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Abstract

The generalization of the concept of derivative to non-integer values goes
back to the beginning of the theory of differential calculus. Nevertheless, its
application in physics and engineering remained unexplored up to the last
two decades. Recent research motivated the establishment of strategies tak-
ing advantage of the Fractional Calculus (FC) in the modeling and control
of many phenomena. In fact, many classical engineering applications de-
serve a closer attention and a new analysis in the viewpoint of FC. Bearing
these ideas in mind, this work addresses the partial differential equations
that model the electrical transmission lines. The distributed characteristics
of this system may lead to design techniques, for integrated circuits, capable
of implementing directly fractional-order impedances and, therefore, consti-
tutes an alternative to exploring fractal geometries and dielectric properties.
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The main person responsible for a complete mathematical analysis of
signal propagation on transmissions lines was Olivier Heaviside who pub-
lished a book, in 1880, based on Maxwell electromagnetic theory [1].
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Figure 1: Electrical circuit of an infinitesimal portion of a uniform trans-
mission line.

During the twentieth century, the electrical power transmission, telecom-
munication and microwave engineering, and the subsequent development of
innumerable applications, made popular the introduction of transmission
line theory in electrical engineering curricula [2-3].

The differential equations for a uniform transmission line are found by
considering an infinitesimal length dx located at coordinate x. This line
section has series inductance and resistance Ldx and Rdxr and shunt con-
ductance and capacitance Gdxr and Cdz, as depicted in Figure 1. The
application of the Kirchoff laws to the circuit leads to the set of partial
differential equations:

ov(x,t)/0x = —L0i(x,t)/0t — Ri(x,t), (la)
di(z,t)/0x = —COv(x,t) /0t — Gu(x,t), (1d)

where t represents the time, v - voltage and i - electrical current.
A few simple calculations allow us to eliminate one variable and to
explicit the differential equation either to v or to i, yielding:

0*v(x,t)/02* = LCO*v(z,t)/0t* +(LG+ RC)dv(x,t)/dt+ RGv(x,t), (2a)

0%i(x,t)/0x* = LCO%i(x,t)/0t* + (LG + RC)di(x,t) /0t + RGi(x,t). (2b)

It is interesting to note that when L = 0 and G = 0, equation (2)
reduces to the equivalent of the heat diffusion equation, where v and ¢ are
the analogs of the temperature and the heat flux, respectively.

To analyze the transmission lines in the frequency domain it is consid-
ered the Fourier transform operator F' such that I(z,jw) = F{i(x,t)} and
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V(z,iw) = F{v(z,t)} (with j = (—=1)'/?) and equations (1) are transformed
to:
dV(z, jw)/dx = —Z(iw)I(x, jw), (3a)

dI(z, jw)/dx = =Y (iw)V (z, jw), (3b)

where Z(iw) = R+ jwL and Y (iw) = G+ jwC. In the same line of thought
equations (2) are transformed to:

d?V (z, jw) /dz? = —Z(iw)Y (iw)V (z, jw) (4)

which as a solution in the frequency domain of the type, is:

Viz, jw) = A1€7* + Age—"7, (5a)
I(z, jw) = Z; ' (Aze™™" — A1e7), (5b)
where Z.(jw) = [Z(jw)Y 1 (jw)]"? = [(R+ jwL) /(G + jwC)]"/? (charac-

teristic impedance) and v(jw) = [Z(jw)Y (jw)]Y/? = a(w) + jB(w).

These expressions have two terms corresponding to waves traveling in
opposite directions: the term proportional to e™7* is due to the signal ap-
plied at the line input while the term e?® represents the reflected wave.

For a transmission line of length [ it is usual to adopt as variable the
distance up to the end given by:

y=1—=x. (6)

If V5 and I represent the voltage and current at the end of the trans-
mission line, then the Fourier transforms of equation (1) at coordinate y are
given by:

V(z,jw) = Vach(yy) + I2Zcsh(vy), (7a)
I(x, jw) = VaZg ' sh(vy) + Lrch(yy). (7b)
Therefore, for a loading impedance Zs(jw) we have

Va(jw) = Za(jw)l2(jw)
and the input impedance Z;(jw) of the transmission line results:

Zi(jw) = [Zach(vy) + Zesh(vy)] [Ze 27 sh(vy) + ch(yy)] " . (8)

Typically are considered three cases at the end of the line, namely a
short circuit, an open circuit and an adapted line, that simplify equation
(8) yielding:
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Vo = 07 ZQ(jw) = 07 Zz(]w) = Zc(jw)th(’yl% (ga)
I, =0, Z5(jw) = 00, Z;(jw) = Z.(jw)cth(y1), (9b)
Zoy(jw) = Ze(jw), Zi(jw) = Zc(jw). (9¢)

The classical perspective is to study lossless lines (i.e., R = 0 and G = 0),
reasonable in power systems, and approximations in the frequency domain
leading to two-port networks with integer order elements. This is surprising
because the transcendental equations (8) and (9) may lead both to integer
and fractional-order expressions. For example, in the case of an adapted line
(with R,C, L,G € R"), we can have half-order fractional capacitances
and half-order fractional inductances according with the expressions:

L=0,G=0= Z(jw) = [(jw) *RC™]"?, (10a)
R=kL, G=kC(k € R) = Z(jw)= (RL™H? (100)

R=0,C=0= Z(jw) = (juLG™H)'/2, (10¢)

Since conditions (9a) and (9b) are easier to implement in practice than
condition (9c), we can take advantage of the asymptotic expansions of th(vl)
and cth(yl). In fact, knowing that for low frequencies we have w — 0,
th(yl) — A1, cth(yl) — (y1)~! and that for high frequencies w — oo,
th(yl) — 1, cth(yl) — 1, than we obtain the following approximations
for the short circuit an open circuit cases, respectively:

zij) ={ Je =0 (11a)
. -1
Ziljw) = { [ZYgigl]w ;wo: 0 (11b)

We conclude that both cases approximate condition (9c¢) at high fre-
quencies.

These results, overlooked in the (integer-order point of view) classi-
cal textbooks, suggest possible strategies for implementing fractional-order
impedances, somehow as standard microstrips and striplines work in mi-
crowave circuits. In fact, this hardware strategy of implementing fractional-
order derivatives has been recently pointed out in order to avoid computa-
tional approximation schemes [4-9]. Therefore, an alternative to exploring
fractal geometries and dielectric properties [10-11] to achieve fractional ca-
pacitors we can also turn our attention to the distributed characteristics of
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this type of system in order to design integrated circuits capable of imple-
menting directly fractional derivatives.
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