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Abstract

Results of extensive calculations for the generalized Mittag-Leffler func-
tion E0.8,0.9(z) are presented in the region −8 ≤ Re z ≤ 5 and −10 ≤ Im z ≤
10 of the complex plane. This function is related to the eigenfunction of a
fractional derivative of order α = 0.8 and type β = 0.5.
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1. Introduction

The right-sided, resp. left-sided, fractional derivative Dα,β
a± f(x) of f(x)

of order 0 < α < 1 and type 0 ≤ β ≤ 1 with respect to x was introduced in
[6]. It is defined by

Dα,β
a± f(x) =

(
±Iβ(1−α)

a±
d
dx

(I(1−β)(1−α)
a± f)

)
(x) (1)

for functions for which the expression on the right hand side exists. Here
the right-sided Riemann-Liouville fractional integral of order α > 0, α ∈ R
of a locally integrable function f is defined as
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(Iαa+f)(x) =
1

Γ(α)

x∫

a

(x− y)α−1f(y) dy (2a)

for x > a, the left-sided Riemann-Liouville fractional integral is defined as

(Iαa−f)(x) =
1

Γ(α)

a∫

x

(y − x)α−1f(y) dy (2b)

for x < a. The familiar Riemann-Liouville fractional derivative [14, 15]

Dα
a±f(x) = Dα,0

a±f(x) =
d
dx

(I(1−α)
a± f)(x) (3)

corresponds to a > −∞ and type β = 0. Derivatives of order α and type
β = 1 were already introduced by Liouville [11, p. 10]. They were later
applied by Caputo and coworkers [1]. It is interesting to note that deriva-
tives that would correspond to the degenerate cases β ≥ 1 were apparently
already discussed by Dzherbashyan and Nersesyan [15, p. 88]. To the best
of our knowledge none of these authors discussed the operators in (1) inter-
polating between type β = 0 and β = 1.

For α = 1 the fractional derivative reduces to the ordinary first order
derivative operator whose eigenfunction is the exponential function. Given
the great importance of the eigenfunction of the derivative operator in all
applications it is of interest to investigate also the eigenfunctions of the
fractional derivative operators [6].

Using the basic fractional integral

Iαa+(x− a)β =
Γ(β + 1)

Γ(α + β + 1)
(x− a)α+β , (4)

it is readily seen that the eigenvalue equation

Dα,β
0+ f(x) = λ f(x) (5)

is solved by [6]

f(x) = x(1−β)(α−1)Eα,α+β(1−α)(λxα). (6)

Here the generalized Mittag-Leffler function is defined by

Ea,b(z) =
∞∑

k=0

zk

Γ(ak + b)
(7)
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for all a > 0, b ∈ C, z ∈ C. Of course, Ea,b(z) generalizes the exponential
function exp(z) = E1,1(z).

For β = 0 the well known result [15]

f(x) = x(α−1)Eα,α(λxα) (8)

is recovered. Of special interest for applications in physics is also the case
β = 1 [6]. It has the solution

f(x) = Eα(λxα) (9)

where Eα(z) = Eα,1(z) denotes the ordinary Mittag-Leffler function.
Note also that for λ = 0 equation (6) reduces to a power law

f(x) =
x(1−β)(α−1)

Γ((1− β)(α− 1) + 1)
, (10)

because Ea,b(0) = 1/Γ(b).
An early comprehensive treatise of the Mittag-Leffler function Ea(z)

was given soon after its introduction in [13]. The generalized Mittag-Leffler
function Ea,b(z) appears to have been first introduced in [17]. It was later
discussed in [10] (but does not appear in [9]). A summary of the properties
of Ea(z) and Ea,b(z) as well as more references to the early literature can be
found in [3]. The generalized Mittag-Leffler function Ea,b(z) is an example
of an entire function of order 1/a, and it is completely monotone if and only
if 0 < a ≤ 1 and b ≥ a [16, 12].

The generalized Mittag-Leffler function appears in applications not only
as the eigenfunction of generalized fractional derivatives. The eigenfunction
x(α−1)Eα,α(xα) of the usual Riemann-Liouville derivative given in eq. (8)
appears in the theory of continuous time random walks [8, 7] as the waiting
time density corresponding to a master equation with fractional time deriva-
tive of order α and type β = 1. On the other hand the function Eα(xα)
from eq. (9) is known to appear in the theory of renewal processes [4].

2. Problem and objective

In view of the growing importance and applications of the Mittag-Leffler
function it becomes necessary to investigate its behaviour not only on the
real axis, but in the whole complex plane. While some numerical calcula-
tions have been reported in the literature [8, 5] mostly for small real argu-
ments, there seem to be no results available in the complex plane.
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The objective of this paper is to study the generalized Mittag-Leffler
function numerically in the complex plane. As an example we present ex-
tensive calculations for the generalized Mittag-Leffler function E0.8,0.9(z).
This function is related to the eigenfunction of a fractional derivative of
order α = 0.8 and type β = 0.5.

3. Methodical remarks

The Mittag-Leffler function can be calculated from its series expansion
in eq. (7) which converges for all z ∈ C. This method of evaluation is
numerically useful for small z and we use it inside a small disc around the
origin. This is indicated as the crosshatched region in Figure 1. For other
values of z, however, we insert Hankel’s integral representation [2]

1
Γ(ak + b)

=
1

2πi

∫

LH

ess−(ak+b)ds (11)

for the reciprocal Γ-function into eq. (7). Hankel’s contour LH starts at
−∞ below the real axis, encircles the origin counterclockwise, and returns
to −∞ above the real axis. Summing the geometric series in the resulting
expression gives Mittag-Leffler’s integral representation [3]

Ea,b(z) =
1

2πi

∫

LH

sa−bes

sa − z
ds (12)

valid for all z ∈ C. Here the contour is chosen to encircle the disc |s| ≤ |z|1/a.
Being interested mainly in the case 0 < a < 2, we follow [18] to arrive

at the integral representations

Ea,b(z) =
1

2πia

∫

L2/3

s(1−b)/aes1/a

s− z
ds (13a)

if z lies to the left of the contour L2/3, and

Ea,b(z) =
z(1−b)/a

a
ez1/a

+
1

2πia

∫

L1

s(1−b)/aes1/a

s− z
ds (13b)

if z lies to the right of the contour L1. In the first formula the contour
L2/3 emanates from infinity in the lower half plane along the line arg(z) =
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−2aπ/3, avoids the origin using a circular arc, and proceeds towards infinity
in the upper half plane along the line arg(z) = 2aπ/3. The contour L1

emanates from infinity in the lower half plane along the line arg(z) = −aπ,
avoids the origin, and proceeds towards infinity in the upper half plane along
the line arg(z) = aπ. The regions to the left of L2/3 and to the right of L1

have nonzero intersection and this allows us to avoid the case where z falls
directly onto the integration contour. In Figure 1 we show the contours
and the regions.

The integrals are then evaluated numerically using a Gauss-Lobatto
scheme to obtain the subsequent results.

4. Results

In this section we present the results of extensive numerical calculations
of the Mittag-Leffler function E0.8,0.9(z) in the complex plane. The function
was evaluated on a grid of 801× 481 points, i.e. for 385281 numbers z with
−8 ≤ Re z ≤ 5 and −10 ≤ Im z ≤ 10.

First we show a three-dimensional plot of the real and imaginary parts.
On these surfaces the contour line with ReE0.8,0.9(z) = 0, resp. ImE0.8,0.9(z)
= 0 is shown as a thick solid line. The gray scale reflects function values.
White corresponds to high function values and black to low values. Note
the different scales on the axes.

In Figures 4 and 5 we show the real part, ReE0.8,0.9(z), and imaginary
part, ImE0.8,0.9(z), but now truncated at ±3. The axes are scaled such that
the lengths on each axis are equal. A different viewpoint has been chosen
to make the thick contour line for level 0 better visible.

Next, Figure 6 shows a combined contour plot of the real and imaginary
part of E0.8,0.9(z). The contour lines of the real part are drawn as solid lines
whereas those for the imaginary part are shown dashdotted. The thick lines
represent the contour lines for level 0 which have already been indicated
in Figures 2 and 3. The intersection of a thick solid line and a thick
dash-dotted line represents a zero.

Finally we plot the logarithm of the absolute value as log10(|E0.8,0.9(z)|)
in Figure 7.

5. Discussion

The behaviour of ReEa,b(z) is characterized by the wedge | arg z| ≤ aπ/2
having its apex at z = 0 and opening angle aπ. For a → 1 the wedge opens
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and the function approaches the exponential function. For a → 0 the wedge
closes and approaches the positive real axis.

Inside the wedge the real and imaginary parts oscillate and increase to
infinity. Outside of the wedge they decrease to zero. Along the delimiting
lines of the wedge the function approaches 1/a in an oscillatory fashion.
Inside the wedge the function Ea,b(z) grows as Ea,b(z) ∼ ez1/a

with z →∞.
This can be verified for a = 0.8 from Figure 7, where the logarithm of the
absolute value is seen to increase linearly for z →∞.

Contrary to the exponential function (corresponding to a = 1) the func-
tion shows zeros in the complex plane. These are best seen in Figure 6 as
the intersection of thick solid and thick dash-dotted lines, and in Figure
7 as singularities in the logarithm of the absolute value. The value of b
influences the position of the zeros. For E0.8,0.9(z) we find the first pair of
conjugate zeros at 1.09±4.20i with an accuracy of roughly 0.001 in real and
imaginary part.

The function is purely real, resp. purely imaginary, on the lines where
the imaginary resp. real part vanish. These are shown in Figures 2
through 5. To the best of our knowledge these lines have not been studied
before. Their behaviour changes dramatically as the parameters a and b are
changed.

Acknowledgement: We are grateful to Prof. Stefan Samko for drawing
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Figure 1: Integration contours and regions. The power series in eq. (7)
is used in the crosshatched region. Equation (13a) is used in the region
hatched with lines running at -45 degrees. Equation (13b) is used in the
region hatched with lines running at +45 degrees.
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Figure 2: Real part of E0.8,0.9(z). The thick solid line marks the contour
line ReE0.8,0.9(z) = 0.
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Figure 3: Imaginary part of E0.8,0.9(z). The thick solid line marks the con-
tour line ImE0.8,0.9(z) = 0.
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Figure 4: Real part of E0.8,0.9(z) truncated at ±3. The thick solid line marks
the contour line ReE0.8,0.9(z) = 0.
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Figure 6: Contour lines ReE0.8,0.9(z) = 0,±0.01,±0.02, ±0.05, ±0.1, ±0.15,
±0.2, ±0.3, ±0.5 (solid) and ImE0.8,0.9(z) = 0,±0.01,±0.02, ±0.05, ±0.1,
±0.15, ±0.2, ±0.3, ±0.5 (dash-dotted)
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Figure 7: Decadic logarithm of absolute value |E0.8,0.9(z)|
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