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Abstract

An expansion formula for fractional derivatives given as in form of a
series involving function and moments of its k-th derivative is derived. The
convergence of the series is proved and an estimate of the reminder is given.
The form of the fractional derivative given here is especially suitable in
deriving restrictions, in a form of internal variable theory, following from
the second law of thermodynamics, when applied to linear viscoelasticity of
fractional derivative type.
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1. Motivation

In the one dimensional isothermal theory of a viscoelastic body of gen-
eralized Kelvin-Voigt type, the stress σ is given in terms of strain ε by an
equation of the form

σ (t) = E∞ε (t) + Eαε(α) (t) , (1)
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where 0 < α < 1, E∞ and Eα are constants and

u(α)(t) =
1

Γ (1− α)
d

dt

∫ t

0

u (τ)
(t− τ)a dτ, 0 < α < 1 (2)

is the Riemann-Liouville fractional derivative of real order α. The important
problem concerning the constitutive equation of the type (1) is to find the
restrictions on coefficients α, E∞ and Eα so that the Second Law of Ther-
modynamics, in the form of Clausius-Duhem inequality, is satisfied. There
are several approaches to this problem (see for example [2], [5] and [1]). One
of these approaches uses the method of internal variables. In it, in order
to obtain the restrictions, one has to postulate the rate equations for in-
ternal variables. The Classical Thermodynamics deals with rate equations
of involving integer (first) order derivatives only. This is a consequence of
the assumption that the state variables (such as ε) are chosen properly, so
that all relevant quantities can be expressed in terms of local values of state
variables. The fractional derivative is a nonlocal operator, and therefore
the formalism of Thermodynamics cannot be applied directly to the rate
equations involving fractional derivatives.

One way to avoid such a difficulty is to use expression for fractional
derivative in terms of integer order derivatives. It is well known that for an-
alytic function f (t) (see [8], p.278) the fractional derivative can be expanded
in a power series of involving integer order derivatives as

f (α)(t) =
∞∑

n=0

(
α

n

)
tn−α

Γ (n + 1− α)
f (n) (t) , where

(
α

n

)
=

(−1)n−1 Γ (n− α)
Γ (1− α) Γ (n + 1)

.

(3)
The expansion (3) is not useful for our purposes for two reasons. First, it
involves derivatives of the function f of all (integer) orders, and second, it
could be used for analytic functions only.

Our intention in this note is to derive an expansion formula for the frac-
tional derivative of a function that will involve a function, a finite number
of its integer order derivatives and time moments of a single integer order
derivative. This expansion formula could be used for functions that are
not analytic, but only finitely many times differentiable. Also, it offers a
possibility to use internal variables method to derive the restrictions on the
constitutive equations involving fractional order derivatives.
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2. Preliminaries

The reader not familiar with spaces of generalized functions can pass
over this part. Let D′ (R) denote the space of Schwartz’s distributions
(cf. [9]) and S ′ (R) the space of tempered distributions. Then D′+ (R) =
{T ∈ D′ (R) ; suppT ⊂ [0,∞)} and S ′+ (R) = {T ∈ S ′ (R) supp T ⊂ [0,∞)}.
The spaces D′+ and S ′+ are commutative algebras with addition and convo-
lution as operators. If f ∈ L1

loc (R), then it defines the distribution denoted
by [f ]. In the sequel,

∆α =

{
δ(α), α = 0, 1, ...

x−α−1
+

Γ(−α) , α ∈ R\ {0, 1, ...} (4)

stands for the family belonging to S ′+. If α < 0, ∆α is defined by the function
f (x) = 0, x < 0; f (x) = x−α−1/Γ (−α) , x > 0. {∆α; α ∈ R} is a semi-group:
∆α1 ∗∆α2 = ∆α1+α2 (∗ is the sign of convolution).

For T ∈ D′+ and 0 ≤ m−1 < α < m,m ∈ N, the fractional distributional
derivative DαT = ∆α ∗T. If T is defined by a function f ∈ C[0,∞), T = [f ],
then for α = m− ν,m ∈ N, 0< ν <1 :

∆α ∗ T = ∆α ∗ [f ] = ∆m ∗∆−ν ∗ [f ] = δ(m) ∗ (
∆−ν ∗ [f ]

)

= Dm

(
xν−1

+

Γ (ν)
∗ [f ]

)
=

[
dm

dxm

1
Γ (m− α)

∫ x

0

f (τ) dτ

(x− τ)−m+α+1

]
,

and this is the definition of the α-th fractional derivative of the function f
for x > 0 (cf. [4]).

In some cases we can express the relation between the distributional
derivative Dk [f ] of a distribution [f ], given by the function f, and the
classical derivative f (k) of the function f. Such a case is the following.

Suppose that f (x) is a function defined for x ∈ R, f (x) = 0, x ∈
(−∞, 0). Let f (x) have all derivatives in all points except at {xn}n∈N ,

lim
n→∞xn = ∞ in which f (p), p ∈ N0 can have jumps

{
f

(p)
n

}
n∈N

,
∣∣∣f (p)

n

∣∣∣ <

∞, n ∈ N. Let f
(p)
0 (x) , 0 ≤ p ≤ k be a function defined as f

(p)
0 (x) =

f (p) (x) , x ∈ [0,∞] \ {x1, ..., xr} , {x1, ..., xr} are jump points of f (k); f
(p)
0 (xn)

is not defined for n = 1, ..., r, 0 ≤ p ≤ k. Then (cf.[9], p.37),

Dk [f ] =
[
f

(k)
0

]
+

r∑

n=1

f (k−1)
n δ (xn) + · · ·+

r∑

n=1

fnδ(k−1) (xn) . (5)
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We write Vn

(
f

(p)
0

)
, n ∈ N0, for the n-th moment of the function f

(p)
0 ,

Vn

(
f

(p)
0

)
(t) =

∫ t

0
f

(p)
0 (τ) τndτ, n ∈ N0, t ≥ 0. (6)

It is easily seen that Vn

(
f

(p)
0

)
= Vn

(
f (p)

)
.

3. Main result

Theorem 1. Let m, k ∈ N and α, ν, q be real numbers with the prop-
erties: 0 < ν < 1, α = m− ν, q = k − α− 1 > 0. Suppose that:

a) the function f ∈ Ck[0,∞) and

f (0) = · · · = f (k−1) (0) = 0. (7)

Then for t > 0 we have

f (α) (t) =
tq

Γ (k − α)


V0

(
f (k)

)
(t) +

∞∑

p=1

Γ (p− q)
Γ (−q) p!

1
tp

Vp

(
f (k)

)
(t)




≡ K0

(
−k + α, f (k)

)
(t) . (8)

The series in (8) converges in C (0,∞) (converges uniformly on every com-
pact set in (0,∞)).

b) If f ∈ Ck[0,∞), but has not the property (7), then

Dα [f ] =
[
K0

(
−k + α, f (k)

)]

+ f (k−1) (0)
tk−α−1
+

Γ (k − α)
+ · · ·+ f (0)

t−α
+

Γ (1− α)

≡
[
K1

(
−k + α, f (k)

)]
. (9)

c) If f has the k-th derivative in all points except in the points
{x1, ..., xr}⊂ [0,∞) in which f (p), 0 ≤ p ≤ k − 1, has bounded jumps

f
(p)
i , i = 1, · · ·r, then we have

Dα [f ] =
[
K1

(
−k + α, f (k)

)]
+

r∑

i=1

fi
(t− xi)

−α
+

Γ (1− α)

+ · · ·+
r∑

i=1

f
(κ−1)
i

(t− xi)
k−α−1
+

Γ (k − α)
≡

[
K2

(
−k + α, f (k)

)]
. (10)
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d) If in b) and c) we have 0 < α < 1 and k ≥ 2, then Dα [f ] =

f (α) (t) , t ∈ (0,∞) and
tβ+

Γ(1−β) ,
(t−xi)

β
+

Γ(1−β) ,−α ≤ β ≤ k − α − 1, are functions.
The proof can be given without using spaces of generalized functions.

e) Let k > k1 = k − w > 0. If f has only the k1-th derivative in
all points t ∈ [0, T ] except at the points {x1, ..., xr} ⊂ (0, T ) in which

f (p), 0 ≤ p ≤ k1 − 1 has bounded jumps f
(p)
i , i = 1, ..., r, then for t ∈ [0, T )

we have
Dα [f ] = Dk−k1

[
K2

(
−k + α, f (k1)

)]
. (11)

P r o o f.
a) Let t ∈ [ε, T ] , ε > 0, T < ∞. The function f (α) (t) defines the distri-

bution
[
f (α)

] ⊂ D′+ ⊂ D′ (R) . Then

Dα [f ] = ∆α ∗ [f ] = ∆−k+α ∗∆k ∗ [f ]

=
tk−α−1

Γ (k − α)
∗Dk [f ] =

tk−α−1

Γ (k − α)
∗

[
f (k)

]
.

Since k − α− 1 = q > 0, and f (k) ∈ C[0,∞),

f (α) (t) =
1

Γ (k − α)

∫ t

0
f (k) (τ) (t− τ)q dτ

=
tq

Γ (k − α)

∫ t

0
f (k) (τ)

(
1− τ

t

)q
dτ, t > 0. (12)

We will use the binomial formula (cf. [6], p.217)

(1 + z)q = 1 +
N∑

p=1

Γ (q + 1)
Γ (q + 1− p) p!

zp + RN+1,

RN+1 =
Γ (q + 1)

(N + 1)!Γ (q −N)
zN+1

×
∫ 1

0
(N + 1) (1− τ)N (1 + zτ)q−N−1 dτ, (13)

if 1 + zτ 6= 0, τ ∈ [0, 1] . We change the form of the coefficients in (13) using
the equality

Γ (q + 1)
Γ (q + 1− p) p!

=
Γ (p− q) (−1)p

Γ (−q) p!
, 0 < q 6= N.
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Next we prove that f (α) (t) can be written as:

f (α) (t) =
tq

Γ (k − α)

∫ t

0
f (k) (τ)


1 +

∞∑

p=1

Γ (p− q) (−1)p

Γ (−q) p!

(τ

t

)p


 dτ. (14)

Let M = sup
∣∣f (k) (t)

∣∣ , 0 < ε ≤ t ≤ T, then by the asymptotic behavior
of the function Γ (z) :

∣∣∣∣
Γ (p− q) (−1)p

Γ (−q) p!

(τ

t

)p
∣∣∣∣ ≤ C

1
(p + 1)q+1 , t ∈ [ε, T ] , ε > 0, (15)

and 0 ≤ τ ≤ t. From inequality (15) it follows that the series in (14)
converges uniformly in [ε, T ] for every ε > 0 and T < ∞. This proves a).

b) The function f̄ : f̄ (t) = f (t) , t ∈ [0,∞); f̄ (t) = 0, t < 0, is such
that f̄ (p) (t) exists for t 6= 0, 0 ≤ p ≤ k, and f̄ (p) (t) has a jump at t =
0, f (p) (0) , 0 ≤ p ≤ k − 1. Then by (5),

Dα [f ] =
tk−α−1
+

Γ (k − α)
∗

([
f

(k)
0

]
+ f

(k−1)
0 (0) δ (0) + · · ·+ f (0) δ(k−1) (0)

)

=
tk−α−1
+

Γ (k − α)
∗

[
f

(k)
0

]
+ f

(k−1)
0

tk−α−1
+

Γ (k − α)
+ · · ·+ f (0)

t−α
+

Γ (k − α)
,

which proves b).

c) The proof of c) is just the same as the proof of b).

e) To prove (11), we consider

Dα [f ] = ∆α ∗ [f ] = ∆k−k1 ∗∆−k+α ∗∆k1 [f ]

= δ(k−k1) ∗ tk−α−1
+

Γ (k − α)
∗Dk1 [f ]

= Dk−k1

[
K2

(
−k + α, f (k1)

)]
.
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Since,
[
K2

(
−k + α, f (k1)

)]

=
[
K0

(
−k + α, f (k1)

)]
+ f (k1−1) (0)

tk−α−1
+

Γ (k − α)
+ · · ·

+ f (0)
tk−k1−α
+

Γ (1 + k − k1 − α)
+

r∑

i=1

fi
(t− xi)

k−k1−α
+

Γ (1 + k − k1 − α)
+ · · ·

+
r∑

i=1

f
(k1−1)
i

(t− xi)
k−α−1
+

Γ (k − α)
, (16)

we have only to apply Dk−k1 to every addend in (16). We proved in a)
that the series which defines K0

(−k + α, f (k1)
)

converges in C (0,∞) , con-
sequently the Dk−k1 , applied to it, can be realized by applying Dk−k1 on
every term of the series (cf. [9], p.76).

R e m a r k. If β ∈ R+, then (cf. [4])

Jβf (t) =
1

Γ (β)

∫ t

0
f (τ) (t− τ)β−1 dτ, t > 0,

denotes the fractional integral of order β. Since Jβf (t) can be written as

Jβf (t) =
(

τβ−1

Γ (β)
∗ f (τ)

)
(t)

∼=
(
∆−β

)
∗ [f ] = ∆−k−β ∗∆k ∗ [f ]

∼=
[

tk+β−1

Γ (k + β)

]
∗Dk [f ] , (17)

where k ∈ N0 and g ∼= [g] means that [g] is the regular distribution which
corresponds to the function g. The form of Jβf (t) given in (17) allows that
Theorem 1 is applied to the fractional integral.

Also it is easily seen that K1

(−k − β, f (k)
)
(t) and K2

(−k − β, f (k)
)
(t),

β > 0 are functions which define distributions
[
K1

(
k − β, f (k)

)]
and

[
K2

(
k − β, f (k)

)]
.
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4. Approximation of f (α) and estimate of the reminder

We give an approximation of f (α) in cases when it is not a generalized
function (cf. a) and d)) in Theorem 1. In all these cases we can do it by
taking only N terms in the series given by (8). To estimate the reminder
(cf. (13)), let Mt denote

Mt = max
0≤τ≤t

∣∣∣f (k) (τ)
∣∣∣ .

Then
∣∣∣∣

tq

Γ (k − α)

∫ t

0
f (k) (τ) RN+1

(τ

t

)
dτ

∣∣∣∣

≤ tq

Γ (k − α)

∫ t

0

∣∣∣f (k) (τ)
∣∣∣ Γ (N + 1− q)

Γ (1− q) N !

(τ

t

)
dτ

≤ Mt

∣∣∣∣
Γ (N + 1− q)

Γ (k − α) Γ (1− q) N !

∣∣∣∣
tq

tN+1

∫ t

0
τN+1dτ

≤ Mt

∣∣∣∣
Γ (N + 1− q)

Γ (k − α) Γ (1− q) N !

∣∣∣∣
tq+1

(N + 2)
, t ∈ [ε, T ] , ε > 0, T < ∞.

(18)

In this way we obtain

f (α)(t)=
tq

Γ (k−α)


V0

(
f (k)

)
(t) +

N∑

p=1

Γ (p−q)
Γ (−q) p!

1
tp

Vp

(
f (k)

)
(t)


+QN+1 (t) ,

(19)
where

QN+1 (t) =
tq

Γ (k − α)

∫ t

0
f (k) (τ) RN+1

(τ

t

)
dτ. (20)

An estimate of QN+1 (t) is given by (18).

5. Applications

In this section we use the expansion (8) in two particular examples.
E x a m p l e 1. It is known that a viscoelastic body of generalized

Kelvin-Voigt type in a linear, isothermal deformation process is described by
a constitutive equation in the form of so called three parameter model (see
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[7]) given by (1). Suppose further that ε (t) is continuous and has continuous
first derivative, except at the point t = 0 where the first derivative has a
jump ε

(1)
0 . When the expansion (8) with k = 2, p = 1, r = 1, q = 1 − α is

used in (8), we obtain

σ (t) = Eε (t) + Eα
t1−α

Γ (2− α)



ε(1) (t) +

∞∑

j=1

Γ (j + α− 1)
Γ (α− 1) j!

1
tj

Vj

(
ε(2)

)
(t)





+ ε (0)
t−α

Γ (1− α)
+ ε

(1)
0

t1−α

Γ (2− α)
, (21)

with

Vj (t) =
∫ t

0
ε(2) (τ) τ jdτ, j = 1, .... (22)

Let us identify the functions Vj (t) in the constitutive equation (21) as inter-
nal variables ξj , j = 1, .... In the equilibrium, internal variables are governed
by thermodynamic variables while they can be considered as independent
in non-equilibrium evolutions. Then (21) may be written as

σ (t) = E∞ε (t) + Eα

∞∑

i=1

ϕn (t) ξn (t) , (23)

where

ϕ0 (t) =
t1−α

Γ (2− α)
;

ϕn (t) =
t1−α

Γ (2− α)
Γ (n + α− 1)
Γ (α− 1)n!

1
tn

; n = 1, 2, ... (24)

and the internal variables evolution law is

ξ(1)
n (t) = ε(2) (t) tn, n = 0, 1, ... (25)

The internal variables are not components of a vector (since this is ruled out
by the principle of material frame indifference, see [3]), but as a collection
of scalar parameters. To derive the thermodynamical restrictions on the
constitutive equation (23),(25) we follow the procedure used in [1] (see also
[5] where other procedures are discussed). Thus, we consider a rod loaded
as shown in Figure 1. We assume that the rod is deformed homogeneously
so that the only independent variable is the time t.



374 T. M. Atanackovic, B. Stankovic

Figure 1: Loading configuration

The length of the rod is L in the undeformed state and l (t) during the
deformation. The rod is loaded by the force P and F is the cross-sectional
area in the undeformed state. Thus stress, σ referred to the cross-sectional
area of the unloaded rod and strain ε are given by

σ (t) =
P

F
and ε (t) =

l

L
− 1. (26)

We describe a state of the body by two types of variables: the strain ε (t)
and a set of internal variables ξn (t) , n = 1, 2, .... The equilibrium state of
the unloaded body corresponds to

ε = 0, ξ = 0. (27)

Thus the internal energy U, the entropy S and the free energy U − TS are
all functions of ε, (or l) and ξn, n = 1, 2, ... The Gibbs equation for the free
energy U − TS reads

(U − TS)(1) = σV ε(1) −
∞∑

n=0

Θnξ(1)
n . (28)

T is the temperature, assumed to be constant. Θn is the ”force” associated
with the internal variable ξn so that Θn

dξn

dt is the power of the force Θn,
and V is the volume of the body which is assumed to be constant. Since
σ is linear in ε and ξn (see (23)), we assume that Θn are also linear in the
same variables so that
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Θn = γnε +
∞∑

s=0

∆nsξs, (29)

where γn (t) and ∆sn (t) , s, n = 1, ... are specified constitutive functions.
Note that with (23) the force P is given as

P (t) = F

[
E∞ε (t) + Eα

∞∑

i=1

ϕn (t) ξn (t)

]
. (30)

The integrability for the free energy (∂σ/∂ξn = −∂Θn/∂ε) requires

Eαϕn (t) = −γn. (31)

Therefore, with (31) the constitutive equations for σ and Θn become

σ (t) = E∞ε (t) + Eα

∞∑

i=1

ϕn (t) ξn (t) ,

Θn(t) = −Eαϕn (t) ε(t) +
∞∑

s=0

∆ns(t)ξs(t), n = 0, 1, .... (32)

We return to the Gibbs equation (28) in which we replace dU
dt = U (1) and

dξn

dt = ξ
(1)
n by the equations of balance of energy and of internal variable,

viz.

U (1) = Q(1) + σV ε(1) (t) ,

ξ(1)
n = ε(2) (t) tn, n = 0, 1, ..., (33)

Q(1) is the heating. Thus from (27) we obtain an equation of balance of
entropy in the form

S(1) − Q(1)

T
=

∞∑

n=0

Θn

T
ξ(1)
n =

∞∑

n=0

Θn

T
ε(2) (t) tn ≥ 0, (34)

where we have indicated that the entropy production is non-negative. The
condition (34) is equivalent to the equation (4.2) of [5]. The requirement
that the equilibrium configuration (ε0 = (ξ1)0 = (ξ2)0 = ... = 0) is stable
leads to the condition that Gibbs free energy U − TS − Pl tends to a
minimum at (ε0 = (ξ1)0 = (ξ2)0 = ... = 0). This condition is equivalent to




∂σ
∂ε

∂σ
∂ξ1

. ∂σ
∂ξn .

−∂Θ1
∂ε −∂Θ1

∂ξ1
. −∂Θ1

∂ξn
.

. . . . .

−∂Θn
∂ε −∂Θn

∂ξ1
. −∂Θn

∂ξn
.

. . . . .




, positive definite, (35)
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or 


E∞ Eαϕ1 . Eαϕn .
Eαϕ1 (t) −∆11 . −∆1n .

. . . . .
Eαϕn (t) −∆n1 . −∆nn .

. . . . .




, positive definite. (36)

The condition (36) is satisfied if we take, for example, E∞ > 0, Eα > 0 and
∆mn = −δnm, where δmn is the Kronecker symbol. We analyze next (34).
By using (29) this condition leads to

1
T

∞∑

n=0

{
−Eαϕn (t) ε (t)−

∫ t

0
ε(2) (τ) τndτ

}
ε(2) (t) tn ≥ 0, t ≥ 0. (37)

Note that (see (24),(25)), ϕn (t) > 0, n = 1, 2, .... It is obvious that, the con-
dition (37) cannot be satisfied for all t ≥ 0 and arbitrary ε (t) . For example,
let ε = ε0 sinωt with ε0 and ω being constants. For sufficiently small t the
condition (37) is violated. Thus, the constitutive equation (1) does not sat-
isfy the restrictions following from the second law of Thermodynamics. This
result, obtained here by the method of internal variables, is in agreement
with the conclusion reached in [2] by using different approach.

E x a m p l e 2. Consider the problem of expanding the α−th derivative
of a function that is not analytic. Thus, we consider the function

f (t) =
{

0, 0 ≤ t ≤ 1
(t− 1)2 , t ≥ 1

. (38)

Its derivative of the order α = 1/2 is

f (1/2) (t) =

{
0, 0 ≤ t ≤ 1
1√
π

8
3 (t− 1)3/2 , t ≥ 1 . (39)

In this case k = 2, r = 1, q = 1− α = 1/2. From (19) we have

f (1/2) (t) =
t1/2

Γ (2− 1/2)


V0

(
f (2)

)
(t) +

∞∑

p=1

Γ (p− 1/2)
Γ (−1/2) p!

1
tp

Vp

(
f (k)

)

 .

Since

f (2) (t) =
{

0, 0 ≤ t ≤ 1
2, t > 1

,

it follows that
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Vp

(
f (2)

)
(t) =

{
0, 0 ≤ t ≤ 1
2 tp+1−1

p+1 , t > 1, p = 0, 1,
.

Therefore the series (8) becomes

f (1/2) (t) =





0 , 0 ≤ t ≤ 1

4t1/2√
π


(t− 1) +

∞∑

p=1

Γ(p−1/2)
−2
√

πp!
1
tp

tp+1−1
p+1


 , t ≥ 1

.

(40)
By calculating the first ten terms (N = 10 in (19)), we obtain

f (1/2) (t) =
4t

1
2√
π

(
(t− 1)− 1

4
t2 − 1

t
− 1

24
t3 − 1

t2
− 1

64
t4 − 1

t3

− 1
128

t5 − 1
t4

− 7
1536

t6 − 1
t5

− 3
1024

t7 − 1
t6

− 33
16384

t8 − 1
t7

− 143
98304

t9 − 1
t8

− 143
131072

t10 − 1
t9

− 221
262144

t11 − 1
t10

− ...

)
,

t ≥ 1. (41)

In Figure 2 we draw the exact expression (39) and the approximation
given by (41) for t ≥ 1.

Figure 2: Exact and approximate value of the derivative

6. Conclusions

In this note we proved an expansion formula for fractional derivatives
given by (8). It contains integer derivatives up to the finite order k and time
moments of k-th derivative, given by (6). The mechanical interpretation of
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the moments, as internal variables, leads to the possibility of applying the
Clausius-Duhem inequality for materials with internal variables in order
to obtain the restrictions on the coefficients in the constitutive equations.
Also it allows for determining series expansion of fractional derivatives for
functions that are not analytic.
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