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Abstract

By generalization of Ehrenfest’s urn model, we obtain discrete approxi-
mations to spatially one-dimensional time-fractional diffusion processes with
drift towards the origin. These discrete approximations can be interpreted
(a) as difference schemes for the relevant time-fractional partial differential
equation, (b) as random walk models. The relevant convergence questions as
well as the behaviour for time tending to infinity are discussed, and results
of numerical case studies are displayed.
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1. Introduction

In recent years there has been growing interest in diffusion in various
fields of physics, chemistry, and related sciences. It is well known that
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the fundamental solution (or Green function) of the classical diffusion (or
heat) equation can be interpreted as a Gaussian normal probability density
function in space evolving in time.

Robert Brown in 1827 was as far as we know the first interested in
diffusion in fluids. He noticed that small particles suspended in fluids per-
form peculiarly erratic movements. This phenomenon, which can also be
observed in gases, is referred to as Brownian motion. It later became clear
that Brownian motion is an outward manifestation of the molecular motion
postulated by kinetic theory of matter. In 1905 Albert Einstein was the first
to develop a satisficatory theory. Later the theory was made more rigorous
and extended by Smoluchowski, Fokker, Planck, Burger, Wiener and others.
Einstein considered the case of the free particle that is, a particle on which
no forces other than those due to the molecules of the surrounding medium
are acting. This motion was modelled by the classical diffusion equation
(see [28], [32] and [26])

∂u(x, t)
∂t

= a
∂2u(x, t)

∂x2
, a > 0, x ∈ R, t > 0 . (1.1)

The solution u(x, t) of this equation with the initial condition u(x, 0) =
δ(x − ξ) is well known as the corresponding Green function or the funda-
mental solution. It represents the probability density of a particle being at
the point x in the time instant t when it initially (at the time t = 0) is at
the point x = ξ:

u(x, t) =
1

2
√

πat
e−(x−ξ)2/(4at) .

Here a is a positive constant depending on the temperature, the friction
coefficient, the universal gas constant, and finally on the Avogadro number.
The free motion of the particle modelled by Eq.(1.1) has met great interest
among mathematicians, physicists and others, and it has found many gen-
eralizations. Approximating random walks of the particle have also been
studied by many authors, see for example, [5], [15]. As soon as the theory
for the free particle was established, many modifications in order to take
into consideration the external outside force were devised. Assuming the
external outside forces acting towards the origin x = 0 and being propor-
tional to the distance of the particle from the origin Smoluchowski [26] has
shown that Eq.(1.1) on the right-hand side should be augmented by a drift
term:

∂u(x, t)
∂t

= a
∂2u(x, t)

∂x2
+

∂

∂x
(bxu(x, t)) , b > 0 . (1.2)
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Again we assume that the initial condition is u(x, 0) = δ(x − ξ). The
solution of this equation is [21], [20], [16]

u(x, t) = p(ξ; x, t) =
1√

2πσ(t)
e
−(x−m(t))2

2σ2 x ∈ R, t > 0 , (1.3)

where m(t) = ξe−bt, σ2 = a
b (1− e−2bt), and a > 0, b > 0.

As a more general situation, we consider the equation

∂u(x, t)
∂t

= a
∂2u(x, t)

∂x2
− ∂

∂x
(F (x)u(x, t)) , a > 0 (1.4)

assuming the force F (x) = −dU(x)
dx , U(x) to be defined as a symmetric

differentiable potential, increasing for x ≥ 0, U(x) = U(−x). In this general
situation of a potential well, the drift is directed towards the origin. We pay
special attention to the following examples (with b > 0):

(a) U(x) = bx2

2 , the harmonic diffusive oscillator

(b) U(x) = bx4

4 , the quartic diffusive oscillator,

(c) U(x) = (dx2

2 + bx4

4 ) , d > 0, an harmonic diffusive oscillator,

(d) U(x) = bx2m+2

(2m+2) , m = 1, 2, . . . , the strongly non-linear diffusive oscilla-
tor.

Eq.(1.2) can be interpreted as modelling the diffusion of a particle under
the action of the external outside force F (x) = −bx, b > 0. We should
here mention the work of A. Chechkin et al. [3]. These authors deal with
the above forms of the potential for diffusion fractional in space, in which
∂2u(x,t)

∂x2 is replaced by a symmetric fractional (in space) derivative.
In our paper, we consider another important generalization of Eq.(1.2),

namely we shall discuss the diffusion fractional in time under various forms
of forces. By fractional in time, we mean that the first-order time derivative
is replaced by the Caputo derivative of order β ∈ (0, 1]. In this case Eq.(1.4)
goes over into

∂βu(x, t)
∂tβ

= a
∂2u(x, t)

∂x2
− ∂

∂x
(F (x)u(x, t)) , 0 < β ≤ 1 , a > 0 . (1.5)

Here we take −F (x) as a differentiable odd function, positive for x > 0.
The use of the Caputo derivative (see Gorenflo, Mainardi [9], [8], [10], [11],
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and the appendix) allows us to take in a natural way into account an initial
condition u(x, 0) = f(x) and then consider the evolution of u(x, t) for x ∈
R, t > 0.

We shall present a discrete method of solving approximately Eq.( 1.5)
with linear drift F (x) = −bx and, by analogy, give the results for the other
types of F (x). We shall devise both explicit and implicit differences schemes
for β = 1 and for 0 < β < 1. Then, we shall discuss questions of convergence,
in particular for t tending to infinity, and compare the numerical results
with the continuous stationary solution of Eq.(1.5). Finally, approximating
random walks will be simulated and interpreted.

Let us return to Eq.(1.2) with initial condition u(x, 0) = δ(x − ξ) and

its solution Eq.(1.3). Denoting by 〈x(t)〉 =
∞∫
−∞

xu(x, t)dx the mean position

of a corresponding diffusing particle, we see that

〈x(t)〉 = m(t) = ξe−bt . (1.6)

Now, not going into the details of constructing a solution formula for
the more general Eq.(1.5) with F (x) = −bx, u(x, 0) = δ(x − ξ) we remark
that we still can calculate the function〈x(t)〉. Multiplying Eq.(1.5) by x
and integrating over x ∈ R, using the natural properties u(x, t) → 0 and
xnu(x, t) → 0 for all n ≥ 1 as |x| → ∞, we get the initial value problem

dβ〈x(t)〉
dtβ

= −b〈x(t)〉, 0 < β < 1, 〈x(0)〉 = ξ ,

whose solution is (see [11])

〈x(t)〉 = ξEβ(−btβ) . (1.7)

Here Eβ(z) =
∞∑

n=0

zn

Γ(1+nβ) is the Mittag-Leffler function [4]. It is impor-

tant to compare the asymptotic behaviour in the cases 0 < β < 1 and β = 1.
For β = 1 we have Eq.(1.6), whereas for 0 < β < 1 we have a power-law
decay [11]

Eβ(−btβ) ≈
sin(βπ)

π

Γ(β)
btβ

, t →∞, b > 0 .
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2. Relation to the Ehrenfest model

We describe a random walk model approximating the diffusion Eq.(1.2)
with drift towards the origin. We discretize space and time by a grid
{(xj , tn) | j ∈ Z , n ∈ N0} with xj = jh, tn = nτ . Here h > 0 and
τ > 0 are the steps in space and in time, respectively. Treating u(x, t) as
density of an extensive quantity (like mass, charge, or probability) we want

to approximate the collected quantity
∫ xj+

h
2

xj−h
2

u(x, tn) dx present in a spatial

cell xj − h
2 < x ≤ xj + h

2 at the instant t = tn by a clump y
(n)
j ,

y
(n)
j ≈

xj+
h
2∫

xj−h
2

u(x, tn) dx . (2.1)

Let us henceforth consider the extensive quantity as probability. Then
we will find by symmetric discretization in space and forward differencing in
time an approximating random walk model, having the form of an explicit
difference scheme for n ≥ 0:

y
(n+1)
j − y

(n)
j

τ
= a

y
(n)
j+1 − 2y

(n)
j + y

(n)
j−1

h2
+

b

2h

(
xj+1y

(n)
j+1 − xj−1y

(n)
j−1

)
, (2.2)

which we subject to a scaling relation 0 < µ = τ
h2 , as is natural for diffusion

problems and usual in numerical analysis, see [25]. Eq.(2.2) is equivalent to
the equation

y
(n+1)
j = γy

(n)
j + λj+1y

(n)
j+1 + ρj−1y

(n)
j−1 , (2.3)

with

γ = (1− 2aµ), λj = aµ(1 +
j

R
), ρj = aµ(1− j

R
) and R =

2a

bh2
.

Our intention that Eq.(2.3) should describe a random walk with sojourn
probability y

(n)
j of a particle being in point xj at instant tn (so that Eq.(2.3)

describes the transition from instant tn to tn+1) requires γ ≥ 0 and all
occuring λj ≥ 0, ρj ≥ 0, hence 0 < µ ≤ 1

2a and the restriction of the index
j to the set (−R,−R + 1,−R + 2, . . . , R− 2, R− 1, R) of integers with the
convenient stipulation that R should be a natural number. We then take
y

(n)
j = 0 for |j| ≥ R + 1. We keep this in mind for all our discrete schemes.
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An objection could be raised against this model. Namely whereas in
Eq.(1.2) −∞ < x < ∞, we consider Eq.(2.3) by the restriction −R ≤ j ≤ R
only in grid points xj = jh with −Rh ≤ xj ≤ Rh. However, as usual in the
theory of difference schemes we let tend h → 0 and by the scaling τ = µh2

also τ → 0. Then Rh = 2a
bh →∞, and thus in the limit the whole real axis

−∞ < x < ∞ is covered. In this sense the difference scheme Eq.(2.2) with
|j| ≤ R is consistent to Eq.(1.2). Now as we have the transition probabilities
λj , ρj , and γ of jumping one step of length h to the left, to the right, or
staying in place respectively, being non negative and summing up to 1, i.e.,
λj + ρj + γ = 1, we can view our discrete model as a Markov chain with a
tridiagonal stochastic matrix

P = (pi,j)−R≤i≤R,−R≤j≤R with pi,j = 0 ∀ |i− j| ≥ 2 ,

and pi,i = γ, pi,i+1 = ρi and pi,i−1 = λi. Then Eq.(2.3) can be written in
the condensed form

y(n+1) = P T .y(n), n ∈ N0 , (2.4)

with the column vector, y(k) = {y(k)
−R, y

(k)
−R+1, . . . , y

(k)
R }T , k ∈ N0. For the

interpretation of y(n) as a vector of probabilities, we require y(0) likewise to

be such column vector, namely y
(0)
j ≥ 0 and

R∑
j=−R

y
(0)
j = 1. Then all y(n)

for n = 1, 2, 3, . . . are non-negative. Furthermore,

R∑

j=−R

y
(n)
j = 1 ∀n ∈ N0 ,

as is easily shown by induction. Actually, the evolution of y(n) is that of a
Markov chain [5] with possible states (x−R, x−R+1, . . . , xR−1, xR).

We compare this discrete model with the generalized Ehrenfest model
described by Vincze [31]. Vincze considers N balls, numbered from 1 to N ,
k of them in an urn U1, N − k in an urn U2. In an urn U0 there are N + s
slips of paper (s ≥ 0) each of them having probability (N + s)−1 of being
randomly drawn. N of the slips are numbered from 1 to N , the other s slips
are not numbered. We repeat indefinitely the following experiment.

We draw a slip from the urn U0. If it carries a number we move the ball
which has the same number from the urn (U1 or U2) in which it is lying to
the other urn (U2 or U1). If the slip is not numbered, we leave the ball in its



DISCRETE MODELS OF TIME-FRACTIONAL DIFFUSION . . . 179

urn. Then we put the slip back into the urn U0. If we record the states as
the number of balls in the urn U1, then there are three probabilities: k

N+s

for the next state to be k−1, N−k
N+s for the next state to be k +1, and finally

s
N+s for the next state to be k again. In the special case (s = 0) we have
the classical Ehrenfest model described by many authors (see [23], [15], [1],
[7], [29], and [2]).

In other words, if x
(s)
n = k is the number of balls in urn U1 after n

steps, we denote the respective probability by q
(n)
k and get the transition

probabilities

qk,k = P (x(s)
n+1 = k|x(s)

n = k) = s
s+N , k = 0, 1, . . . , N ,

qk,k−1 = P (x(s)
n+1 = k − 1|x(s)

n = k) = k
s+N , k = 1, 2, . . . , N ,

qk,k+1 = P (x(s)
n+1 = k + 1|x(s)

n = k) = N−k
s+N , k = 0, 1, 2, . . . , N − 1 ,

and

qk,k + qk,k−1 + qk,k+1 = 1 ∀k = 0, 1, 2, . . . , N, qk,k±j = 0 ∀j ≥ 2 .

This model is also called the modified Ehrenfest model. In the special
case s = 0, its states can only change by moving one ball from U1 to U2 with
the probability qk,k−1 or one ball from U2 to U1 with the probability qk,k+1.
In the general case s ≥ 0 the transition probabilities qi,j form a tridiagonal
stochastic matrix

Qs = (qi,j)0≤i≤N,0≤j≤N ,

which coincides with the matrix P by the identification pi,j = qi−N
2

,j−N
2

if

N is an even positive integer, R = N
2 and µ = N

2a(s+N) . The position x = 0
corresponds to N/2 balls in U1, the position x = Rh to N balls in urn U1,
and the position x = −Rh to 0 balls in urn U1. The probability of finding
k balls in urn U1 after n + 1 steps is, with q

(n)
k = 0 for k < 0 and k > N ,

q
(n+1)
k = q

(n)
k−1

N − k + 1
s + N

+ q
(n)
k

s

s + N
+ q

(n)
k+1

k + 1
s + N

, k = 0, 1, . . . , N . (2.5)

This equation can be interpreted as a discrete approximation to a diffusion
process with central force. It seems that Schrödinger and Kohlrausch were
the first to point out the connection between the discrete Ehrenfest model
and Brownian motion of an elastically bound particle. Smoluchowski [26]
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showed that this model approximates the partial differential Eq.(1.2). This
equation describes also the so called Ornstein-Uhlenbeck process [28].

Note the following: In the sense of the urn model s should be an integer,
however for Eq.(2.5) to describe a Markov chain, s is only required to be a
non-negative real number.

3. Discrete approximation of the time fractional
diffusion with central linear drift

In this section we will consider the approximate solution of the Eq.(1.5)
with F (x) = −bx obtained by discretizing it by the explicit finite-difference
method.

D
τ ∗

β y
(n+1)
j = a

y
(n)
j+1 − 2y

(n)
j + y

(n)
j−1

h2
+

b

2h
(xj+1y

(n)
j+1−xj−1y

(n)
j−1) , 0 < β ≤ 1 .

(3.1)
We restrict here R = 2a

bh2 , as in Section 2, and the index j to the range
(−R,−R + 1,−R + 2, . . . , R− 2, R− 1, R). Adjusting the spatial step h so
that R ∈ N, we complement Eq.(3.1) by prescribing the non-negative initial

values y
(0)
j obeying

R∑
j=−R

y
(0)
j = 1, and for convenience, all y

(n)
j = 0 for

|j| ≥ R + 1, n = 0, 1, 2, . . . . In Eq.(3.1) the difference operator D
τ ∗

β denotes

the discretization of the Caputo time derivative (see the Appendix, [12]
and [19]). For β = 1, Eq.(3.1) is reduced to Eq.(1.2). For discretizing the
Caputo time derivative, we use, as in [13] a backward Grünwald- Letenikov
scheme in time (starting at level t = tn+1) which reads

D
τ ∗

β y
(n+1)
j =

n+1∑

k=0

(−1)k

(
β

k

)
y

(n+1−k)
j − y

(0)
j

τβ
, 0 < β ≤ 1 . (3.2)

Observe that D
τ ∗

1 y
(n+1)
j = 1

τ

(
y

(n+1)
j − y

(n)
j

)
. Note that in case of sufficient

smoothness the scheme(3.1) has order of accurecy O(h2 + τ). For simplicity
and easy writing we take from now on always

b = a = 1 ,

hence R = 2
h2 , and introduce the scaling parameter

µ =
τβ

h2
, 0 < µ ≤ β

2
. (3.3)
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This specification of a and b only means a special choice of the units of space
and time and so there is no restriction of generality. Solving now Eq.(3.2)
for y

(n+1)
j , −R ≤ j ≤ R, gives

y
(n+1)
j =

n∑

k=0

(−1)k

(
β

k

)
y

(0)
j +

n∑

k=1

(−1)k+1

(
β

k

)
y

(n+1−k)
j

+ y
(n)
j+1 [µ +

µh2

2
(j + 1)]− 2µy

(n)
j + y

(n)
j−1 [µ− µh2

2
(j − 1)] . (3.4)

Again y(n+1) represents the probability column vector for where to find the
particle at the time instant tn+1. It depends on y

(n)
j−1, y

(n)
j , y

(n)
j+1, y

(n−1)
j ,. . . ,

and back to y
(0)
j . This model, having the form of an explicit difference

scheme, can be interpreted as a random walk with memory. Let

bn =
n∑

k=0

(−1)k

(
β

k

)
, n = 0, 1, 2, . . . ; ck = (−1)k+1

(
β

k

)
, k = 1, 2, . . . .

Then b0 = 1, and all ck ≥ 0, bn ≥ 0,
∞∑

k=1

ck = 1. In the case 0 < β < 1 (see

[12], [13]) we have c1 = β > c2 > c3 > · · · → 0, and finally the relation

bn +
n∑

k=1

ck = 1 . (3.5)

By aid of the coefficients bn and ck in Eq.(3.4) the expression

n∑

k=1

cky
(n+1−k)
j + bny

(0)
j

represents the dependence on the past (the memory part) and the expression

y
(n)
j+1[µ +

µh2

2
(j + 1)]− 2µy

(n)
j + y

(n)
j−1 [µ− µh2

2
(j − 1)] ,

represents the diffusion part, the particle going one step to the right or one
step to the left or remaining in its position. For β = 1, all ck for k ≥ 2
vanish and we have the natural discretization of Eq.(1.2). In Eq.(3.4), y

(n+1)
j

represents the probability of finding the particle in point xj at time instant
tn+1. Therefore y

(n+1)
j must be non-negative because as initial probabilities
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all y
(0)
j ≥ 0 , and the summation of y

(n)
j over the index j at any time tn

must give 1. In other words, we want sn =
R∑

j=−R

y
(n)
j = 1 ∀n ∈ N0. We

prove that this holds by induction. It is true for the initial index n = 0. So,
as b0 = 1, then

y
(1)
j = (1− 2µ)y(0)

j + y
(0)
j+1[µ +

µh2

2
(j + 1)] + y

(0)
j−1 [µ− µh2

2
(j − 1)] . (3.6)

Using 0 < µ ≤ β/2 and taking the stochastic matrix P as in Section 2,
we write this equation in matrix-vector form

y(1) = P T .y(0) . (3.7)

Now, summing both sides of Eq.(3.6) over j from −R to R, we get

s1 = (1− 2µ)s0 + µs0 +
∑

j

j + 1
R

y
(0)
j+1 + µs0 −

∑

j

j − 1
R

y
(0)
j−1 = s0 .

For n = 1:

y
(2)
j = b1y

(0)
j +(c1−2µ)y(1)

j +y
(1)
j+1− [µ+

µh2

2
(j +1)]+y

(1)
j−1[µ−

µh2

2
(j−1)] .

Here the dependence on the past appears and by the summation we get

s2 = b1s0 + (c1 − 2µ)s1 + µs1 +
∑

j

j + 1
R

y
(1)
j+1 + µs1 −

∑

j

j − 1
R

y
(1)
j−1 .

Because of b1 + c1 = 1, s1 = s0 we obtain s2 = s0. Now we assume sn = 1,
n ≥ 2, and to prove that sn+1 = 1, we write Eq.(3.4) in the form

y
(n+1)
j = bny

(0)
j +

n∑

k=1

cky
(n+1−k)
j − 2µy

(n)
j

+ µ

(
1 +

j + 1
R

)
y

(n)
j+1 + µ

(
1− j − 1

R

)
y

(n)
j−1 . (3.8)

Summing here over j and using Eq.(3.5), we get sn+1 = 1. So far, we have
proved that our difference scheme is conservative and non-negative with
respect to its dependence on the past. In fact, y

(n+1)
j is a linear combination

of all y
(k)
j with −R ≤ j ≤ R, 0 ≤ k ≤ n, with non-negative coefficients whose

sum is 1.
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3.1. The solution of the explicit difference scheme

Let us now, in preparation of the next section, treat Eq.(3.4) in matrix-
vector notation. We proceed in two steps, considering the step from n to
n + 1, separately for n = 0 and n ≥ 1. For n = 0, transposing the matrix
Eq.(3.7) and adopting the notation

(y(n))T = z(n) ∀n ∈ N , z(n) = (z(n)
−R, z

(n)
−R+1, . . . , z

(n)
R ) ,

we find
z(1) = z(0).P . (3.9)

Here P is the stochastic matrix whose elements are defined in Section 2
whose rows sum to 1 and z(n) is a row vector. It is convienent to write P
in the form

P = I + µH ,

with I a unit matrix and H a matrix whose rows sum to zero:

H =




−2 2 0 . . . . . . . . . . . . 0
1
R −2 (2− 1

R) . . . . . . . . . . . . 0
0 2

R −2 (2− 2
R) . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 0 (2− 2
R) −2 2

R 0
. . . . . . . . . . . . 0 (2− 1

R) −2 1
R

. . . . . . . . . . . . . . . 0 2 −2




.

For n ≥ 1, we define the matrix Q = c1I +µH , and write equation(3.4)
as

z(n+1) = bnz(0) +
n∑

k=2

ckz
(n+1−k) + z(n).Q . (3.10)

Observe that the matrix Q is stochastic only if c1 = 1 which is equivalent
to β = 1. The restriction for µ in Eq. (3.3) implies that Q is a non-negative
matrix.

4. The implicit scheme (Θ-method)

The idea of the θ- method (also known as the weighted method) is to
replace y

(n)
j in the right hand side of Eq.(3.1) by (θy(n+1)

j + (1 − θ)y(n)
j )

where 0 < θ ≤ 1. With θ = 0, we have the explicit scheme. Again, we
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shall discuss separately the cases n = 0 and n ≥ 1. For convenience, we set
θ̄ = (1− θ). For n = 0, we rewrite Eq.(3.9) in the form

z(1).(I − µθH) = z(0).(I + µθ̄H) . (4.1)

Then
z(1) = z(0).(I + µθ̄H).(I − µθH)−1 . (4.2)

We want Pθ = (I + µθ̄H).(I − µθH)−1 to be a stochastic matrix. This
wish leads us to conditions for µ depending on θ. First, Pθ must be non-
negative. Obviously, (I −µθH) is a strictly diagonally dominant M-matrix,
hence its inverse is non-negative. (I +µθ̄H) is non-negative if (1−2µθ̄) ≥ 0.
So we arrive, with r = 1 (below to be modified to r = β), at the conditions
[14], [30]

0 < µ ≤ r/2 if θ = 0 , 0 < µ ≤ r

2(1− θ)
if 0 < θ < 1 , 0 < µ < ∞ if θ = 1 .

Second, the rows of Pθ must sum to 1. So, we require Pθ. η = η, with
the column vector η all of whose 2R + 1 components have the value 1, i.e.,
η = (1, 1, . . . , 1)T . Since the rows of H are all summing to zero (H.η = 0),
then (I − µθH).η = η and (I + µθ̄H).η = η. Therefore

η = (I + µθ̄H).η = (I + µθ̄H).(I − µθH)−1.η = Pθ.η .

Now, we shall prove
∑
j

y
(n)
j = 1∀n which is equivalent to

∑
j

z
(n)
j = 1∀n.

To this purpose, we use the simple rule: w = (w1, w2, · · · )T is a probability
column vector iff wi ≥ 0, i = 1, 2, · · · , and wT .η = 1.

Now, we know that (I −µθH)−1 and Pθ are stochastic matrices. Hence
z(0).η = 1 and Eq.(4.2) implies z(1).η = z(0).(Pθ.η) = z(0).η = 1, so the
desired relation is true for n = 0. For n ≥ 1, let us rewrite Eq.(3.10) as

z(n+1) = bnz(0) +
n∑

k=1

ckz
(n+1−k) + µ z(n).H . (4.3)

Replacing z(n) in µz(n).H by θz(n+1) + θ̄z(n) and solving for z(n+1) gives

z(n+1) =

[
bnz(0) +

n∑

k=1

ckz
(n+1−k) + µ θ̄ z(n).H

]
. [I − µθH]−1 . (4.4)
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Here (I−µθH)−1 is non-negative matrix like all bn and ck. Consideration of
the index k = 1 in Eq. (4.4) however, forces us to sharpen our restriction on
µ by taking r = β = c1. Hence, assuming z(n).η = 1, multiplying Eq.(4.4)
by η, and using the important Eq.(3.5), we get z(n+1).η = 1. Thus, z(n+1)

is a probability row vector. So, z(n).η = 1 for all n. As a matter of fact,
the implicit scheme allows us to predict the future faster than the explict
scheme, because µ and τ depend on each other by the scaling relation (3.3)
and the bound for µ is increasing (up to ∞ ) if θ is increased from 0 to 1.

5. The convergence to the stationary solution of the model

Vincze, Fritz et al. and Kac (see [31], [6] and [15]) showed that the
elements of the iterated stochastic matrix Qn

s of the generalized discrete
Ehrenfest model (Urn model) converge to the binomial distribution at n →
∞. This means

lim
n→∞ Qn

s =




p0 p1 . . . pN
...

...
...

p0 p1 . . . pN




with

pk = 2−N

(
N

k

)
, k = 0, 1, . . . , N ,

N being the total number of balls. p = {p0, . . . , pN} is a probability vector
which represents the stationary distribution of the Markov chain whose
matrix is Qs.

Both the probability of finding k balls in the urn U1 after n+1 steps, see
Eq.(2.5), and the probability of finding the particle at the point xj at the
time instant tn+1, see Eq.(2.3), are interpreted as discrete approximation
to a diffusion with central linear force. By taking the limit as Rh → ∞ in
Eq.(2.3) we have consistency to the partial differential Eq.(1.2) [26]. Since
the stochastic matrix P representing the random walk approach for Eq.
(2.3) and the stochastic matrix Qs representing the random walk approach
for equation (2.5) are related to each other (see Section 2), the matrix Pn

has an analogous limit as n → ∞. So far, to show the behaviour of this
model represented by Eq.(1.2) as t →∞ (i.e., for β = 1), we form a vector
ȳ with components

ȳj = 2−2R

(
2R

j + R

)
, −R ≤ j ≤ R , (5.1)
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and a sequence of numbers q = {q(t1), q(t2), · · · }, where t1 < t2 < · · · → ∞.
The number q(ti) is defined as

q(ti) =
R∑

j=−R

|yj(ti)− ȳj | , i = 1, 2, . . . . (5.2)

The iteration index n is calculated from the relation nτ = ti, ti =
1, 2, · · · → ∞, while τ is calculated from the scaling parameter (3.3). The
simulation of the vector q shows that it approximates an exponential func-
tion

q ≈ c e−at , (5.3)

where a and c are constants and a is called the rate of exponential con-
vergence. Such exponential convergence is a general property of an ergodic
Markov chain (see Feller [5]). The numerical results confirm that a tends
to 1 as t tends to infinity (see Fig.15).

For estimating the convergence as 0 < β < 1, i.e. for the non Markovian
chain and under the action of the other types of forces (b), (c) and (d),
defined in Section 1, we apply the more general method for calculating
the discrete stationary solution of Eq.(1.5). This is done by omitting the
dependence on time t. First, for 0 < β < 1 and F (x) = −x, we omit the
dependence on the time in Eq.(4.3). To this purpose, we replace all the
indices n + 1, 0 and n + 1 − k by simply n. Then Eq.(4.3) converges to
z.H = 0 which is equivalent to HT .y = 0. This equation is valid for both
β = 1 and 0 < β < 1 and HT has an eigenvector y∗ of eigenvalue zero. Now

the vector ȳ = cy∗ with c = 1/
R∑

j=−R

y∗j is a vector whose elements sum to 1

and are the same as in Eq.(5.1). Again, we construct a sequence of numbers

d = {d(t1), d(t2), . . . } , (5.4)

as in Eq.(5.2). The numerical results for the sequence d for β = 1 show that
it behaves like the vector q Eq.(5.3). The simulation for 0 < β < 1 shows
that it approximates a power function

d ≈ c t−ω , (5.5)

where c and ω are also constants and ω is called the rate of algebraic con-
vergence. The numerical results show that ω tends to β faster than in the
case β = 1. The implicit scheme allows us to calculate the vector d very
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fast because the number of steps in this case is less than that of the explicit
scheme. For estimating the convergence of the model under the action of the
cubic function F (x) = −x3 we apply the same method. The only difference
is that we replace the transition probabilities ρj and λj in the matrix P by

ρ′j = µ(1− j3

R3
) , λ′j = µ((1 +

j3

R3
) , (5.6)

with −R ≤ j ≤ R and R = ( 2
h4 )1/3. The probability γ = 1 − 2µ remains

unchanged. The elements qi and di are so small, so we plot their loga-
rithms against t. By using the relation (2.1), we find that the vector ȳ/h
approximates the normalized exact solution u(x) of the stationary equation
of the model (i.e., as t →∞). To obtain the stationary solution, we replace
u(x, t) by u(x) in Eqs.(1.2 and 1.5). This means, we omit the dependence
on time t. In Eq.(1.5) the fractional time derivative ∂βu(x,t)

∂tβ
is the Caputo

fractional derivative (see the Appendix). The Caputo fractional derivative
of a constant is zero. Then Eq.(1.5) as well as Eq.(1.2) tends to the equation

∂2u(x)
∂x2

− ∂ (F (x)u(x))
∂x

= 0 , (5.7)

as t →∞ whose solution is

u(x) = C e−U(x) , (5.8)

C being the constant of integration. Since u(x) represents a probability
density, we can determine the constant C from the normalization condition
+∞∫
−∞

u(x)dx = 1. Hence, the solution of Eq.(5.7) for a linear force −x is

u(x) =
1√
2π

e−x2/2 , (5.9)

and the stationary solution for the cubic force −x3 is

u(x) =
√

2
Γ(1/4)

e−x4/4 . (5.10)

Another question is that of convergence of the explicit or implicit differ-
ence schemes (for a fixed time t > 0 and the step length h → 0) to the exact
solution of the fractional diffusion equation Eq.(1.4) (or more generally Eq.
(1.5)). We postpone the detailed analysis of this question to another paper,
saying here only that it can be done by the method of inverse isotonicity
which has been applied for a second order parabolic boundary problem in
[14]. The essential point is that the difference scheme is of positive type and
stable in the sense of numerical analysis.



188 R. Gorenflo, E.A. Abdel-Rehim

6. Random walk simulation

We now discuss the discrete random walk model of the elastically bound
particle (diffusion under the action of the force −x, namely the generalized
Ehrenfest model). We shall discuss this model separately for β = 1 and for
0 < β < 1 to see the effect of the memory part. Firstly, we shall discuss the
case β = 1, namely Eq.(1.2) considered as a Markov chain. If we assume
that the particle is sitting at the point xj at the instant tn, then as time
proceeds to the instant tn+1 the particle jumps either to the point xj−1

with probability λj , to the point xj+1 with probability ρj , or remains in its
position with probability γ. The transition probabilities λj , ρj , and γ are
defined in Section 2. The past history before the instant tn is completely
forgotten. The simulation case is the standard one for Markov chains (see
Section 8).

In the case 0 < β < 1 we must keep in mind the whole past his-
tory of the wandering particle. Its history consists of its positions at the
times t0 = 0, t1, · · · and up to tn. This means, the path of the particle is
x(to), x(t1), . . . , x(tn). The initial position of the particle x(0) = ξ may be
any grid point mh inside the interval [−Rh,Rh] and m ∈ [−R,R]. As we
have done in the previous sections, we distinguish the cases corresponding
to n = 0 and n ≥ 1 in the simulation. For n = 0, the random walk of the
Eq.(3.6) is Markov-like. For n ≥ 1 we rewrite Eq.(3.8) as

y
(n+1)
j =

(
1 −

n∑

k=1

ck

)
y

(0)
j + cny

(1)
j + cn−1y

(2)
j + · · ·+ c2y

n−1
j

+ (c1 − 2µ)y(n)
j + µ

(
1 +

j + 1
R

)
y

(n)
j+1 + µ

(
1− j − 1

R

)
y

(n)
j−1. (6.1)

Clearly all the coefficients c1, c2, . . . , cn, (1 −
n∑

k=1

ck) are non-negative. The

idea of simulation is analogous to that of [13]. Assuming the particle
sitting at the grid point xj ∈ [−Rh, Rh] at instant tn, n ≥ 1, then its
position at the next instant tn+1 is obtained as follows. We set sk =
k∑

i=1
ci for k = 1, 2, . . . , n and generate a uniformly in [0, 1] distributed ran-

dom number u. Then we test successively into which one of the intervals
[0, s1), [s1, s2), [s2, s3), . . . , [sn, 1) u falls. The length of these intervals are
respectively c1, c2, . . . , cn and bn = 1 − sn. We subdivide the first inter-
val ([0, s1) = [0, c1)) into three sub-intervals of lengthsλj , γ

′ and ρj where
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γ′ = (c1 − 2µ). Now if u ∈ [0, c1), we move the particle from its position
x(tn) = xj to the point xj−1, xj or xj+1 depending on whether u is in
the subinterval of length λj , γ

′ or ρj , respectively. If u ∈ [sk−1, sk) with
2 ≤ k ≤ n, we move the particle from its position x(tn) back to its previous
position x(tn+1−k). In the case u ∈ [sn, 1) we move it back to its initial
position x(t0) = x(0). The sketch of transitions is given in Section 8 (Fig.
[31 and 32] ).

For the actual simulations let us note the following: for a more general
force F (x), we must replace the term b

2h

(
xj+1y

(n)
j+1 − xj−1y

(n)
j−1

)
in Eqs.[(2.2)

and (3.1)] by −1
2h

(
F (xj+1)y

(n)
j+1 − F (xj−1)y

(n)
j−1

)
and take into account all the

other resulting changes in discretization.

7. Conclusion

The explicit difference scheme for the classical diffusion equation ∂u
∂t =

∂2u
∂x2 can as is well known not only be used for approximating the density
u(x, t) but allows also re-interpretation and use as a random walk model for
approximate simulation of the path of a particle whose sojourn probability
density is u(x, t). Analogous two-fold interpretation of explicit and implicit
difference schemes is possible for various types of fractional diffusion prob-
lems. If fractionality is in the time variable then the difference scheme takes
account of the whole past and consequently its stochastic interpretation
yields a backward-oriented random walk in which the whole past history of
a particle influences its future (in contrast to forward-oriented continuous
or discrete time random walk in which after each jump the past is forgot-
ten). We have here worked out the corresponding theory for time-fractional
diffusion with symmetric drift towards the spatial origin and have shown
its applicability by carrying out numerical case studies, for both possible
uses of the difference schemes. The use of the difference schemes as ran-
dom walk models in the time-fractional case, however, deserves a comment.
The particle paths so produced qualitatively look completely different from
those produced by models of continuous time random walk. As both types
of models approximate the same sojourn probability density (we plan to say
more on this matter in a forthcoming paper) we have here an instance of
the fact that totally distinct types of random walk can in the appropriate
limit describe the time evolution of the same sojourn probability density.
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8. Numerical Results

Figures [1-3] correspond to the explicit scheme for F (x) = −x and
y(0) = {0, · · · , 1, · · · , 0}. Figures [4-6] correspond to the explicit scheme for
F (x) = −x and y(0) = { 1

2R+1 , · · · , 1
2R+1 , · · · , 1

2R+1}. Figures [7-11] corre-
spond to the implicit scheme for F (x) = −x and y(0) = {0, · · · , 1, · · · , 0}.
Figures [12-14] correspond to the implicit scheme for F (x) = −x and
y(0) = {0, · · · , 0, 1}. Figures [15-16] illustrate the convergence as f(x) = −x
and y(0) = {0, · · · , 1, · · · , 0}. In these figures we have plotted log d against
time t. Figures [17,18] show the approximate stationary solution and the
approximate solution of the model of linear force.

Figures [19-20] correspond to the explicit scheme for F (x) = −x3 and
y(0) = {0, · · · , 0, 1}. Figures [21-22] correspond to the implicit scheme for
F (x) = −x3 and y(0) = {0, · · · , 1, · · · , 0}. Figures [23-24] illustrate the
convergence of the model for F (x) = −x3 and y(0) = {0, · · · , 1, · · · , 0}. We
have plotted log d against time t. Figures [25,26] show the approximate
stationary solution and the stationary analytic solution of the model for
the cubic force F (x) = −x3. Figures [27,30] exhibit the simulation of the
random walk and its increments for F (x) = −x and x(0) = 0 for β = 1 and
0 < β < 1. In these figures, we have plotted x or ∆x against the number of
steps n. The results of all these figures are taken for R = 10.
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Appendix: Important definitions

For the purpose of this paper, we use the Riemann-Liouville fractional
derivative of order β > 0 such that 0 < β < 1 for a function f(t) given in
the interval [0, b], b < ∞, defined for t > 0 by the expressions (see [22], [11],
[18] and [19]).

(Dβf)(t) =

{
1

Γ(1−β)
d
dt

∫ t
0

f(τ)
(t−τ)β dτ , 0 < β < 1

df(t)
dt , β = 1

. (A.1)
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We refer the readers to the books [18], [19] and [22] for the general theory
of fractional derivatives and integrals. The Riemann-Liouville fractional
integral of order β > 0 is defined as

Jβf(t) =
1

Γ(β)

∫ t

0
(t− τ)(β−1)f(τ)dτ , t > 0, β ∈ R+ . (A.2)

The alternative fractional derivative operator(see [11]) is the Caputo
fractional derivative of order 0 < β < 1.

(Dβ

∗ f)(t) =

{
1

Γ(1−β)

∫ t
0

f̀(τ)
(t−τ)β dτ , 0 < β < 1

df(t)
dt , β = 1

. (A.3)
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This definition is more restrictive than (A.1), and it is instructive to mention
the relation between the Riemann-Liouville fractional derivative and integral
operators and the Caputo fractional derivative Dβ

∗ f(t) = J1−βD1f(t) , 0 <

β < 1. Whereas, the Riemann-Liouville fractional derivative and integral
operators satisfy the equation Dβf(t) = D1J1−βf(t) , 0 < β ≤ 1 with
D1 = d

dt , we have, if 0 < β < 1,

(Dβ

∗ f)(t) = Dβ[f(t)− f(0+)] = Dβf(t)− f(0)t−β

Γ(1− β)
. (A.4)

In Eq. (1.5) we have written ∂β

∂tβ
in place of Dβ

∗ for reasons of notational anal-

ogy to ∂
∂t . Eq. (A.4) represents the relation between the Riemann-Liouville
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and Caputo fractional derivative and the dependence on the initial value
f(0). It is important for solving fractional differential equations. Finally,
since Dβtµ = Γ(µ+1)

Γ(µ+1−β) t
µ−β , β ≥ 0 , µ ≥ 0, the Riemann-Liouville fractional

derivative of a constant is not zero, but the Caputo fractional derivative of
a constant is zero.

Let us now give some information on the Grünwald-Letnikov approxi-
mation of fractional derivatives. For more details, see [22], [18] and [19].
For a sufficiently smooth function, defined and bounded on the whole real
line, we have

f (β)(x) = lim
h→0+

(∆β
hf)(x)
hβ

, β > 0 , (A.5)
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where (∆β
hf)(x) =

∑∞
k=0

(
β
k

)
f(x − kh). With the binomial coefficients

(
β
k

)
this series converges absolutely and uniformly for each β > 0 and for ev-
ery bounded function. Eq.(A.5) is called the Grünwald-Letnikov fractional
derivative of order β > 0 on the whole line. Grünwald-Letnikov defined also
the fractional difference of order β > 0 on a finite interval as

(∆β
hf)(x) =

x−a
h∑

k=0

(−1)k

(
β

k

)
f(x− kh) , h =

x− a

n
, n ∈ N . (A.6)

Here a ≤ x ≤ b, and f(x) is defined only in the interval [a, b] , b > a. Then,
f (β)(x) = limh→0+

1
hβ (∆β

hf)(x) is used as reason for our discretization.
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Remark added in proof (October 2005): The following list of Ref-
erences has been compiled in Spring 2003. Due to the passage of time
since then it would deserve an update. To avoid further delay we leave
it as it is, apologizing for missing citations. But let us quote the thesis
of E. A. Abdel-Rehim (July 2004): Modelling and Simulation of Classi-
cal and Non-Classical Diffusion Processes by Random Walks. Available at
http://www.diss.fu-berlin.de/2004/168/index.html.
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[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher
Transcendental Functions, Bateman Project, Vols. 1-3. McGraw-Hill,
New York (1953–1955).



198 R. Gorenflo, E.A. Abdel-Rehim

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

xj

t = tn´
´

´
´

´
´

´
´

´
´́

xj−1

λj

xj

γ

xj+1

ρj

t = tn+1

Figure 31: The sketch of the possible jumps as β = 1

x(tn+1−k)

ck

bn

x(t0)

Q
Q

Q
Q

Q
QQ

x(tn)
´

´
´

´
´

´́
x(tn+1) = x(tn)− h

λj

x(tn+1) = x(tn)

γ′

x(tn+1) = x(tn) + h

ρj

Figure 32: The sketch of the possible jumps as 0 < β < 1



DISCRETE MODELS OF TIME-FRACTIONAL DIFFUSION . . . 199

[5] W. Feller, An Introduction to Probability Theory and its Applications, vol. 1
(3rd ed). New York - London - Sydney (1968).

[6] F.-J. Fritz, B. Huppert, and W. Willems, Stochastische Matrizen. Springer-
Verlag, Berlin - Heidelberg - New York (1979).
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