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on the occasion of his 80-th birthday

Abstract

The paper is devoted to the study of the fractional calculus of the gen-
eralized Wright function pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and
real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series
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It is proved that the Riemann-Liouville fractional integrals and derivative
of the Wright function are also the Wright functions but of greater order.
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1. Introduction

The paper deals with the generalized Wright function defined for z ∈ C,
complex ai, bj ∈ C and real αi, βj ∈ R = (−∞,∞) (αi, βj 6= 0; i =
1, 2, · · · p; j = 1, 2, · · · , q) by the series

pΨq(z) ≡p Ψq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
z


 =

∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

zk

k!
. (1)

Here Γ(z) is the Euler gamma-function [3, Section 1.1]. The function in (1)
was introduced by Wright [21] and is called the generalized Wright function,
see [3, Section 4.1]. Conditions for the existence of the generalized Wright
function (1) together with its representation in terms of the Mellin-Barnes
integral and of the H-function were established in [6].

The special case of the function (1) in the form

φ(β, b; z) ≡ 0Ψ1




(b, β)

∣∣∣∣∣∣
z


 =

∞∑

k=0

1
Γ(βk + b)

zk

k!
(2)

with complex z, b ∈ C and real β ∈ R, known as the Wright function [4,
Section 18.1], was introduced by Wright in [19]. When β = δ, b = ν +1 and
z is replaced by −z, the function φ(δ, ν + 1;−z) is denoted by Jδ

ν (z):

Jδ
ν (z) ≡ φ(δ, ν + 1;−z) =

∞∑

k=0

1
Γ(δk + ν + 1)

(−z)k

k!
, (3)

and such a function is known as the Bessel-Maitland function, or the Wright
generalized Bessel function, see [7, p. 352] and [14, (8.3)]. Some other
particular cases of the generalized Wright function (1), generalizing the
classical Mittag-Leffler function, were presented in [6, Section 6].

Wright in [20], [24] investigated the asymptotic expansions of the func-
tion φ(β, b; z) for large values of z in the cases β > 0 and −1 < β < 0,
respectively, making use of the ”steepest descent” method. In [20] he gives
an application of the obtained results to the asymptotic theory of partitions.
In [21]-[23] Wright extended the last results to the generalized Wright func-
tion (1) and proved several theorems on the asymptotic expansion of pΨq(z)
for all values of the argument z under the condition

q∑

j=1

βj −
p∑

i=1

αi > −1. (4)
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The properties of the Wright function (2) were studied in a series of
papers. Some of them can be found in [4, Section 18.1]. We also mention
that some fractional integral relations for the function (2) were presented
in [2], asymptotic relations for zeros of the Wright function φ(β, b; z) were
established in [8], and distributions of these zeros were investigated in [9].
Applications of the Wright function (2) to the operational calculus were
given in [15], to integral transforms of Hankel type - in [5] and [18], to
partial differential equations of fractional order - in [1] and [10]-[13], see
also [16, Section 4.1.2]. We also note [2], where solution in closed form of
the integral equation of the first with the Wright function as a kernel was
obtained.

The present paper is devoted to the study of the Riemann-Liouville
fractional integration and differentiation of the Wright function (1). For
α ∈ C (Re(α) > 0), such a left- and right-hand sided fractional integration
operators are defined by

(Iα
0+f)(x) =

1
Γ(α)

∫ x

0

f(t)
(x− t)1−α

dt (x > 0); (5)

and
(Iα
−f)(x) =

1
Γ(α)

∫ ∞

x

f(t)
(t− x)1−α

dt (x > 0), (6)

respectively [17, Section 5.1], and the corresponding fractional differentia-
tion operators have the forms

(Dα
0+f)(x) =

(
d

dx

)[Re(α)+1

(I1−α+[Re(α)]
0+ f)(x)

=
(

d

dx

)[Re(α)+1 1
Γ(1− α + [Re(α)])

∫ x

0

f(t)
(x− t)α−[Re(α)]

dt (x > 0) (7)

and

(Dα
−f)(x) =

(
− d

dx

)[Re(α)+1

(I1−α+[Re(α)]
− f)(x)

=
(
− d

dx

)[Re(α)+1 1
Γ(1− α + [Re(α)])

∫ ∞

x

f(t)
(t− x)α−[Re(α)]

dt (x > 0), (8)

respectively, where [Re(α)] is the integral part of Re(α).
The paper is organized as follows. Some known results are presented in

Section 2. The fractional integration and differentiation of the generalized
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Wright function (1) is established in Sections 3 and 4, respectively. The
corresponding results for the Wright function (2) and the Bessel-Maitland
function (3) are presented in Section 5.

2. Preliminaries

In this section we present the conditions for the existence of the general-
ized Wright function pΨq(z) in (1) proved in [6], and the known formulas for
the fractional integration (5) and (6) of a power function [17]. To formulate
the first result we use the following notation:

∆ =
q∑

j=1

βj −
p∑

i=1

αi,

δ =
p∏

i=1

|αi|−αi

q∏

j=1

|βj |βj ,

µ =
q∑

j=1

bj −
p∑

i=1

ai +
p− q

2
.

Theorem 1. Let ai, bj ∈ C and αi, βj ∈ R (i = 1, 2, · · · p; j =
1, 2, · · · , q).

(a) If ∆ > −1, then the series in (1) is absolutely convergent for all
z ∈ C.

(b) If ∆ = −1, then the series in (1) is absolutely convergent for all
values of |z| < δ and of |z| = δ, <(µ) > 1/2.

Corollary 1.1. Let ai, bj ∈ C and αi, βj ∈ R (i = 1, 2, · · · p; j =
1, 2, · · · , q) be such that the condition in (4) is satisfied. Then the general-
ized Wright function pΨq(z) is an entire function of z.

Corollary 1.2. Let α ∈ R and β ∈ C.

(a) If α > −1, then the series in (2) is absolutely convergent for all
z ∈ C.

(b) If α = −1, then the series in (2) is absolutely convergent for all
values of |z| < 1 and of |z| = 1, <(β) > 1.

Corollary 1.3. If α > −1 and β ∈ C, then the Wright function
φ(α, β; z) is an entire function of z.
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Corollary 1.4. If δ > −1 and ν ∈ C, then the Bessel-Maitland func-
tion Jδ

ν (z) is an entire function of z.

The next assertion is well known, see [17, (2.44) and Table 9.3, formula
1].

Lemma 1. Let α ∈ C (Re(α) > 0) and γ ∈ C.

(a) If Re(γ) > 0, then

(
Iα
0+tγ−1

)
(x) =

Γ(γ)
Γ(α + γ)

xα+γ−1. (9)

(b) If Re(γ) > Re(α) > 0, then

(
Iα
−t−γ

)
(x) =

Γ(γ − α)
Γ(γ)

xα−γ . (10)

3. Fractional integration of the generalized Wright function

In this section we establish a formula for the fractional integration of
the generalized Wright function (1). We begin with the left-hand sided
fractional integral (5).

Theorem 2. Let α, γ ∈ C be complex numbers such that Re(α) > 0
and Re(γ) > 0, and let a ∈ C, µ > 0. If the condition (4) is satisfied, then
the fractional integration Iα

0+ of the generalized Wright function (1) is given
for x > 0 by


Iα

0+


tγ−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ








 (x)

= xγ+α−1
p+1Ψq+1




(ai, αi)1,p, (γ, µ)

(bj , βj)1,q, (γ + α, µ)

∣∣∣∣∣∣
axµ


 . (11)

P r o o f. According to (4) and Corollary 1.1, the generalized Wright
functions in both sides of (11) exist for x > 0. By (5) and (1) we have


Iα

0+


tγ−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ








 (x)
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=

(
Iα
0+

[
tγ−1

∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

(atµ)k

k!

])
(x). (12)

According to [17, Lemma 15.1] a term-by-term integration of a series in the
right-hand side of (12) is possible. Carrying out such an integration and
using (9) we obtain


Iα

0+


tγ−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ








 (x)

=
∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

ak

k!

(
Iα
0+tγ+µk−1

)
(x)

= xγ+α−1
∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

Γ(γ + µk)
Γ(γ + α + µk)

(axµ)k

k!
.

According to (1) from here we deduce (11), which completes the proof of
theorem.

The following result yields the right-hand sided fractional integration
(6) of the generalized Wright function (1).

Theorem 3. Let α, γ ∈ C be complex numbers such that Re(γ) >
Re(α) > 0, and let a ∈ C, µ > 0. If the condition (4) is satisfied, then the
fractional integration Iα− of the generalized Wright function (1) is given by


Iα

−


t−γ

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
at−µ








 (x)

= xα−γ
p+1Ψq+1




(ai, αi)1,p, (γ − α, µ)

(bj , βj)1,q, (γ, µ)

∣∣∣∣∣∣
ax−µ


 . (13)

P r o o f. According to (4) and Corollary 1.1, the generalized Wright
functions in both sides of (13) exist for x > 0. The fractional integrals (5)
and (6) are connected by the relation

(
Iα
−f

[
1
t

])
(x) = xα−1

(
Iα
0+[t−α−1f(t)]

) (
1
x

)
.
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Using this formula and taking into account (11) with γ replaced by γ − α,
we have 

Iα
−


t−γ

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
at−µ








 (x)

= xα−1


Iα

0+


tγ−α−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ










(
1
x

)

= xα−γ
p+1Ψq+1




(ai, αi)1,p, (γ − α, µ)

(bj , βj)1,q, (γ, µ)

∣∣∣∣∣∣
ax−µ


 ,

and (13) is proved.

4. Fractional differentiation of the generalized
Wright function

In this section we establish a formula for the fractional differentiation
of the generalized Wright function (1). As in Section 3, we begin with the
left-hand sided fractional differentiation (7).

Theorem 4. Let α, γ ∈ C and Re(α) > 0 and Re(γ) > 0, and let
a ∈ C, µ > 0. If condition (4) is satisfied, then the fractional differentiation
Dα

0+ of the generalized Wright function (1) is given for x > 0 by


Dα

0+


tγ−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ








 (x)

= xγ−α−1
p+1Ψq+1




(ai, αi)1,p, (γ, µ)

(bj , βj)1,q, (γ − α, µ)

∣∣∣∣∣∣
axµ


 . (14)

P r o o f. According to (1) and Corollary 1.1, the generalized Wright
functions on both sides of (14) exist for x > 0. Let n = [Re(α)] + 1, where
[Re(α)] is an integer part of Re(α). Using (7) and (1) and taking into
account (11), with α replaced by n− α, we have


Dα

0+


tγ−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ








 (x)
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=
(

d

dx

)n

In−α

0+


tγ−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ








 (x)

=
(

d

dx

)n

xγ+n−α−1

p+1Ψq+1




(ai, αi)1,p, (γ, µ)

(bj , βj)1,q, (γ + n− α, µ)

∣∣∣∣∣∣
axµ







=
(

d

dx

)n
[ ∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

Γ(γ + µk)
Γ(γ + n− α + µk)

ak

k!
xγ+n−α+µk−1

]
.

(15)
According to [17, Lemma 15.1], a term-by-term differentiation of the series
on the right-hand side of (15) is possible. Therefore


Dα

0+


tγ−1

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
atµ








 (x)

=
∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

Γ(γ + µk)
Γ(γ − α + µk)

ak

k!
xγ−α+µk−1.

Thus, in accordance with (1), (14) is proved.

The next result yields the right-hand sided fractional differentiation (8)
of the generalized Wright function (1).

Theorem 5. Let α, γ ∈ C be complex numbers such that Re(α) > 0
and Re(γ) > [Re(α)] + 1 − Re(α), and let a ∈ C, µ > 0. If condition (4)
is satisfied, then the fractional differentiation Dα− of the generalized Wright
function (1) is given by


Dα

−


t−γ

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
at−µ








 (x)

= x−α−γ
p+1Ψq+1




(ai, αi)1,p, (γ + α, µ)

(bj , βj)1,q, (γ, µ)

∣∣∣∣∣∣
ax−µ


 . (16)
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P r o o f. By (4) and Corollary 1.1, the generalized Wright functions
in both sides of (16) exist for x > 0. Let n = [Re(α)] + 1. Using (8) and
(1) and taking into account (13) with α replaced by n− α, similarly to the
proof of Theorem 4, we obtain


Dα

−


t−γ

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
at−µ








 (x)

=
(
− d

dx

)n

In−α

−


t−γ

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
at−µ








 (x)

=
(
− d

dx

)n

xn−α−γ

p+1Ψq+1




(ai, αi)1,p, (γ − n + α, µ)

(bj , βj)1,q, (γ, µ)

∣∣∣∣∣∣
ax−µ







=
(
− d

dx

)n
[ ∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

Γ(γ − n + α + µk)
Γ(γ + µk)

ak

k!
xn−α−γ−µk

]

=
∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

(−1)n Γ(γ − n + α + µk)
Γ(γ + µk)

× Γ(1 + n− α− γ − µk)
Γ(1− γ − α− µk)

ak

k!
x−α−γ−µk. (17)

By the reflection formula for the gamma-function, see for example, [17,
(1.60)],

1
Γ(1− γ − α− µk)

=
Γ(γ + α + µk)

Γ(γ + α + µk)Γ(1− γ − α− µk)

=
Γ(γ + α + µk) sin[(γ + α + µk)π]

π

and

Γ(γ − n + α + µk)Γ(1 + n− α− γ − µk) =
π

sin[(γ − n + α + µk)π]

=
π

sin[(γ + α + µk)π] cos(nπ)
=

(−1)nπ

sin[(γ + α + µk)π]
.
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Substituting these relations into (17) we obtain

Dα

−


t−γ

pΨq




(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣∣
at−µ








 (x)

= x−α−γ
∞∑

k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

(−1)n Γ(γ + α + µk)
Γ(γ + µk)

(ax−µ)k

k!
,

which, in accordance with (1), yields (16).

5. Fractional calculus of the Wright
and the Bessel-Maitland functions

In this section we establish fractional integration and differentiation of
the Wright function φ(β, b; z) and Bessel-Maitland function Jδ

ν (z). Using
(2), from Theorems 2-3 and Theorems 4-5 we deduce formulas for the frac-
tional integration and differentiation of φ(β, b; z).

Theorem 6. Let α, γ, b, a ∈ C and µ > 0 and β > −1.

(a) If Re(α) > 0 and Re(γ) > 0, then the fractional integration Iα
0+ of

the Wright function (2) is given for x > 0 by

(
Iα
0+

[
tγ−1φ (β, b; atµ)

])
(x) = xγ+α−1

1Ψ2




(γ, µ)

(b, β), (γ + α, µ)

∣∣∣∣∣∣
axµ


 .

(18)
(b) If Re(γ) > Re(α) > 0, then the fractional integration Iα− of the

Wright function (2) is given for x > 0 by

(
Iα
−

[
t−γφ

(
β, b; at−µ

)])
(x) = xα−γ

1Ψ2




(γ − α, µ)

(b, β), (γ, µ)

∣∣∣∣∣∣
ax−µ


 . (19)

Corollary 6.1. Let α, γ, a ∈ C and µ > 0.

(a) If Re(α) > 0 and Re(γ) > 0, then
(
Iα
0+

[
tγ−1φ (µ, γ; atµ)

])
(x) = xγ+α−1φ (µ, γ + α; axµ) . (20)

(b) If Re(γ) > Re(α) > 0, then
(
Iα
−

[
t−γφ

(
µ, γ − α; at−µ

)])
(x) = xα−γ φ

(
µ, γ; ax−µ

)
. (21)
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Theorem 7. Let α, γ, b, a ∈ C and µ > 0 and β > −1.

(a) If Re(α) > 0 and Re(γ) > 0, then the fractional differentiation Dα
0+

of the Wright function (2) is given for x > 0 by

(
Dα

0+

[
tγ−1φ (β, b; atµ)

])
(x) = xγ−α−1

1Ψ2




(γ, µ)

(b, β), (γ − α, µ)

∣∣∣∣∣∣
axµ


 .

(22)
(b) If Re(γ) > [Re(α)] + 1 − Re(α), then the fractional differentiation

Dα− of the Wright function (2) is given for x > 0 by

(
Dα
−

[
t−γφ

(
β, b; at−µ

)])
(x) = x−α−γ

1Ψ2




(γ + α, µ)

(b, β), (γ, µ)

∣∣∣∣∣∣
ax−µ


 . (23)

Corollary 7.1. Let α, γ, a ∈ C and µ > 0.

(a) If Re(α) > 0 and Re(γ) > 0, then
(
Dα

0+

[
tγ−1φ (µ, γ; atµ)

])
(x) = xγ−α−1φ (µ, γ − α; axµ) . (24)

(b) If Re(γ) > [Re(α)] + 1− Re(α), then
(
Iα
−

[
t−γφ

(
µ, γ + α; at−µ

)])
(x) = xα−γ φ

(
µ, γ; ax−µ

)
. (25)

Similarly, in accordance with (3), from Theorems 2-3 and Theorems 4-5
we obtain the fractional integration and differentiation of Jδ

ν (z).

Theorem 8. Let α, γ, ν, a ∈ C and µ > 0 and δ > −1.

(a) If Re(α) > 0 and Re(γ) > 0, then the fractional integration Iα
0+ of

the Bessel-Maitland function (3) is given for x > 0 by

(
Iα
0+

[
tγ−1Jδ

ν (atµ)
])

(x) = xγ+α−1
1Ψ2




(γ, µ)

(ν + 1, δ), (γ + α, µ)

∣∣∣∣∣∣
axµ


 .

(26)
(b) If Re(γ) > Re(α) > 0, then the fractional integration Iα− of the

Bessel-Maitland function (3) is given for x > 0 by

(
Iα
−

[
t−γJδ

ν

(
at−µ

)])
(x) = xα−γ

1Ψ2




(γ − α, µ)

(ν + 1, δ), (γ, µ)

∣∣∣∣∣∣
ax−µ


 . (27)
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Corollary 8.1. Let α, ν, a ∈ C be complex numbers such that
Re(α) > 0 and Re(ν) > −1, and let µ > 0. Then there hold the rela-
tions (

Iα
0+ [tνJµ

ν (atµ)]
)
(x) = xν+αJµ

ν+1+α (axµ) . (28)

and (
Iα
−

[
t−α−ν−1Jµ

ν

(
at−µ

)])
(x) = x−ν−1Jµ

ν+1+α

(
ax−µ

)
. (29)

Theorem 9. Let α, γ, b, ν ∈ C and µ > 0 and δ > −1.

(a) If Re(α) > 0 and Re(γ) > 0, then the fractional differentiation Dα
0+

of the Bessel-Maitland function (3) is given for x > 0 by

(
Dα

0+

[
tγ−1Jδ

ν (atµ)
])

(x) = xγ−α−1
1Ψ2




(γ, µ)

(ν + 1, δ), (γ − α, µ)

∣∣∣∣∣∣
axµ


 .

(30)

(b) If Re(γ) > [Re(α)] + 1 − Re(α), then the fractional differentiation
Dα− of the Bessel-Maitland function (3) is given for x > 0 by

(
Dα
−

[
t−γJδ

ν

(
at−µ

)])
(x) = x−α−γ

1Ψ2




(γ + α, µ)

(ν + 1, δ), (γ, µ)

∣∣∣∣∣∣
ax−µ


 . (31)

Corollary 9.1. Let α, ν, a ∈ C and µ > 0.

(a) If Re(α) > 0 and Re(ν) > −1, then

(
Dα

0+ [tνJµ
ν (atµ)]

)
(x) = xν−αJµ

ν+1−α (axµ) . (32)

(b) If Re(α) > 0 and Re(ν) > [Re(α)], then

(
Dα
−

[
tα−ν−1Jµ

ν

(
at−µ

)])
(x) = x−ν−1Jµ

ν+1−α

(
ax−µ

)
. (33)
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