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Abstract

In this paper, we establish the Lp boundedness of certain maximal os-
cillatory singular integral operators with rough kernels belonging to certain
block spaces. Our Lp boundedness result improves previously known results.
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1. Introduction and statement of results

Let Rd (d = n,m ≥ 2) be the d-dimensional Euclidean space and Sd−1

be the unit sphere in Rd equipped with the normalized Lebesgue measure
dσ. For nonzero y ∈ Rd, we let y′ = |y|−1 y. Let Ω ∈ L1(Sd−1) be a

homogeneous function of degree zero on Rn which satisfies the cancelation
property ∫

Sd−1

Ω(y′)dσ(y′) = 0. (1.1)

For a suitable mapping P : Rn×Rm → R, consider the oscillatory singular
integral operator defined by

TP,Ω(f)(x) =
∫

Rn

eiP (x,y)f(x− y)Ω(y′) |y|−n dy, (1.2)



234 A. Al-Salman

and the corresponding maximal operator defined by

T ∗P,Ω(f)(x) = sup
ε>0

∣∣∣∣∣
∫

|y|>ε
eiP (x,y)f(x− y)Ω(y′) |y|−n dy

∣∣∣∣∣ . (1.3)

The operators in (1.2) and (1.3) have been extensively studied by many
authors. For their significance, we refer the reader to consult ([1], [10], [17],
[18], [19], among others). In this paper, we are interested in studying max-
imal operators of the form (1.3). Clearly, if P = 0, then the operator T ∗P,Ω

is the classical maximal singular integral operator of Calderón-Zygmund
type ([4], [5]). When P is a polynomial mapping and Ω ∈ Lq(Sn−1) for
some q > 1, Lu-Zhang ([12]) showed that T ∗P,Ω is bounded on Lp for all
1 < p < ∞. Subsequently, Lu-Wu in ([13]) proved that Lu-Zhang’s result
still holds under a weaker condition on Ω. In fact, they showed that the op-
erator T ∗P,Ω is bounded on Lp for all 1 < p < ∞ provided that the function

Ω belongs to certain block space B
(0,0)
q (Sn−1), q > 1. The same result was

obtained, as a consequence of a more general result, by A-Salman in ([1]). It
should be pointed out here that block spaces were introduced by Jiang and
Lu (definition of block spaces will be recalled in Section 2). For background
information about block spaces and their use in harmonic analysis, see ([14],
[15]).

Motivated by the work of Fan-Pan on singular integrals along subvari-
eties ([7]), Fan-Yang ([9]) studied Lp estimates of maximal oscillatory sin-
gular integral operators of the form (1.3) with singularities spread over sets
more general than the diagonal {y = x}. More precisely, Fan-Yang consid-
ered the following maximal oscillatory singular integral operator

T ∗P,Φ,Ω(f)(x) = sup
ε>0

∣∣∣∣∣
∫

|y|>ε
eiΦ(y)f(x−P(y))Ω(y′) |y|−n dy

∣∣∣∣∣ , (1.4)

where P(y) = (P1, . . . , Pd) is a polynomial mapping from Rn into Rd, and
Φ : Rn → R is a homogeneous function that satisfies

Φ(ty′) = t
β
Φ(y′) for t > 0, (1.5)

Φ(y′) ∈ L∞(Sn−1) , and
∫

Sn−1

∣∣∣Φ(y
′
)
∣∣∣
−δ

dσ(y′) < ∞, (1.6)

for some δ > 0 and for some β 6= 0.
Fan-Yang proved the following result:
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Theorem A. ([9]) Suppose that Ω is a homogeneous function of degree
zero on Rn that satisfies (1.1) and that Ω ∈ Lq(Sn−1) for some q > 1.
Suppose also that P(y) = (P1, . . . , Pd) is a polynomial mapping. If Φ is a
homogeneous function that satisfies (1.5)-(1.6) with either the index β 6= 0
is not a positive integer or β is a positive integer larger than max{deg(Pj) :
1 ≤ j ≤ d}, then the operator T ∗P,Φ,Ω is bounded on Lp for all 1 < p <
∞. Moreover, the operator norm is independent of the coefficients of the
polynomial mappings {Pj : 1 ≤ j ≤ d}.

In this paper, we are interested in weakening the assumption Ω ∈
Lq(Sn−1) in Theorem A. In order to state our main result, we cite the
following related remarks:

(i) It can be easily shown that if Φ : Rn → R is a homogeneous function
of degree β 6= 0 which is real analytic on Sn−1 (i.e. Φ |Sn−1 is real analytic),
then the assumptions (1.6) hold. In fact, if Φ1, ...,Φl are linearly indepen-
dent real analytic functions on Sn−1and that each Φj is homogeneous of
degree β 6= 0, then there exist positive constants δ = δ(Φ,Sn−1,Sl) and
A = A(Φ,Sn−1,Sl) such that

sup
η′∈Sl

∫

Sn−1

∣∣η′ · (Φ1(y′), ...,Φl(y′))
∣∣−δ

dσ(y′) < A. (1.7)

Detailed proof of (1.7) can be obtained following a similar argument as in
the proof of Lemma 2.6 in ([6], see also [1]).

(ii) In a recent paper ([3]), Al-Qassem, Al-Salman, and Pan showed
that the condition Ω ∈ B

(0,0)
q (Sn−1), q > 1 is an optimal size condition

for the Lp boundedness of the classical Calderón-Zygmund singular integral
operator T0,Ω to hold. In fact, they proved that if Ω is assumed to be in
B

(0,ε)
q (Sn−1)\B(0,0)

q (Sn−1) for some ε < 0, then the Lp boundedness of the
operator T0,Ω may fail for any 1 < p < ∞.

(iii) Also, by a result obtained by the authors of ([3]), it is known that if
Ω ∈ B

(0,0)
q (Sn−1) for some q > 1 and Φ : Rn → R is a homogeneous function

of degree β 6= 0 such that Φ |Sn−1 is real analytic, then the operator

TΦ,Ωf(x) = p.v.
∫

Rn

eiΦ(y)f(x− y) |y|−n Ωy)dy,

is bounded on Lp for all 1 < p < ∞.
(iv) By Fatou’s lemma, and a well known limiting argument it can be

shown that if the operator T ∗P,Φ,Ω is bounded on Lp for some 1 < p < ∞,
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then the oscillatory singular integral operator

TP,Φ,Ω(f)(x) =
∫

Rn

eiΦ(y)f(x−P(y))Ω(y′) |y|−n dy,

is also bounded on Lp.
(v) It is known that the space B

(0,0)
s (Sn−1), s > 1 contains

⋃
q>1

Lq(Sn−1)

properly ([11], [14]).

In the light of the above remarks, it is natural to ask if the result in
Theorem A still holds under the weaker and more natural condition Ω ∈
B

(0,0)
s (Sn−1). In the following result, we answer this question affirmatively:

Theorem B. Suppose that Ω is a homogeneous function of degree zero

on Rn that satisfies (1.1) and that Ω ∈ B
(0,0)
q (Sn−1), q > 1. Suppose also

that P(y) = (P1, . . . , Pd) is a polynomial mapping. If Φ is a homogeneous
function that satisfies (1.5)-(1.6) with either the index β 6= 0 is not a positive
integer or β is a positive integer larger than max{deg(Pj) : 1 ≤ j ≤ d}, then
the operator T ∗P,Φ,Ω is bounded on Lp for all 1 < p < ∞. Moreover, the
operator norm is independent of the coefficients of the polynomial mappings
{Pj : 1 ≤ j ≤ d}.

By remark (i) above and a careful review of the proof of Theorem B
in Section 4 in this paper, it can be easily seen that if the function Φ is
assumed to be real analytic on Sn−1, then the index of homogeneity β can
be allowed to equal max{deg(Pj) : 1 ≤ j ≤ d}. By this, Theorem B, and
remark (iv), we immediately obtain the following improvement of the Lp

boundedness result in remark (iii) above:

Corollary C. Suppose that Ω is a homogeneous function of degree

zero on Rn that satisfies (1.1) and that Ω ∈ B
(0,0)
q (Sn−1), q > 1. Suppose

also that P(y) = (P1, . . . , Pd) is a polynomial mapping. If Φ is a homoge-
neous function of degree β 6= 0 such that Φ |Sn−1 is real analytic with either
the index β 6= 0 is not a positive integer or β is a positive integer larger than
or equal max{deg(Pj) : 1 ≤ j ≤ d}, then the operator TP,Φ,Ω is bounded
on Lp for all 1 < p < ∞. Moreover, the operator norm is independent of
the coefficients of the polynomial mappings {Pj : 1 ≤ j ≤ d}.

It should be remarked here that the requirement β 6= 0 in Theorem A
and Theorem B can not be removed even for smooth functions Ω. This can
be easily seen by using Proposition 6.1 in ([1]) and remark (iv) above.
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Throughout this paper the letter C denotes a constant that may vary
at each occurrence, but it is independent of the essential variables. Finally,
for a set A, we let χA denote the characteristic function of A.

2. Definition of block spaces

In this section we recall the definition of block spaces introduced by
Jiang and Lu.

By a cap on Sn−1, we mean a subset I ⊂ Sn−1 of the form I = {x′ ∈
Sn−1 : |x′ − x′0| < α} for some α and x′0 ∈ Sn−1.

Definition 2.1. For 1 < q ≤ ∞, we say that a measurable function
b(x′) on Sn−1 is a q−block, if there exists some cap I on Sn−1 such that

supp(b) ⊂ I and ‖b‖Lq ≤ |I|− 1
q′ , where 1/q + 1/q′ = 1.

The block functions are defined in terms of q−block functions. In fact,
the following definition takes place.

Definition 2.2. Let 1 < q ≤ ∞ and ν > −1. The class B0,ν
q (Sn−1)

consists of all functions Ω ∈ L1(Sn−1) of the form Ω =
∑∞

µ=1 cµbµ , where
each cµ is a complex number; each bµ is a q−block supported on a cap Iµ

on Sn−1; and

M0,ν
q (

{
cµ

}
) =

∑∞
µ=1

∣∣cµ

∣∣ (1 + (log |Iµ|−1)υ+1) < ∞. (2.1)

The block functions enjoy many properties ([11], [14]). The following
are closely related to our work:

(i) B0,υ
q ⊂ B0,0

q (q > 1), ν > 0;
(ii) B0,υ

q2 ⊂ B0,υ
q1 (1 < q1 < q2); Lq(Sn−1) ⊆ B0,υ

q (Sn−1) (υ > −1);

(iii)
⋃

q>1
B0,υ

q (Sn−1) 6 ⊆ ⋃
p>1

Lp(Sn−1), υ > −1.

3. Preparation

We start by recalling the following result from ([8]) which is a simple
consequence of a theorem due to Stein and Wainger, [19].

Lemma 2.1. ([8]) Let P = (P1, ..., Pd) be a polynomial mapping from
Rn into Rd. Suppose Ω ∈ L1(Sn−1) and

µΩ,Pf(x) = sup
j∈Z

∫

2j≤|y|<2j+1

|f(x− P(y))| |y|−n
∣∣∣Ω(y

′
)
∣∣∣ dy.
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Then for 1 < p ≤ ∞ there exists a constant Cp > 0 independent of Ω,
and the coefficients of P1, ..., Pd such that ‖µΩ,Pf‖p ≤ Cp ‖Ω‖L1(Sn−1) ‖f‖p

for every f ∈ Lp(Rd).

Following similar arguments as in the proof of Theorem 1.1 in ([2]), we
obtain the following:

Lemma 2.2. Suppose that h ∈ L∞(R+) and P = (P1, ..., Pd) is a
polynomial mapping from Rn into Rd. Suppose also that Ω ∈ L∞(Sn−1)
is a homogeneous function of degree zero on Rn that satisfies (1.1) with
‖Ω‖L1 ≤ 1 and ‖Ω‖L∞ ≤ 2κ for some κ ≥ 1. Then the operator

S∗P,Ω,h(f)(x) = sup
ε>0

∣∣∣∣∣
∫

|y|>ε
f(x− P(y))Ω(y′)h(|y|) |y|−n dy

∣∣∣∣∣ (3.1)

satisfies
∥∥∥S∗P,Ω,h(f)

∥∥∥
p
≤ κ ‖h‖∞Cp ‖f‖p for all 1 < p < ∞ with constant

Cp independent of κ, h,Ω, and the coefficients of P1, ..., Pd.

Suppose that a ≥ 2. For a homogeneous function Ω ∈ L1(Sn−1) of
degree zero on Rn, suitable mappings P(y) : Rn → Rd and Φ : Rn → R,
and a suitable sequence {ψk,a : k ∈ Z} of non-negative real valued functions
defined on R+, define the sequence of measures {σa,Ω,k : k ∈ Z} on Rn by

∫
fdσa,Ω,k =

∫
eiΦ(y) |y|−n Ω(y′)ψk,a(|y|)f(P(y))dy. (3.2)

Then, we prove the following:

Lemma 2.3. Suppose that ‖Ω‖1 ≤ 1 and ‖Ω‖q ≤ 2a, where q > 1
and 1/q + 1/q′ = 1. Suppose also that P(y) = (P1, . . . , Pd) is a polynomial
mapping and is a homogeneous function that satisfies (1.5)-(1.6) with a
negative index β 6= 0. Let {σa,Ω,k : k ∈ Z} be the sequence of measures given
by (3.2). Suppose also that 0 ≤ ψk,a ≤ 1, supp(ψk,a) ⊆ [2−a(k+1), 2−a(k−1)],

and
∣∣∣dψk,a

du (u)
∣∣∣ ≤ Cu−1 with constant C independent of a and k. Let GΩ,a

be the maximal function given by

GΩ,a(f)(x) = sup
j<1

∣∣∣
∑1−j

k=0
σa,Ω,k ∗ f(x)

∣∣∣ . (3.3)

Then
‖GΩ,a(f)‖p ≤ aC ‖f‖p (3.4)

for all 1 < p < ∞ with constant C independent of a.
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P r o o f. We start by observing that

GΩ,a(f)(x) ≤
∑∞

k=0
Ma,k(f)(x), (3.5)

where Ma,k(f) is the maximal function given by

Ma,k(f)(x) = sup
j<1

|σa,Ω,k−j ∗ f(x)| . (3.6)

Thus, to prove (3.4) we only need to estimate ‖Ma,k(f)‖p.
First, by the observation that Ma,k(f)(x) ≤ 2aµΩ,Pf(x) and Lemma

2.1, the following crude estimate

‖Ma,k(f)‖p ≤ aC ‖f‖p (3.7)

holds for all 1 < p < ∞ with constant C independent of a.
Next, we seek a good ‖Ma,k(f)‖2. By Plancherel’s theorem, we have

‖Ma,k(f)‖2 ≤
∑1

j=−∞ ‖σa,Ω,k−j ∗ f‖2 ≤ ‖f‖2

∑1

j=−∞ ‖σ̂a,Ω,k−j‖∞ .

(3.8)
Now, by Hölder’s inequality and the fact that ‖Ω‖q ≤ 2a, we have

‖σ̂a,Ω,k−j‖∞ ≤ 2a sup
ξ∈Rn

(
∫

Sn−1

|Ik−j(Φ, ξ, Ω, a)|q′ dσ)
1
q′ , (3.9)

where

Ik−j(Φ, ξ, Ω, a) =

∣∣∣∣∣
∫ 22a

1
eiEj,β,a(Φ,P,y′,ξ,t)ψk,m(2−a(k−j+1)t)t−1dt

∣∣∣∣∣ (3.10)

and Ej,β,a(Φ,P, y′, ξ, t) = 2−aβ(k−j+1)Φ(y′)tβ − P(2−a(k−j+1)y′t) · ξ. Thus,
by van der Corput lemma ([18]), we immediately obtain

Ik−j(Φ, ξ, Ω, a) ≤ C2γa
∣∣∣2−aβ(k−j+1)Φ(y′)

∣∣∣
− 1

l , (3.11)

for some γ > 0. When interpolated with the trivial estimate Ik−j(Φ, ξ, Ω, a)
≤ 2a ln 2, this implies that

Ik−j(Φ, ξ, Ω, a) ≤ aC
∣∣∣2−aβ(k−j+1)Φ(y′)

∣∣∣
− δ

lq′ . (3.12)
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Therefore, by (3.9), (3.12), and (1.6), we obtain

‖σ̂a,Ω,k−j‖∞ ≤ 2aaC
∣∣∣2−aβ(k−j+1)

∣∣∣
− δ

lq′ . (3.13)

By interpolation between (3.13) and the estimate ‖σ̂a,Ω,k−j‖∞ ≤ 2a we get

‖σ̂a,Ω,k−j‖∞ ≤ aC2
δβ
lq′ (k−j+1). (3.14)

By (3.8) and (3.14), we immediately get

‖Ma,k(f)‖2 ≤ aC2
δβ
lq′ k ‖f‖2 . (3.15)

Therefore, by interpolation between (3.7) and (3.15), we get

‖Ma,k(f)‖p ≤ a2αβk ‖f‖p (3.16)

for all 1 < p < ∞ with constant C independent of a. Hence the proof is
complete by (3.5) and (3.16).

By a similar argument as in the proof of Lemma 2.3, we can easily obtain
the following:

Lemma 2.4. Suppose that ‖Ω‖1 ≤ 1 and ‖Ω‖q ≤ 2a, where q > 1, 1/q+
1/q′ = 1. Suppose also that P(y) = (P1, . . . , Pd) is a polynomial mapping
and Φ is a homogeneous function that satisfies (1.5)-(1.6) with a positive
index β which is either not an integer, or is a positive integer larger than
max{deg(Pj) : 1 ≤ j ≤ d}. Let {σa,Ω,k : k ∈ Z} be the sequence of
measures given by (3.2). Suppose also that 0 ≤ ψk,a ≤ 1, supp(ψk,a) ⊆
[2−a(k+1), 2−a(k−1)], and

∣∣∣dψk,a

du (u)
∣∣∣ ≤ Cu−1 with constant C independent of

a and k. Let GΩ,a be the maximal function given by

GΩ,a(f)(x) = sup
j≥0

∣∣∣
∑0

k=−j−1
σa,Ω,k ∗ f(x)

∣∣∣ . (3.17)

Then

‖GΩ,a(f)‖p ≤ aC ‖f‖p (3.18)

for all 1 < p < ∞ with constant C independent of a.

We now prove the following lemma:
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Lemma 2.5. Let a ≥ 2 and let P = (P1, ..., Pd) be a polynomial
mapping from Rn into Rd. Let Ω be a homogeneous function of degree
zero on Rn that satisfy (1.1) with ‖Ω‖L1(Sn−1) ≤ 1 and let ηa : R+ → R
be a smooth function that satisfies 0 ≤ ηa ≤ 1, supp(ηa) ⊂ [1,∞), and
ηa(t) = 1 for t ≥ 22a. Let Ka(y) = Ω(y′)ηa(|y|). For a function Φ that
satisfies (1.5)-(1.6) with index β < 0, let T ∗P,Φ,Ka

be the operator given by
(1.4) with Ω replaced by Ka. Then

∥∥T ∗P,Φ,Ka
(f)

∥∥
p
≤ aC ‖f‖p (3.19)

for all 1 < p < ∞.

P r o o f. By the assumptions, the factor eiΦ(y) |y|−n Ka(y) can be writ-
ten as

eiΦ(y) |y|−n Ka(y) = |y|−n Ω(y′)χ{|y|>22a} + (eiΦ(y) − 1) |y|−n Ω(y′)

×χ{|y|>22a} + eiΦ(y) |y|−n Ka(y)χ{1≤|y|<22a}. (3.20)

Therefore, we have

T ∗P,Φ,Ka(y)(f)(x) ≤ S∗P,Ω,ha
(f)(x)+M

(1)
P,Φ,Ω(f)(x)+M

(2)
P,Φ,Ka

(f)(x), (3.21)

where

M
(1)
P,Φ,Ω(f)(x) = sup

ε>0

∣∣∣∣∣
∫

|y|>ε
(eiΦ(y) − 1)f(x− P(y)) |y|−n Ω(y

′
)χ{|y|>22a}

∣∣∣∣∣ dy,

(3.22)

M
(2)
P,Φ,Ka

(f)(x) = sup
ε>0

∣∣∣∣∣
∫

|y|>ε
eiΦ(y)f(x−P(y)) |y|−n Ka(y)χ{1≤|y|<22a}

∣∣∣∣∣ dy,

(3.23)
and S∗P,Ω,ha

is the operator given by (3.1) with h replaced by ha = χ{|y|>22a}.
Now,

M
(1)
P,Φ,Ω(f)(x) ≤ ‖Φ‖∞

∑∞
j=2
{2aβj

∫

2aj<|y|<2a(j+1)

∣∣∣Ω(y
′
)
∣∣∣ |y|−n |

× f(x− P(y))| dy} ≤ CaµΩ,Pf(x);

when combined with Lemma 2.1, implies that
∥∥∥M

(1)
P,Φ,Ω(f)

∥∥∥
p
≤ aC ‖f‖p (3.24)
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for all 1 < p < ∞.
On the other hand, by the observation that M

(2)
P,Φ,Ka

(f)(x) ≤ 2aµΩ,Pf(x)
and Lemma 2.1, we have

∥∥∥M
(2)
P,Φ,Ka

(f)
∥∥∥

p
≤ aC ‖f‖p (3.25)

for all 1 < p < ∞. Hence (3.19) follows by Minkowsky’s inequality, Lemma
2.2, (3.21), (3.24), and (3.25). This completes the proof.

By a similar argument as in the proof of Lemma 2.5, we can easily obtain
the following:

Lemma 2.6. Let a ≥ 2 and let P = (P1, ..., Pd) be a polynomial mapping
from Rn into Rd. Let Ω be a homogeneous function of degree zero on Rn

that satisfies (1.1) with ‖Ω‖L1(Sn−1) ≤ 1 and let ηa : R+ → R be a smooth
function that satisfies 0 ≤ ηa ≤ 1, supp(ηa) ⊂ [0, 1], and ηa(t) = 1 for
t ≤ 2−a. Let Ka(y) = Ω(y′)ηa(|y|). For a function Φ that satisfies (1.5)-
(1.6) with a positive index β which is either not an integer or is a positive
integer larger than max{deg(Pj) : 1 ≤ j ≤ d}, let T ∗P,Φ,Ka

be the operator

given by (1.4) with Ω replaced by Ka. Then
∥∥∥T ∗P,Φ,Ka

(f)
∥∥∥

p
≤ aC ‖f‖p for

all 1 < p < ∞.

4. Proof of main result

P r o o f o f T h e o r e m B. Assume that Ω ∈ B0,0
q (Sn−1), q > 1. Then

Ω =
∑∞

µ=1 cµbµ , where each bµ is a q−block supported on a cap Iµ on Sn−1;

and {cµ} is a sequence of complex numbers that satisfies

M0,0
q (

{
cµ

}
, {Iµ}) =

∑∞
µ=1

∣∣cµ

∣∣ (1 + log(
∣∣Iµ

∣∣−1)) < ∞. (4.1)

For each µ, we define the function b̄µ by b̄µ(x) = b̄µ(x)−∫
Sn−1 b̄µ(u)dσ(u).

Then, it is easy to see that b̄µ satisfies the cancelation property (1.1).
Moreover, the following hold

∥∥b̄µ

∥∥
Lq ≤ C

∣∣Iµ

∣∣− 1
q′ ,

∥∥b̄µ

∥∥
L1 ≤ C, (4.2)

Ω =
∑∞

µ=1
cµ b̄µ . (4.3)
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By (4.3), we have

T ∗P,Φ,Ωf(x) ≤
∑∞

µ=1

∣∣cµ

∣∣T ∗P,Φ,b̄µ
f(x), (4.4)

where T ∗P,Φ,b̄µ
is given by (1.4) with Ω replaced by b̄µ .

To prove Theorem B, it suffices by (4.1) and (4.4) to prove that
∥∥∥T ∗P,Φ,b̄µ

f
∥∥∥

p
≤ (1 + log(

∣∣Iµ

∣∣−1)C ‖f‖p (4.5)

for all 1 < p < ∞. To prove (4.5), we argue as follows:

Given b̄µ . Let a = 2 if
∣∣Iµ

∣∣ ≥ 2q′e−2q′ and a = log 2
∣∣Iµ

∣∣− 1
q′ if

∣∣Iµ

∣∣ <

2q′e−2q′ . Choose a collection of C∞ functions {ψk,a}k∈Z on (0,∞) that
satisfy supp(ψk,a) ⊆ [2−a(k+1), 2−a(k−1)], 0 ≤ ψk,a ≤ 1,

∑
k∈Z

ψk,a(u) = 1, and
∣∣∣dsψk,a

dus (u)
∣∣∣ ≤ Csu

−s with constants Cs independent of a (see [2] for more
details).

Now, as in ([9]), we have two cases:
Case 1. β < 0. Let

η(y) =
∑−1

k=−∞ ψk,a(|y|);

Ka,∞(y) = b̄µ(y′)η(y); Ka,0(y) =
∑∞

k=0
b̄µ(y′)ψk,a(|y|).

Then, it is clear that

supp(Ka,∞) ⊂ {y ∈ Rn : |y| ≥ 1}; (4.6)
Ka,∞(y) = b̄µ(y′) for all |y| > 22a; (4.7)

supp(Ka,0) ⊂ {y ∈ Rn : |y| ≤ 2a}. (4.8)

Therefore, we have

T ∗P,Φ,b̄µ
f(x) ≤ T ∗P,Φ,Ka,∞(f)(x) + T ∗P,Φ,Ka,0

(f)(x). (4.9)

Therefore, by Lemma 2.5, we have
∥∥∥T ∗P,Φ,Ka,∞(f)

∥∥∥
p
≤ aC ‖f‖p (4.10)

for all 1 < p < ∞.
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Now, we show that
∥∥∥T ∗P,Φ,Ka,0

(f)
∥∥∥

p
≤ aC ‖f‖p (4.11)

for all 1 < p < ∞. To prove (4.11), we argue as follows:
By (4.8), we observe that

T ∗P,Φ,Ka,0
(f)(x) = sup

0<ε<2a

∣∣∣∣∣
∑∞

k=0

∫

|y|>ε
L(a, k, µ,Φ, n)(y)f(x− P(y))dy

∣∣∣∣∣ ,

(4.12)
where L(a, k, µ,Φ, n)(y) = eiΦ(y) |y|−n b̄µ(y′)ψk,a(|y|). For any 0 < ε < 2a,
choose j ≤ 1 such that 2a(j−1) ≤ ε < 2aj . Let I1 and I2 be the operators
given by

I1(f)(x) =

∣∣∣∣∣
∑∞

k=0

∫

2aj≤|y|<2a

L(a, k, µ,Φ, n)(y)f(x− P(y))dy

∣∣∣∣∣ ; (4.13)

I2(f)(x) =

∣∣∣∣∣
∑∞

k=0

∫

ε<|y|<2aj

L(a, k, µ,Φ, n)(y)f(x− P(y))dy

∣∣∣∣∣ . (4.14)

Therefore,
∣∣∣∣∣
∑∞

k=0

∫

|y|>ε
L(a, k, µ,Φ, n)(y)f(x− P(y))dy

∣∣∣∣∣ ≤ I1(f)(x) + I2(f)(x),

(4.15)
Now, it can be easily seen that

I2(f)(x) ≤ 3aµb̄µ ,Pf(x), (4.16)

where µb̄µ ,Pf is the operator given in Lemma 2.1 with Ω replaced by b̄µ .
On the other hand, by the support property of ψk,a, we have

I1(f)(x) ≤
∣∣∣∣
∑1−j

k=0

∫

Rn

L(a, k, µ,Φ, n)(y)f(x− P(y))dy

∣∣∣∣ + 2aµb̄µ ,Pf(x).

(4.17)
Therefore by (4.12), (4.15)-(4.17), we have

T ∗P,Φ,Ka,0
f(x) ≤ Gb̄µ ,a(f)(x) + 5aµb̄µ ,Pf(x), (4.18)
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where Gb̄µ ,a is given by (3.3) with Ω replaced by b̄µ . Thus, by (4.18), Lemma
2.3, and Lemma 2.1, we obtain (4.11). Hence, the proof of Case 1 is complete
by (4.9)-(4.11).

Case 2. β > 0 is not a positive integer or β is a positive integer
larger than max{deg(Pj) : 1 ≤ j ≤ d}. The proof of this case follows by a
similar argument as in Case 1. In fact, by taking η(y) =

∑∞
k=1 ψk,a(|y|),

Ka,0(y) = b̄µ(y′)η(y), and Ka,∞(y) =
∑0

k=−∞ b̄µ(y′)ψk,a(|y|), it follows that
supp(Ka,0) ⊂ {y ∈ Rn : |y| ≤ 1}, Ka,0(y) = b̄µ(y′) for all |y| < 2−2a, and
supp(Ka,∞) ⊂ {y ∈ Rn : |y| ≥ 2−a}. Thus a proof of Case 2 follows by
repeating the same argument as in the proof of Case 1 using Lemmas 2.4
and 2.6 in place of Lemmas 2.3 and 2.5 at this time. This completes the
proof.
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