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Abstract

The sharp constant is obtained for the Hardy-Stein-Weiss inequality for
fractional Riesz potential operator in the space Lp(Rn, ρ) with the power
weight ρ = |x|β. As a corollary, the sharp constant is found for a similar
weighted inequality for fractional powers of the Beltrami-Laplace operator
on the unit sphere.
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1. Introduction

The inequality of the type
∫

Rn

|f(x)|2|x|µ dx ≤ c

∫

Rn

|(−∆)
α
2 f(x)|2|x|µ+2α dx, α > 0, (1.1)

where (−∆)
α
2 is the fractional power of the minus Laplace operator, is

known as the Hardy-Rellich-type inequality.
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In (1.1) the fractional power (−∆)
α
2 on ”nice” functions may be treated

via Fourier transforms: (−∆)
α
2 f = F−1|ξ|αFf ; on not so nice functions

it may be treated as the hypersingular integral (see [11], Ch. 3).
In [2] there was calculated the best constant in inequality (1.1) or in the

inequality
∫

Rn

|(−∆)
α
2 f(x)|2|x|2(α+η)−n dx ≤ c

∫

Rn

|(−∆)
β
2 f(x)|2|x|2(β+η)−n dx

(1.2)
which is, in fact, an equivalent form of (1.1), under the appropriate assump-
tions on the parameters involved. The best constant for the case µ = 0 in
(1.1) was calculated in [15].

Meanwhile, the best constant may be calculated, and in an effective
form, for a more general non-Hilbert version of inequality (1.1):

∫

Rn

|f(x)|p|x|µ dx ≤ Cp

∫

Rn

|(−∆)
α
2 f(x)|p|x|γ dx (1.3)

with
γ = µ + αp, (1.4)

see Theorem 2.1. In the case when α
2 is an integer, α

2 = 1, 2, 3, ..., the sharp
constant for (1.3) was calculated in [1]. We also note the best constant for
an inequality of the type (1.3) corresponding to the case α = 1 but with
different Lp- and L2-norms on the left and right hand sides, was studied in
[4].

An integral form of (1.3) may be given in terms of the Riesz potential
operator: ∫

Rn

|x|µ |Iαϕ(x)|p dx ≤ Cp

∫

Rn

|x|γ |ϕ(x)|p dx, (1.5)

where the Riesz potential operator Iα is defined for all α > 0 as

Iαϕ(x) =
1

γn(α)

∫

Rn

ϕ(y) dy

|x− y|n−α
, α > 0, α 6= n + 2k, k ∈ N, (1.6)

where γn(α) =
2απ

n
2 Γ(α

2 )
Γ(n−α

2 ) , see for instance [11], p.37. The validity of in-

equality (1.5), known as ”doubly weighted” Stein-Weiss inequality, see [7],
was proved in [13] under the natural assumptions on the parameters:

1 ≤ p < ∞, α > 0, αp− n < γ < n(p− 1), µ = γ − αp, (1.7)
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which are indeed necessary for inequality (1.5) to be valid, as it follows
from Theorem 3.1 ; the relation µ = γ − αp being a consequence of the
homogeneity of the kernel and weights, easily obtained by dilatation argu-
ments, see [12], Subsection 1.2 of Ch. 5. We note also that the condition
αp− n < γ < n(p− 1) implies that necessarily 0 < α < n.

We show that it is possible to easily calculate the best constant in (1.5),
for arbitrary p > 1 as a simple ratio of gamma-functions. The crucial points
of the calculation are: 1) the exact knowledge of the norm of an integral
operator in Lp(Rn) with kernel homogeneous of degree −n and invariant
with respect to rotations (see Theorem 3.1), and 2) the Catalan formula
for integrals over sphere of functions depending on scalar product, see (3.5).

Note that the sharp constant for the Sobolev theorem, that is, for the
equality of the type (1.5) with β = γ = 0, but with the norm in the space
Lq(Rn), 1

q = 1
p − α

n on the left hand side, was calculated by E. Lieb [7] in
the cases p = q′ or p = 2 or q = 2.

Remark 1.1. The weighted Hardy inequality, corresponding to the
case α > n was proved by T. Kurokawa [6] who showed that

∫

Rn

|x|−αp

∣∣∣∣∣∣
(Iαf)(x)−

∑

|j|≤m

(DjIαf)(0)
j!

xj

∣∣∣∣∣∣

p

dx ≤ C‖f‖p
p, (1.8)

where 1 < p < ∞, m =
[
α− n

p

]
, α − n

p /∈ N0; in case α − n
p is a non-

negative integer, in (1.8) there appears the logarithmic factor on the left
hand side.

The sharp constant calculated in [15] corresponds to the non-weighted
case in (1.8) and p = 2.

Remark 1.2. Inequalities (1.1)-(1.3) are valid for ”nice” functions
f , for example, for f in the Lizorkin subspace of the Schwarts space, see
Subsection 3.3, which is dense in Lp(Rn), 1 < p < ∞, see Theorem 3.2. In-
equality (1.5) holds for any ϕ ∈ Lp(Rn) under assumptions (1.7). Therefore,
inequalities (1.1)-(1.3) hold on the range Iα[Lp(Rn, ρ)] of the Riesz potential
operator, where ρ(x) = |x|µp , see the characterization of this range (includ-
ing the case p ≥ n

α) in [11], Section 1 of Ch. 7 in the non-weighted case
µ = 0 and Section 3 of Ch. 7 for the weighted case. This range is in fact
the domain of definition of (−∆)

α
2 in Lp(Rn, ρ), it may be characterized in

terms of the weighted Lp-convergence of the hypersingular integrals of the
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form ∫

|y|>ε

∆`
yf(x)
|y|n+α

dy, ` > α,

where ∆`
yf(x) =

∑
k=0 `(−1)k

(
`
k

)
f(x − kt), see for instance Theorems 7.9

and 7.36 in [11].

We also consider the Hardy-Rellich inequality in weighted Lp-norms for
the fractional powers (−δ)

α
2 of the spherical Beltrami-Laplace operator:

∫

Sn−1

ρ(σ)|f(σ)|p dσ ≤ Cp
1

∫

Sn−1

ρ1(σ)
∣∣∣f(σ) + (−δ)

α
2 f(σ)

∣∣∣
p

dσ, (1.9)

where the power weight functions

ρ(σ) = |σ−σ0|µ ·|σ+σ0|ν and ρ1(σ) = |σ−σ0|µ+αp ·|σ+σ0|ν+αp, σ ∈ Sn−1

(1.10)
are fixed to an arbitrary pair of the opposite poles ±σ0 ∈ Sn−1, and

0 < α < n− 1, 1 < p < ∞, (1.11)

1− n < µ < (n− 1)(p− 1)− αp, µ + ν = (n− 1)(p− 2)− αp. (1.12)

One may also replace I +(−δ)
α
2 on the right-hand side of (1.9) by (I− δ)

α
2 ;

in the case of functions f with f0 :=
∫
Sn−1 f(σ) dσ = 0 it is possible also to

take just (−δ)
α
2 .

Similarly to inequality (1.5), its spherical analogue may be considered:
∫

Sn−1

ρ(σ)|Iα
S ϕ(σ)|p dσ ≤ Cp

2

∫

Sn−1

ρ1(σ) |ϕ(σ)|p dσ (1.13)

under conditions (1.11)-(1.12) and the assumption that the integral on the
right-hand side exists. Here

Iα
S ϕ(ξ) =

1
γn−1(α)

∫

Sn−1

ϕ(σ)
|ξ − σ|n−1−α

dσ, ξ ∈ Sn−1, (1.14)

where α > 0, α− n + 1 /∈ N, is the spherical Riesz-type potential operator,
see [11], p.151.

In the case of inequality (1.13) we also calculate the best constant C2.
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N o t a t i o n :
Sn−1 is the unit sphere in Rn; |Sn−1| = 2π

n
2

Γ(n
2 ) is its area;

ω(x) is a rotation in Rn : |ω(x)| = |x|;
e1 = (1, 0, ..., 0), en = (0, ..., 0, 1), x · y = x1y1 + · · ·+ xnyn;
1
p + 1

p′ = 1 .
2. Statements of the main results

Theorem 2.1. Let α > 0, α− n /∈ N. Inequality (1.3) is valid on all
the functions for which the right-hand side is finite if and only if conditions
(1.7) are satisfied. Under these conditions the best constant in (1.3) is given
by

C = 2−α
Γ

(
n(p−1)−γ

2p

)
Γ

(
n+γ−αp

2p

)

Γ
(

n+γ
2p

)
Γ

(
n(p−1)+αp−γ

2p

) . (2.1)

Corollary . In the case p = 2 the best constant for (1.1) is given by

c =

[
2−α Γ

(n+µ
4

)
Γ

(n−µ
4 − α

2

)

Γ
(n−µ

4

)
Γ

(n+µ
4 + α

2

)
]2

(2.2)

under the assumptions 0 < α < n, −n < µ < n− 2α, and for (1.2) by

c =


2α−β

Γ
(α+η

2

)
Γ

(
n−β−µ

2

)

Γ
(

β+η
2

)
Γ

(n−α−η
2

)




2

, (2.3)

under the assumptions β ≥ α, −α < η < n− β .

We observe that the condition −n < µ < n− 2α on the weight (or the
condition −α < η < n− β in case of (2.3) ) is necessary for the validity of
inequality (1.5) in the case p = 2.

Theorem 2.2. Inequalities (1.9) and (1.13) are valid provided that 0 <
α < n− 1 and

−(n− 1) < µ < (n− 1)(p− 1)− αp. (2.4)

The best constant in (1.13) is equal to

C = 2−2α
Γ

(
(n−1)(p−1)−µ−αp

2p

)
Γ

(
n−1+µ

2p

)

Γ
(

n−1+µ+αp
2p

)
Γ

(
(n−1)(p−1)−µ

2p

) . (2.5)
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Corollary . In the case p = 2 inequality (1.13) takes the form

∫

Sn−1

|σ − σ0|n−1−2θ

|σ + σ0|n−1−2θ+2α
|Iα

S ϕ(σ)|2 dσ

≤ C2
2

∫

Sn−1

|σ − σ0|n−1−2θ+2α

|σ + σ0|n−1−2θ
|ϕ(σ)|2 dσ, (2.6)

where α < θ < n− 1 and the best constant is equal to

C2 = 2−2α Γ
(

θ−α
2

)
Γ

(
n−1−θ

2

)

Γ
(

θ+α
2

)
Γ

(
θ
2

) . (2.7)

3. Preliminaries

3.1. Integral operators with kernels
homogeneous of degree −n

Let k(x, y) satisfy the homogeneity condition

k(λx, λy) = λ−nk(x, y), λ > 0, x, y ∈ Rn (3.1)

and the condition of the invariance

k[ω(x), ω(y)] = k(x, y), x, y ∈ Rn (3.2)

for any rotation ω(x) in Rn. Let

κp =
∫

Rn

|k(σ, y)| dy

|y|np
, σ ∈ Sn−1. (3.3)

Because of the invariance condition (3.2), the integral in (3.3) does not
depend on the choice of σ ∈ Sn−1 (see details in [5]), so one may choose
σ = e1 = (1, 0, ..., 0) in (3.3).

The following statement is known, see [5], p.70, Th. 6.4.

Theorem 3.1. Under assumptions (3.1)-(3.2) and the condition κp <
∞, the operator

Kf(x) =
∫

Rn

k(x, y) dy (3.4)

is bounded in the space Lp(Rn), 1 ≤ p ≤ ∞ and ‖K‖ ≤ κp. If k(x, y) ≥ 0,
then the condition κp < ∞ is necessary for the boundedness and ‖K‖ = κp.
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3.2. The Catalan formula and some preliminaries from special
functions

The following formula
∫

Sn−1

f(x · σ) dσ = |Sn−2|
∫ 1

−1
(1− t2)

n−1
2 f(|x|t) dt, x ∈ Rn (3.5)

is known as the Catalan formula, see [5], p.13, [3], N 4.644.
We remind the following formulas for the gamma-function:

Γ(2x) =
22x−1

√
π

Γ(x)Γ
(

x +
1
2

)
, x ∈ R1

+, (3.6)

Γ(x + k) = Γ(x)(x)k, (x)k = x(x + 1) · · · (x + k − 1), x ∈ R1
+. (3.7)

The binomial coefficients are given by
(

ν

k

)
=

(−1)kΓ(k − ν)
k!Γ(−ν)

. (3.8)

We shall also need the hypergeometric function

F (α, β; γ; z) =
∞∑

k=0

(α)k(β)k

(γ)k

zk

k!
, |z| < 1. (3.9)

Observe that

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)

, γ > max{α, β, α + β}. (3.10)

3.3. The Lizorkin space Φ

The Lizorkin space Φ (see for instance, [11], p.39) is a subspace of the
Schwartz space S which consists of functions orthogonal to all the polyno-
mials:

∫

Rn

xjf(x dx = 0, j = (j1, j2, ..., jn), |j| = 0, 1, 2, ... . (3.11)

Obviously, the Fourier transforms of functions f ∈ Φ vanish at the origin
together with all their partial derivatives.
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The subspace Φ is invariant with respect to the operator Iα and its (left)
inverse (−∆)

α
2 :

(−∆)
α
2 (Φ) = Iα(Φ) = Φ.

Theorem 3.2. The space Φ is dense in the weighted space Lp(Rn, ρ),
1 < p < ∞, with an arbitrary Muckenhoupt weight ρ(x).

The proof of Theorem 3.2 may be found in ([8]; [11], p.41, for the non-
weighted case and [11], p.195 in the weighted case.

3.4. The Beltrami-Laplace operator
and stereographic projection

Let

δf = |x|∆f

(
x

|x|
)

,
x

|x| ∈ Sn−1

be the Beltrami-Laplace operator, defined on functions f(σ) on the unit
sphere Sn−1. It has eigenvalues −m(m + n− 2), m = 1, 2, 3, ... :

δYm = −m(m + n− 2)Ym

for any spherical harmonic Ym, so that the fractional power (−δ)
α
2 on ”nice”

functions is defined by

(−δ)
α
2 f =

∞∑

m=0

[m(m + n− 2)]
α
2 Ym(f, x), x ∈ Sn−1,

where
Ym(f, x) =

dn(m)
|Sn−1|

∫

Sn−1

f(σ)Pm(x · σ) dσ

is the m-th harmonic component of f(x), x ∈ Sn−1, Pm(t) being the Legen-
dre polynomial and dn(m) = (n + 2m− 2) (n+m−3)!

m!(n−2)! , see details on spherical
harmonics and Fourier-Laplace series in [12], [13], [10], [11], p.145.

Following S. Mikhlin [9], p.35-36, we shall use the stereographic projec-
tion of the sphere Sn−1 onto the space Rn−1 = {x ∈ Rn : xn = 0} which is
generated by the change of variables in Rn:

ξ = s(x) = {s1(x), s2(x), ..., sn(x)} (3.12)

with sk(x) = 2xk
1+|x|2 , k = 1, 2, ..., n − 1 and sn(x) = |x|2−1

|x|2+1
. Here x =

(x1, x2, ..., xn) ∈ Rn and |x| =
√

x2
1 + · · ·+ x2

n.
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Let also σ = s(y), y ∈ Rn. The following is valid:

|ξ − σ| = 2|x− y|√
1 + |x|2

√
1 + |y|2 , dσ =

2n−1 dy

(1 + |y|2)n−1
, dy =

2n−1 dσ

|σ − en|2(n−1)
,

(3.13)
see [9], p.35-36. Also

|x| =
√

1 + ξn

1− ξn
=
|ξ + en|
|ξ − en| ,

√
1 + |x|2 =

√
2

1− ξn
=

2
|ξ − en| . (3.14)

4. Proof of Theorem 2.1

Since the best constant in (1.3) is the same as in (1.5), we base ourselves
on inequality (1.5) and rewrite it in the form

∫

Rn

|x|µ
∣∣∣∣∣I

α

(
u(·))
| · | γp

)∣∣∣∣∣
p

dx ≤ c

∫

Rn

|u(x)|p dx, (4.1)

where u(x) = |x| γp ϕ(x) ∈ Lp(Rn). Therefore, the best constant in (1.5), or
which is the same, in (4.1) is the norm of the integral operator

Ku(x) =
∫

Rn

k(x, y)u(y) dy, k(x, y) =
1

γn(α)
· |x|µp
|y|µp +α|x− y|n−α

.

The kernel k(x, y) is homogeneous of degree −n, invariant with respect to
rotations and non-negative. Therefore, by Theorem 3.1,

C = ‖K‖Lp→Lp =
1

γn(α)

∫

Rn

dy

|y|µ+n
p

+α|y − e1|n−α
. (4.2)

Thus, the problem of the best constant in (1.5) is reduced to calculation of
the integral in (4.2). We denote for brevity

J(a, b) =
∫

Rn

dy

|y|a|y − e1|b , 0 < a < n, 0 < b < n, a + b > n. (4.3)

Obviously, J(a, b) = J(b, a).

Lemma 4.1. Under the conditions 0 < a < n, 0 < b < n, a + b > n

J(a, b) = π
n
2
Γ

(
n−a

2

)
Γ

(
n−b
2

)
Γ

(
a+b−n

2

)

Γ
(

a
2

)
Γ

(
b
2

)
Γ

(
n− a+b

2

) . (4.4)
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P r o o f. Passing to polar coordinates in (4.3), we have

J(a, b) =
∫ ∞

0
ρn−1−adρ

∫

Sn−1

dσ

(ρ2 − 2ρσ1 + 1)
b
2

=
∫ ∞

0

ρn−1−a

(ρ2 + 1)
b
2

dρ

∫

Sn−1

(1− rσ1)−
b
2 dσ,

where r = 2ρ
1+ρ2 ≤ 1. Making use of the Catalan formula (3.5), we obtain

J(a, b) = |Sn−2|
∫ ∞

0

ρn−1−a

(ρ2 + 1)
b
2

dρ

∫ 1

−1
(1− t2)

n−3
2 (1− rt)−

b
2 dσ

= |Sn−2|
∫ 1

−1
(1− t2)

n−3
2 V (t) dt, (4.5)

where

V (t) =
∫ ∞

0

ρn−1−a

(ρ2 + 1)
b
2

(1− rt)−
b
2 dρ.

To calculate the integral V (t), we expand (1−rt)−
b
2 into the binomial series

(1− rt)−
b
2 =

∑∞
k=0

(−b/2
k

)
(−rt)k and get

V (t) =
∞∑

k=0

(−b/2
k

)
(−2t)k

∫ ∞

0

ρn−1−a+k

(ρ2 + 1)
b
2
+k

dρ. (4.6)

The integral

Ik(t) =
∫ ∞

0

ρn−1−a+k

(ρ2 + 1)
b
2
+k

dρ =
1
2
B

(
n− a + k

2
,
a + b− n + k

2

)
(4.7)

is easily calculated via the change ρ2 + 1 = 1
s . Therefore, from (4.6) with

(3.8) and (4.7) taken into account, we arrive at

V (t) =
1
2

∞∑

k=0

Γ
(

n−a+k
2

)
Γ

(
a+b−n+k

2

)

Γ
(

b
2

)
Γ (k + 1)

(2t)k.

We substitute this into (4.5) and observe that the terms with odd values of
k vanish so that

J(a, b) =
|Sn−2|
Γ

(
b
2

)
∞∑

k=0

22k Γ
(
k + n−a

2

)
Γ

(
k + a+b−n

2

)

Γ (2k + 1)

∫ 1

0
t2k(1− t2)

n−3
2 dt.
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Making use of the duplication formula (3.6) for Γ (2k + 1) and substituting
t =

√
s, after easy calculations we arrive at the series

J(a, b) =
π

n
2

Γ
(

b
2

)
∞∑

k=0

Γ (k + ν1) Γ (k + ν2)
k!Γ

(
k + n

2

)

where we denoted ν1 = n−a
2 and ν2 = a+b−n

2 for brevity. By (3.7) this
reduces to

J(a, b) =
π

n
2 Γ(ν1)Γ(ν2)
Γ

(
b
2

)
Γ

(
n
2

)
∞∑

k=0

(ν1)k(ν1)k(
n
2

) 1
k!

=
π

n
2 Γ(ν1)Γ(ν2)
Γ

(
b
2

)
Γ

(
n
2

) F
(
ν1, ν2;

n

2
; 1

)

and we obtain (4.4) thanks to (3.10).
The lemma having been proved, it remains to use (4.4) in (4.2), which

yields

‖K‖Lp→Lp = 2−α
Γ

(
n

2p′ − γ
2p

)
Γ

(
n+γ
2p − α

2

)

Γ
(

n+γ
2p

)
Γ

(
n

2p′ + αp−γ
2p

)

and we arrive at (2.1).
Finally, we observe that (2.2) is contained in (2.1) with p = 2, while in

order to obtain (2.3) from (2.1), it suffices to denote (−∆)
α
2 f(x) = ϕ(x)

and replace α by β − α.

5. Proof of Theorem 2.2

It is natural to reduce (1.13) to (1.5) via the stereographic projection
(3.12). It is interesting to observe that E. Lieb [7], on the contrary, reduced
the consideration on the Euclidean space to the case of the sphere via the
stereographic projection, in order to construct the maximizing functions
for the inequalities in Rn. We proceed in the opposite direction, finding
more convenient to use the homogeneity property of the potential kernel
in Rn and then to derive the required information for the Beltrami-Laplace
operator on the unit sphere as a corollary to the results for Rn. (We mention
also the paper [14] where the stereographic projection was used to transfer
some properties of the spatial Riesz potentials to the case of spherical Riesz
potentials).
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It is known that the spherical Riesz potential (1.14) is connected with the
spatial Riesz potential over Rn−1 in terms of the stereographic projection:

∫

Sn−1

f(σ)
|ξ − σ|n−1−α

dσ

= 2α(1 + |x|2)n−1−α
2

∫

Rn−1

f [s(y)] dy

|x− y|n−1−α(1 + |y|2)n−1+α
2

,

where ξ ∈ Sn−1, x = s−1(ξ) ∈ Rn−1, see [11], p.153; inversely,
∫

Rn−1

ϕ(y) dy

|x− y|n−1−α
= 2α|ξ − en|n−1−α

∫

Sn−1

ϕ∗(σ)
|ξ − σ|n−1−α

dσ, (5.1)

where for given x ∈ Rn−1 one has ξ = s(x) ∈ Sn−1 and

ϕ∗(σ) =
ϕ[s−1(σ)]

|σ − en|n−1+α
=

(√
1 + |y|2

2

)n−1+α

ϕ(y), y = s−1(σ). (5.2)

In notations (5.2) and (1.14), relation (5.1) has the form

Iαϕ(x) = 2α|ξ − en|n−1−αIα
S ϕ∗(ξ), ξ = s(x), x ∈ Rn−1, ξ ∈ Sn−1, (5.3)

where Iαϕ(x) on the left-hand side stands for the Riesz potential (1.6) over
Rn−1. The following isometry is also directly checked in view of (3.13) and
(3.14): ∫

Rn−1

|y|µ|ϕ(y)|p dy = 2n−1

∫

Sn−1

ρ(σ)|ϕ∗(σ)|p dσ, (5.4)

where

ρ(σ) = |σ + en|µ|σ + en|ν , ν = (n− 1)(p− 2) + αp− µ.

We rewrite the Hardy-Stein-Weiss inequality (1.5) for the dimension
n− 1: ∫

Rn−1

|x|µ |Iαϕ(x)|p dx ≤ c

∫

Rn−1

|x|γ |ϕ(x)|p dx, (5.5)

−n− 1 < µ < (n− 1)(p− 1)− αp, γ − µ + αp

and substitute (5.2)-(5.4) into (5.5). After easy calculations we get
∫

Sn−1

|σ + en|µ|σ − en|(n−1)(p−2)−αp−µ |Iα
S ϕ∗(σ)|p dσ
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≤ 2−αpCp

∫

Sn−1

|σ + en|µ+αp|σ − en|(n−1)(p−2)−µ|ϕ∗(σ)|p dσ (5.6)

which is the desired inequality (1.13) in the case of the pole σ = −en.
The passage to an arbitrary pole σ ∈ Sn−1 may be done by means of the
corresponding rotation, taking into account that the Riesz potential Iα

S is
rotation invariant.

Since the best constant for (1.5) is given in (2.1), from (5.6) we see that
the best constant for (1.13) is c2 = 2−αc, which is given in (2.5).

It remains to show the validity of (1.9), or which is the same, the va-

lidity of (1.13) with Iα
S replaced by the operator

[
I + (−δ)

α
2

]−1
. The latter

is the spherical convolution operator with the Fourier-Laplace multiplier
(eigenvalues):

λm =
1

[m(m + n− 2)]
α
2

=
N∑

j=0

cj

mα+j
+ O

(
1

mα+N

)
, co 6= 0,

as m → ∞, where N = 1, 2, 3, ... is arbitrary. Such operators are spherical
convolution operators with kernel k(x · σ) dominated by the Riesz kernel,
see [11], Lemma 6.21. Therefore, the pointwise estimate is valid:

∣∣∣∣
[
I + (−δ)

α
2

]−1
f(x)

∣∣∣∣ ≤ c(Iα
S |f |)(x), x ∈ Sn−1

which yields (1.9).
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