic on
the strip {u € C | [Smpu| < po}-

This completes the proof of the proposition. |

THEOREM 1. Let p,q € [1,+00], a,b €]0,+o0[ and let u,v be two real

numbers such that u > 2 and — + — = 1. Assume that f is a measurable
u v

function on K, satisfying:
i) eW" f e LP(my,),

1 v
ii) for all \ € ;Z, b Fo f (N, D € Li(lca, (1) ~2dp).

If (aw) Y (b)Y > <sin7r(v_1)

1/v
5 > , then f is null almost everywhere.

1
Proof. Asin the proof of Proposition 4, we have for all (A, u) € ZZXC’

Fuf(Ap) < C /K (. 0)] 5™ Wi (y,6) (6)

where C' is a positive constant. Choose

56](&)@)_1/” <sin ”(”2_1)>1/v , (au)l/“[.

1 1
Applying the convex inequality |{7| < —[€]* 4+ —|7|” to the real numbers
u v
o~
dy and %, we get

6U U Cx v
Smpaly < Y- Bmal”
U VoY
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Next, by combining the relations (6) and (7) we obtain
|Smp|” Uyt
Faf Ol < O [ 17(9.0)| 5 dma(s.0).
£

Put
5“ u
I= /K F.0)] €% dma(y. ).
v

Thus we have

I={ | f(y,0)] e =" dma(y, 0).
Ke
Consider the function 1, defined on K, by ¢,(y,0) = e(%_“)yu. Taking

account that — < a, we can assert that 1, (y,0) € LP(m,) for all p €
u

1 1
[1,40c]. Take p" € [1,+o00] such that — + — = 1. It is easy to see that
p D

<™ fllp,a 95l ,a-

Using this last inequality we can assert that we have

|Smp|®

1 [9mpl”
VA€ 2, VpeC,  |Faf(hp)l S ke, (8)

where k is a positive constant.

m(v—1)

1 1
We have 1 <v <2 and b > w57 sin . Moreover, for all \ € ZZ’
v

the function pu —— Fof(\, p) is analytic on C. The condition ii) and the
relation (8) allow us to assert that F, f = 0, by using Lemma 2. Finally, by
applying 2) of Proposition 3, we find that f = 0 almost everywhere. [

In the end of this section we shall prove, in the particular case where

1
o= 3 and /¢ is even, that the condition

(au)* (b0) /7 > (sin”(”‘”y/v

in Theorem 1 is sharp.
For this goal we need the following proposition proved in [3].
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PROPOSITION 5. (See [3], Proposition 3.1.) Let p,q € [1,+0o0], a >

0, b > 0, and let u and v be positive real numbers satisfying u > 2 and

l—1-1:1. If

u v

<mm“mm“st”@;”f“,

then there are infinity many even measurable functions on R satisfying the
conditions R
ea|y‘uf € LP(R) and e’ fe LY(R),

where f is the classical Fourier transform on R.

THEOREM 2. Let p,q € [1,+00], a,b €]0,+o0[ and let u,v be two real

numbers such that v > 2 and — + — = 1. Assume that
u v

(aw)/" (bv)'/? < <sin7r(v2_1>>1/v .

If ¢ is even, then there exists a nonzero measurable function f on K, satis-
fying the conditions:
i) e f € LP(mys),

v 1
if) My f, g € Lllerjo a(0)] 2dp), for all A € 5.

Proof. Letd, a” and I/ be real numbers such that a’ > a” > a, v/ > b,

and 1
1o\ wipl, \1/v : 71'(’[} — 1) !
(@'u) "™ (b'v)"" < (Sln 5 .

From Proposition 5, there exists a nonzero even measurable function h on
R such that

62a/|y|uh c LP(R) and 6b’|ﬂ|vil\ c LCI(]R)

Choose k an infinitely differentiable function compactly supported and odd
on R. Let g = hxk be the classical convolution product of h and k. g is an
odd function on R. Since k is bounded on R we have

UG e LUR). (9)

Suppose that Suppk C [—A, A], A > 0. For p = 400, by using the fact that

the function & — €2 (€+A4)" ¢=20'¢" i5 hounded on [0, +00[ we conclude that
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e2" " g € L®°(R). For 1 < p < +00, the generalized Minkowski inequality
(see [12], page 21) and the fact that the function & — e2Pe” (€+A4)" g=2pa’"
is bounded on [0, +o0[ allow us to conclude again that e2*"¥"g € LP(R). In
all cases we have

2" g e LP(R). (10)
Take the function f defined on K, by

’/2g(y)(chy)'/?
sh2y '

f(y,0) =

It is easy to check, by using (10), that we have

eayuf c Lp(ml/g).

1
According to (5) and (1) we can write, for all A € ZZ and all p € R,

b +oo
Fipaf () = 4 < / et/ 2A)9d9>< /O 9y N (y)shy(chy) 2dy> .

I

1
Thus it follows that, for all A # 3 and all p € R, Fyjaf (A, pu) =0.
On the other hand we have

+oo
Fuaf(1/2,p) = Al /0 a(y) (/212 (y)sh2ydy

where 908/ 2:1/2) ig the Jacobi function which is the unique solution of the

following initial problem

&Y ch2ydyp
dy? sh2y dy

= —(p+4

P(0) =1 and ¢/(0) =0

Hence we have

2sin
Vy>0, @My = 2

ush2y
then, since ¢ is odd, we get

Fraf ()2, 1) = 4ff§<u>.



AN LP — LR —VERSION OF MORGAN’S THEOREM ... 311

Furthermore, a straightforward calculation, using well known formulas of
gamma function, gives us

2

_2_/-1/7
|Cl/2,1/2| =

Thus, by using the relation (9), we obtain

1]

1 v _
VA e EZ’ eblwl Frpf(A, Jr € Li(leij, a(p)] 2dp).
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