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Abstract

A more general form for a classical generating function for the Jacobi
polynomials is given.
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*

1. If z 6= ±1, then we define l(1; z) : ζ = 1 + t(1− z) and l(−1; z) : ζ =
−1− t(1 + z) for 0 ≤ t < ∞ as well as(

1− ζ

1− z

)α

:= exp
{

α log
1− ζ

1− z

}

for ζ ∈ S(1; z) := C \ l(1; z), and
(

1 + ζ

1 + z

)β

:= exp
{

β log
1 + ζ

1 + z

}

for ζ ∈ S(−1; z) := C \ l(−1; z), provided α and β are arbitrary complex
numbers.

It is clear that S(1;x) = C \ [1,∞), S(−1;x) = C \ (−∞,−1] for x ∈
(−1, 1) and, moreover, that
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(
1− ζ

1− x

)α

=
(1− ζ)α

(1− x)α
,

(
1 + ζ

1 + x

)β

=
(1 + ζ)α

(1 + x)β

for ζ ∈ S(1;x) ∩ S(−1;x) = C \ {(−∞,−1)] ∪ [1,∞)} and x ∈ (−1, 1).
Proposition 1. Let γ be a rectifiable Jordan curve such that γ∪intγ ⊂

C \ l(1; z) ∪ l(−1; z), where z 6= −1, 1, and ind(γ; z) = 1. Then

P (α,β)
n (z) =

1
2πi

∫

γ

{
ζ2 − 1

2(ζ − z)

}n (
1− ζ

1− z

)α (
1 + ζ

1 + z

)β dζ

ζ − z
. (1.1)

The above integral representation is a corollary of the Rodrigues formula
for the Jacobi polynomials as well as of the Cauchy integral formulas for
the derivatives of a holomorphic function.

2. A well-known fact is that there exists unique complex-valued function
h holomorphic in the region H = C \ [−1, 1], and such that h2(z) = z2 − 1
for z ∈ H and h(x) > 0 when x > 1. Usually, the value of this function
at any point z ∈ H is denoted by

√
z2 − 1. The function ω, defined in

H as ω(z) = z + h(z), is also holomorphic in H. Moreover, ω(z) 6= 0 and
(ω(z)+(ω(z))−1)/2 = z when z ∈ H, i.e. ω(z) is an inverse of the Zhukovski
function z = (ω + ω−1)/2. As it is well-known, the last one is univalent in
the domain D = {ω : |ω| > 1} and maps it onto H. Hence, the function ω
maps H onto D. Since limz→∞ ω(z) = ∞, ω is a meromorphic function in
the region C \ [−1, 1] with a (simple) pole at the point of infinity.

If z ∈ H, then we define the function p(z.w) in the disk, U(0; |ω(z)|−1)
by the requirements p2(z, w) = 1 − 2zw + w2 and p(z, 0) = 1. We denote
this function by

√
1− 2zw + w2. Its existence follows from the fact that

the disk U(0; |ω(z)|−1) is a simply connected region and 1− 2zw + w2 6= 0
whenever w is in this disk, and z ∈ H. Indeed, the equality 1−2zw+w2 = 0
implies w = ω(z) or w = (ω(z))−1 which is impossible.

Let us note that the function 1 + p(z, w) does not vanish in the disk
U(0; |ω(z)|−1) when z ∈ H. Indeed, the equality p(z0, w0) = 0 yields that
w0(w0 − 2z0) = 0 which contradicts to p(z0, 0) = p(z0, 2z0) = 1. Hence,

ζ(w) =
2z − w

1 + p(z, w)
(2.1)

is a holomorphic function in the disk U(0; |ω(z)|−1) for z ∈ H.
If w 6= 0, then from (2.1) it follows that ζ(w) = (1 − p(z, w))w−1 and,

hence, the equalities hold:

(1−w+p(z, w))(1−ζ(w)) = 2(1−z), (1+w+p(z, w))(1+ζ(w)) = 2(1+z).
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A direct verification shows that these equalities are still valid for w = 0.
Moreover, as their implication we obtain that 1 − w + p(z, w) 6= 0 and
1 + w + p(z, w) 6= 0 for z ∈ H and w ∈ U(0; |ω(z)|−1).

We define the function P (α,β)(z, w) for z ∈ H and w ∈ U(0; |ω(z)|−1) \
{0} by

P (α,β)(z, w) =
2α+β

p(z, w)(1− w + p(z, w))α(1 + w + p(z, w))β

=
2α+β

√
1− 2zw + w2(1− w + p(z, w)(1 + w + p(z, w))β

,

and assume that P (α,β)(z, 0) ≡ 1.

Proposition 2. For z ∈ H and w ∈ U(0; |ω(z)|−1) it holds
∞∑

n=0

P (α,β)
n (z)wn = P (α)(z, w). (2.2)

P r o o f. We note that P (α,β)(z, w), as a function of w, is holomorphic
in the disk U(0; |ω(z)|−1) and, hence, by Taylor’s theorem it has a power
series representation centered at the origin, i.e.

P (α,β)(z, w) =
∞∑

n=0

a(α,β)
n (z)wn. (2.3)

If 0 < r < |ω(z)|−1, then for the coefficient in the right-hand side of
(2.3) we have

a(α,β)
n (z) =

1
2πi

∫

C(0;r)

P (α,β)(z, w)
wn+1

dw, n = 0, 1, 2, . . . ,

where C(0; r) is the positively oriented circle centered at the origin and
having radius r.

From p2(z, w) = 1− 2zw + w2 it follows that p′w(z, 0) = −z, and using
(2.1) we find that ζ ′(0) = −1 + z2 6= 0 for z ∈ H. Hence, there exists a
neighbourhood U(0; δ) with 0 < δ < |ω(z)|−1, where the function ζ(w) is
univalent. Since ζ(0) = 0, it is clear that for arbitrary r ∈ (0, δ) the image of
the circle C(0; r) by the map ζ(w) is a positively oriented rectifiable Jordan
curve γ(z; r) such that ind(γ(z; r); z) = 1. Moreover, r can be chosen such
that γ(z; r)∪intγ(z; r) ⊂ H ∩ S(1; z) ∩ S(−1; z).

Using the representation (1.1) with γ = γ(z; r) and the equalities

ζ2(w)− 1
2(ζ(w)− z)

=
1
w

,
ζ ′(w)

ζ(w)− z
=

1
wp(z, w)

, w ∈ U(0; |ω(z)|−1) \ {0},
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and denoting the variable ζ by w, we obtain

P (α,β)
n (z) =

1
2πi

∫

C(0;r)

P (α,β)(z, w)
wn+1

dw, n = 0, 1, 2, . . . .

Hence, a
(α,β)
n (z) = P

(α,β)
n (z) for n = 0, 1, 2, . . .. Then from (2.3) it follows

that (2.2) holds in the disk U(0; |ω(z)|−1).

3. Let g(z) be the unique complex-valued function which is holomorphic
in the region G = C\{(−∞,−1]∪ [1,∞)}, and such that g2(z) = z2−1 and
g(0) = 1. The function τ(z), defined as τ(z) = z+ ig(z), is holomorphic and
nowhere vanishing in G and, moreover, (τ(z) + (τ(z))−1)/2 = z for z ∈ G.
Hence, τ(z) is an inverse of the Zhukovski function z = (τ + τ−1)/2 and as
such it is univalent in the half-plane =τ > 0 and maps it onto the region
G. In particular, the image of the point i is the origin. More precisely, the
image of the half-plane =z > 0 is the region determined by the inequalities
|τ | < 1 and =τ > 0, while the image of the interval (−1, 1) is the arc of the
unit circle located in the half-plane =τ > 0. The image of the half-plane
=z < 0 is the region determined by |τ | > 1 and =τ > 0.

The proof of Proposition 2 leads to the following assertion:

Proposition 3. The equality (2.2) holds for arbitrary z ∈ G and w ∈
U(0; ρ(z)),where ρ(z) = min(|τ(z)|, |τ(z)|−1).

A particular case of (2.2) is the representation
∞∑

n=0

P (α,β)
n (x)wn = P (α,β)(x,w),

which holds for −1 < x < 1 and |w| < 1 [1, 10.8, (29)]. Indeed, in this case
we have that |τ(x)| = |x + i

√
1− x2| = 1.
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