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Abstract

The paper is devoted to the study of the Cauchy problem for a nonlinear
differential equation of complex order with the Caputo fractional derivative.
The equivalence of this problem and a nonlinear Volterra integral equation
in the space of continuously differentiable functions is established. On the
basis of this result, the existence and uniqueness of the solution of the
considered Cauchy problem is proved. The approximate-iterative method
by Dzjadyk is used to obtain the approximate solution of this problem. Two
numerical examples are given.

2000 Mathematics Subject Classification: 34A12, 34B15, 26A33, 65L10
Key Words and Phrases: differential equation of fractional order, Ca-

puto derivative, existence and uniqueness theorem, approximate-iterative
method

1. Introduction

Let Iα
a+g and Dα

a+y be the Riemann-Liouville fractional integrals and
derivatives of a complex order α ∈ C (Re(α) > 0) on a finite interval [a, b]
of the real line R = (−∞;∞):

(
Iα
a+g

)
(x) =

1
Γ (α)

∫ x

a

g(t)dt

(x− t)1−α
, (α ∈ C, Re(α) > 0), (1.1)
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(
Dα

a+y
)
(x) ≡ (

DnIn−α
a+ y

)
(x) =

(
d

dx

)n 1
Γ(n− α)

∫ x

a

y(t)dt

(x− t)1−n+α
(1.2)

(
n = [Re(α)] + 1;D =

d

dx

)
,

where [Re(α)] is an integer part of Re(α) [14, §§ 2.3, 2.4]. Denote by cDα
a+y

a modified fractional derivative defined by

(
cDα

a+y
)
(x) =


Dα

a+


y(x)−

n−1∑

j=0

y(j)(a)
j!

(t− a)j





 (x) (α ∈ C, Re(α) > 0),

(1.3)
n = [Re(α)] + 1 for α /∈ N = {1, 2, ...}, n = α for α ∈ N. (1.4)

If α > 0, n − 1 < α ≤ n (n ∈ N) and y(x) ∈ Cn[a, b] is a function, n
times continuously differentiable on [a, b], then for α = n ∈ N the Caputo
derivative cDα

a+y coincides with the usual derivative of order n:

(
cDn

a+y
)
(x) = (Dny) (x)

(
n ∈ N ; D =

d

dx

)
, (1.5)

while for n − 1 < α < n the operator cDα
a+ is represented as a composi-

tion of the Riemann-Liouville fractional integration operator In−α
a+ and the

differentiation operator Dn:

(
cDα

a+y
)
(x) =

(
In−α
a+ Dny

)
(x)

(
n− 1 < α < n, n ∈ N ; D =

d

dx

)
. (1.6)

Expression (1.6) was introduced by Caputo [1] in connection with the prob-
lems of elasticity (see also [2]-[3]), and therefore the constructions (1.3) and
(1.6) are called Caputo derivatives of order α ∈ C; see [5], [11], [13, § 2.4.1].

Boundary value problems for the so-called differential equations of frac-
tional order, in which an unknown function is under the sign of fractional
derivative, were studied by many authors; see historical remarks and results
in the monograph [14, §§ 42− 43] and in the survey paper [8]. The interest
to such problems is arisen by their applications in problems of physics, me-
chanics and other applied sciences; see [5], [12], [13]. Related to the above
problems, boundary value problems with the Riemann-Liouville fractional
derivative (1.2) were more extensively investigated (see for example [14,
§§ 42], [8]), while problems involving the Caputo fractional derivative (1.3)
were studied less.
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The present paper deals with investigation of the Cauchy problem for
the nonlinear differential equation of order α ∈ C (Re(α) > 0):

(
cDα

a+y
)
(x) = f [x, y(x)] (α ∈ C, Re(α) > 0) (1.7)

with the initial conditions

y(k)(a) = bk bk ∈ C (k = 0, 1, ..., n− 1; n = [Re(α)] + 1). (1.8)

When α = m ∈ N, then in accordance with (1.5), the problem (1.7)-
(1.8) takes the form of the Cauchy problem for the ordinary differential
equation of order m:

y(m)(x) = f [x, y(x)], y(k)(a) = bk ∈ C (k = 0, 1, ...,m− 1), (1.9)

which is well studied; for example, see [15, p. 113-121]. Note also that
the Cauchy-type problem for the model nonlinear fractional differentiation
of the form (1.7), in which the Caputo derivative cDα

a+y is replaced by
the Riemann-Liouville fractional derivative Dα

a+y, in the weighted space
Cn−α[a, b] of continuous functions y(x) such that (x − a)αy(x) ∈ C[a, b],
was investigated in [7]. In particular, when α ∈ N, the problem considered
was reduced to the Cauchy problem (1.9), and the existence and uniqueness
result for such a problem in the space Cn[a, b] was proved.

We study the Cauchy problem (1.7)-(1.8) with complex α ∈ C (Re(α) >
0, α /∈ N), in a Banach space Cn−1[a, b] of n− 1 times continuously differ-
entiable functions:

Cn−1[a, b] =

{
g : ‖g‖Cn−1 =

n−1∑

k=o

‖g(k)‖C , n = [Re(α)] + 1

}
, (1.10)

C0[a, b] = C[a, b],

provided that a function f [x, y] maps from [a, b]× Y (Y ⊂ R) into R, and
for any fixed y ∈ Y it is continuous function with respect to x on [a, b]. First
we prove the existence of a unique solution y(x) ∈ Cn−1[a, b] of the Cauchy
problem (1.7)-(1.8) on the basis of the equivalence of this problem and the
nonlinear Volterra integral equation

y(x) =
n−1∑

j=0

bj

j!
(x− a)j +

1
Γ(α)

x∫

a

f [t, y(t)]
(x− t)1−α

dt (Re(α) > 0, α /∈ N). (1.11)
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Then we apply the approximte-iterative method (AI-method) by Dzjadyk
[4] to deduce the approximate solution of (1.7)-(1.8).

The paper is organized as follows. In Section 2 we use properties of
the Riemann-Liouville fractional integrals and derivatives (1.1) and (1.2) to
prove the equivalence of the Cauchy problem (1.7)-(1.8) and the nonlinear
Volterra integral equation (1.11) in the space Cn−1[a, b]. Using this fact and
applying the method of successive approximation, in Section 3 we establish
the existence of a unique solution of (1.7)-(1.8). Section 4 ad 5 deal with
application of Dzyadyk’s method to construct the approximate solution of
the Cauchy problem (1.7)-(1.8) with α > 1, and to derive the estimate
between the exact and approximate solutions. Numerical results are given
in Section 6.

2. Equivalence of Cauchy problem and Volterra integral equation

In this section we prove that the Cauchy problem (1.7)-(1.8) and the
Volterra integral equation (1.12) are equivalent in the space Cn−1[a, b], in
the sense that if y(x) ∈ Cn−1[a, b] satisfies one of these relations, it also
satisfies the other one.

We need the following auxiliary assertion.

Lemma 1. If α ∈ C (Re(α) > 0, α /∈ N)) and n = [Re(α] + 1, then
the Riemann-Liouville fractional integration operator Iα

a+ is bounded from
C[a, b] to Cn−1[a, b]:

‖Iα
a+g‖Cn−1 ≤ K‖g‖C , K =

n−1∑

k=0

(b− a)Re(α)−k

|Γ(α− k)|[Re(α)− k]
. (2.1)

P r o o f. Let g(t) ∈ C[a, b]. By [7, Corollary 1], DkIα
a+g = Iα−k

a+ g for
k = 0, 1, · · · , n − 1. Using (1.10) and taking [6, Lemma 11] (see also [7,
(3.11)]) into account, we have for any x ∈ [a, b]:

|Iα
a+g|Cn−1 =

n−1∑

k=0

‖Iα−k
a+ g‖C ≤ ‖g‖C

n−1∑

k=0

(b− a)Re(α)−k

|Γ(α− k)|[Re(α)− k]
,

which yields (2.1).
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Theorem 1. Let α ∈ C (Re(α) > 0, α /∈ N), and n = [Re(α)]+1. Let
f [x, y] : [a, b]× Y → R (Y ⊂ R) be a continuous function with respect to x
on [a, b] for any fixed y ∈ Y .

If y(x) ∈ Cn−1[a, b], then y(x) satisfies the relations (1.7) and (1.8) if
only if y(x) satisfies the Volterra integral equation (1.11).

P r o o f. First we prove Necessity: Let y(x) ∈ Cn−1[a, b] satisfy (1.7)-
(1.8). Since f [x, y] ∈ C[a, b] for any y ∈ Y , then (1.7) means that there
exists

(
cDα

a+y
)
(x) ∈ C[a, b]. By (1.2) and (1.3)

(
cDα

a+y
)
(x) =

(
d

dx

)n

In−α

a+


y(t)−

n−1∑

j=0

y(j)(a)
j!

(t− a)j





 (x), (2.2)

where n = [Re(α)]+1, and therefore on the basis of [6, Lemma 2] (see also
[7, Lemma 3] with γ = 0),


In−α

a+


y(t)−

n−1∑

j=0

y(j)(a)
j!

(t− a)j





 (x) ∈ Cn[a, b].

Applying [6, Lemma 5] (see also [7, Corollary 3 with γ = 0]) to g(t) =

y(t)−
n−1∑
j=0

y(j)(a)
j! (t− a)j and using the formula (3.17) from [7], we find

(
Iα
a+

cDα
a+y

)
(x) =


Iα

a+Dα
a+


y(t)−

n−1∑

j=0

y(j)(a)
j!

(t− a)j





 (x)

= y(x)−
n−1∑

j=0

y(j)(a)
j!

(x− a)j −
n∑

k=1

y
(n−k)
n−α (a)

Γ(α− k + 1)
(x− a)α−k, (2.3)

where

yn−α(x) =


In−α

a+


y(t)−

n−1∑

j=0

y(j)(a)
j!

(t− a)j





 (x). (2.4)

Integrating by parts in (2.3) and then differentiating the equation ob-
tained, and using the relation (3.16) from [6, Lemma 4] (see also [7, Corollary
1] with β = 1), we have

y′n−α(x) =
d

dx


In+1−α

a+


y′(t)−

n−1∑

j=1

y(j)(a)
(j − 1)!

(t− a)j−1





 (x)
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=


In−α

a+


y′(t)−

n−1∑

j=1

y(j)(a)
(j − 1)!

(t− a)j−1





 (x).

Repeating this process (n − k) (k = 0, 1, ..., n − 1) times, we come to the
formula

y
(n−k)
n−α (x) =


In−α

a+


y(n−k)(t)−

n−1∑

j=n−k

y(j)(a)
(j − n + k)!

(t− a)j−n+k





 (x).

(2.5)
Changing the variable t = a + s(x− a), we obtain for k = 1, 2, ..., n

y
(n−k)
n−α (x) =

(x− a)n−α

Γ(n− α)

1∫

0

(1− s)n−α−1
{

y(n−k)[a + s(x− a)]

−
n−1∑

j=n−k

y(j)(a)
(j − n + k)!

[s(x− a)]j−n+k
}

ds. (2.6)

Since Re(α) < n and y(n−k)(x) ∈ C[a, b] (k = 1, ..., n), then from (2.6) it
follows that y

(n−k)
n−α (a) = 0 (k = 1, ..., n), and hence (2.3) takes the form

(
Iα
a+

cDα
a+y

)
(x) = y(x)−

n−1∑

j=0

y(j)(a)
j!

(x− a)j . (2.7)

Let now
M = max

(x,y)∈[a,b]×Y
|f [x, y]| < ∞. (2.8)

By Lemma 1, Iα
a+f [t, y(t)] ∈ Cn−1[a, b] and, in accordance with (2.1), there

holds the estimate

|Iα
a+f [t, y(t)]|Cn−1[a,b] ≤ M

n−1∑

k=0

(b− a)Re(α)−k

|Γ(α− k)|[Re(α)− k]
. (2.9)

Applying the operator Iα
a+ to the both sides of (1.7) and using (2.7) and

(1.8), we obtain the equation (1.11), and hence necessity is proved.

Now we prove Sufficiency: Let y(x) ∈ Cn−1[a, b] satisfies the equation
(1.11). Show that y(x) satisfies the initial relations (1.8). Differentiating
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both sides of (1.11) and using [6, Lemma 4] (see also [7, Corollary 1]) we
have (k = 1, ..., n− 1):

y(k)(x) =
n−1∑

j=k

bj

(j − k)!
(x− a)j−k +

1
Γ(α− k)

x∫

a

f [t, y(t)]
(x− t)1−α+k

dt. (2.10)

Making the change of variable t = a + s(x − a) in integrals of (1.11) and
(2.10), we find for k = 0, 1, ..., n− 1:

y(k)(x)=
n−1∑

j=k

bj

(j−k)!
(x−a)j−k +

(x−a)α−k

Γ(α−k)

1∫

0

f [a+s(x−a), y(a+s(x−a))]
(1−s)1−α+k

ds.

Taking a limit, as x → a+, and using the continuity of f , we come to the
relations (1.8).

Applying the operator Dα
a+ to both sides of (1.11), taking into account

[6, Lemma 4], the initial conditions (1.8), [6, Lemma 4] (see also [7, Corollary
1]) and (1.3), we obtain the relation (1.7). Thus sufficiency is proved which
completes the proof of theorem.

Corollary 1. Let α ∈ C, 0 < Re(α) < 1, and let f [x, y] : [a, b]×Y →
R (Y ⊂ R) be a continuous function with respect to x on [a, b] for any fixed
y ∈ Y .

If y(x) ∈ Cn−1[a, b], then y(x) satisfies the relations
(
cDα

a+y
)
(x) = f [x, y(x)] (0 < Re(α) < 1), y(a) = b ∈ C (2.11)

if only if y(x) satisfies the Volterra integral equation

y(x) = b +
1

Γ(α)

x∫

a

f [t, y(t)]
(x− t)1−α

dt (0 < Re(α) < 1). (2.12)

3. Existence and uniqueness of the solution
of the Cauchy problem and

connection between the exact and approximate solutions

In this section we establish the existence and uniqueness of the solution
of the Cauchy problem (1.7)-(1.8) in the space of functions Cn−1,α[a, b]
defined by

Cn−1,α[a, b] =
{
y ∈ Cn−1[a, b], cDα

a+y ∈ C[a, b], n = [Re(α)] + 1
}

,
(3.1)
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under conditions of Theorem 1 and an additional Lipschitz condition of
f [x, y] with respect to y: there exists L > 0 such that for any x ∈ [a, b] and
any y1, y2 ∈ Y there holds the inequality

|f [x, y1]− f [x, y2]| ≤ L|y1 − y2| (L > 0). (3.2)

Theorem 2. Let α ∈ C ( Re(α) > 0, α /∈ N), n = [Re(α)] + 1, let
f [x, y] : [a, b] × Y → R (Y ⊂ R) satisfy the conditions of Theorem 1, and
let the relation (3.2) hold.

Then there exists a unique solution y(x) of the Cauchy problem (1.7)-
(1.8) in the space Cn−1,α[a, b].

P r o o f. First we show that there exists a unique solution y(x) ∈
Cn−1[a, b] of (1.7)-(1.8). By Theorem 1 it is sufficient to prove the existence
of an unique solution y(x) ∈ Cn−1[a, b] of the nonlinear Volterra integral
equation (1.11). To this end we use the known method for nonlinear Volterra
integral equations; for example, see [9]. The equation (1.11) has a sense in
any interval [a, x1] ⊂ [a, b]. Choose x1 such that there holds the inequality

L
(x1 − a)Re(α)

|Γ(α)|Re(α)
< 1 (3.3)

and prove the existence of an unique solution y(x) ∈ Cn−1[a, x1] of the
equation (1.11) on the interval [a, x1]. For this we apply the method of
successive approximations and set

y0(x) =
n−1∑

j=0

bj

j!
(x− a)j , (3.4)

yν(x) = y0(x) +
1

Γ(α)

x∫

a

f [t, yν−1(t)]
(x− t)1−α

dt (ν ∈ N). (3.5)

We show that yν(x) ∈ Cn−1[a, b]. From (3.4) it follows that y0(x) ∈
Cn−1[a, b]. Differentiating (3.5) k (k = 1, · · · , n − 1) times and using [6,
Lemma 4) (see also [7, Corollary 1]), we have

y(k)
ν (x) = y

(k)
0 (x) +

1
Γ(α− k)

x∫

a

f [t, ym−1(t)]dt

(x− t)1−(α−k)
(k = 1, . . . , n− 1; ν ∈ N).

(3.6)
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By (3.4) and Lemma 1, yν(x) ∈ Cn−1[a, b].

Now we estimate ‖yν(x)− yν−1(x)‖Cn−1 for m ∈ N. By (3.4) and (3.5),
using the inequality (2.1) and the relation (2.8), we find

‖y1(t)− y0(t)‖Cn−1[a,x1] ≤ M
n−1∑

k=0

(x1 − a)Re(α−k)

|Γ(α− k)|Re(α− k)
. (3.7)

Using again (2.1) and taking into account (3.2) and (3.7), we deduce

‖y2(x)− y1(x)‖Cn−1[a,x1] =
n−1∑

k=0

∥∥∥Iα−k
a+ (f [x, y1(x)]− f [x, y0(x)])

∥∥∥
C[a,x1]

≤
n−1∑

k=0

(x1 − a)Re(α−k)

|Γ(α− k)|Re(α− k)
‖y1(x)− y0(x)‖C[a,x1]

≤ LM
n−1∑

k=0

(x1 − a)Re(α−k)

|Γ(α− k)|Re(α− k)
(x1 − a)Re(α)

|Γ(α)|Re(α)
.

Repeating such an estimate ν times, we arrive at the inequality

‖yν − yν−1‖Cn−1[a,x1] ≤ M
n−1∑

k=0

(x1 − a)Re(α−k)

|Γ(α− k)|Re(α− k)

(
L

(x1 − a)Re(α)

|Γ(α)|Re(α)

)ν−1

.

By (3.3), from here it follows that the sequence {yν(x)} tends to a certain
limit function y(x) ∈ Cn−1[a, x1]:

lim
ν→∞ ‖yν(x)− y(x)‖Cn−1[a,x1] = 0. (3.8)

By (2.1) (with b = x1 and g(t) being replaced by f [t, yν(t)]− f [t, y(t)]) and
the Lipschitz condition (3.2), we have

∥∥∥∥∥∥
1

Γ(α)

x∫

a

f [t, yν(t)]dt

(x− t)1−α
− 1

Γ(α)

x∫

a

f [t, y(t)]dt

(x− t)1−α

∥∥∥∥∥∥
Cn−1[a,x1]

≤ L
n−1∑

k=0

(x1 − a)Re(α−k)

|Γ(α− k)|Re(α− k)
‖yν(x)− y(x)‖Cn−1[a,x1],



306 A.A. Kilbas, S.A. Marzan

and hence

lim
ν→∞

∥∥∥∥∥∥
1

Γ(α)

x∫

a

f [t, yν(t)]dt

(x− t)1−α
− 1

Γ(α)

x∫

a

f [t, y(t)]dt

(x− t)1−α

∥∥∥∥∥∥
Cn−1[a,x1]

= 0. (3.9)

It follows from (3.8) and (3.9) that y(x) is the solution of the equation (1.11)
in the space Cn−1[a, x1].

Now show that this solution y(x) is a unique. We suppose that there
exist two solutions y1(x) y2(x) of the equation (1.11) on [a, x1]. Substituting
them into (1.11) and applying (2.1) and (3.2), we have

|y1(x)−y2(x)| = ∣∣Iα
a+(f [t, y1(t)]− f [t, y2(t)])

∣∣ ≤ L
(x1 − a)Re(α)

|Γ(α)|Re(α)
|y1(t)−y2(t)|.

(3.10)
This relation yields

L
(x1 − a)Re(α)

|Γ(α)|Re(α)
≥ 1,

which contradicts the assumption (3.3). Thus there exists an unique solution
y(x) = y1(x) ∈ Cn−1[a, x1] on the interval [a, x1].

Next consider the interval [x1, x2], where x2 = x1 + h1, and h1 > 0 are
such that x2 < b. Rewrite the equation (1.11) in the form

y(x) =
1

Γ(α)

x∫

x1

f [t, y(t)]dt

(x− t)1−α
+

n−1∑

k=0

bk

k!
(x−a)k+

1
Γ(α)

x1∫

a

f [t, y(t)]dt

(x− t)1−α
, x ∈ [x1, x2].

(3.11)
Since the function y(x) is uniquely defined on the interval [a, x1], the last
integral can be considered as the known function, and we rewrite the last
equation in the form

y(x) = y∗0(x) +
1

Γ(α)

x∫

x1

f [t, y(t)]dt

(x− t)1−α
, (3.12)

where

y∗0(x) =
n−1∑

k=0

bk

k!
(x− a)k +

1
Γ(α)

x1∫

a

f [t, y(t)]dt

(x− t)1−α
(3.13)

is the known function. Taking the same arguments as above, we deduce that
there exist an unique solution y(x) = y2(x) ∈ Cn−1[x1, x2] of the equation
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(1.11) on the interval [x1, x2]. Taking the next interval [x2, x3], where x3 =
x2 + h2 and h2 > 0 are such that x3 < b, and repeating this process,
we obtain that there exists an unique solution y(x) ∈ Cn−1[a, b] of the
equation (1.11) such that y(x) = yk(x) ∈ Cn−1[xk−1, xk] (k = 1, 2, · · · , l),
where a = x1 < x2 < · · · < xl = b.

Thus, there exists an unique solution y(x) ∈ Cn−1[a, b] of the equation
(1.11).

To prove that this solution y(x) ∈ Cn−1,α[a, b], by (3.1) it is sufficient
to show that cDα

a+y ∈ C[a, b]. In accordance with (3.8), there holds the
relation

lim
ν→∞ ‖yν(x)− y(x)‖Cn−1[a,b] = 0. (3.14)

Using (1.7) and the Lipschitz condition (3.2), we obtain

‖ (
cDα

a+yν

)
(x)− (

cDα
a+y

)
(x)‖C[a,b] = ‖f [x, yν(x)]− y[x, y(x)]‖C[a,b]

≤ L‖yν(x)− y(x)‖C[a,b].

Hence, by (3.14), cDα
a+y ∈ C[a, b].

Thus, there exists a unique solution y(x) of the integral equation (1.11)
and hence of the Cauchy problem (1.7)-(1.8) in the space in the space
Cn−1,α[a, b]. This completes the proof of theorem.

Now we give an estimate between the exact solution y(x) of the Cauchy
problem (1.7)-(1.8) and the approximate functions ym(x) given in (3.5).

Theorem 3. Let α ∈ C ( Re(α) > 0, α /∈ N), n = [Re(α)] + 1, let a
function f [x, y] : [a, b]× Y → R (Y ⊂ R) satisfy the conditions of Theorem
2, and let the inequality

L
(b− a)Re(α)

|Γ(α)|Re(α)
< 1 (3.15)

be valid.
Then any function yν(x) (ν ∈ N) defined by (3.5), approximates the

solution y(x) in such a way that there holds the estimate

|y(x)− yν(x)| ≤
(

(b− a)Re(α)

|Γ(α)|Re(α)

)ν+1
MLν

1− L (b−a)Re(α)

|Γ(α)|Re(α)

, (3.16)

where M and L are given in (2.8) and (3.2), respectively.
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P r o o f. By (3.5) and (2.9) (for n = 1), we have

|y1(x)− y0(x)| ≤ M(b− a)Re(α)

|Γ(α)|Re(α)
.

Using this estimate and (3.2), we find

|y2(x)− y1(x)| ≤
∣∣∣∣∣∣

L

Γ(α)

x∫

a

y1(t)− y0(t)
(x− t)1−α

dt

∣∣∣∣∣∣
≤ LM

(
(b− a)Re(α)

|Γ(α)|Re(α)

)2

.

Continuing this process, for any ν ∈ N we obtain the estimate:

|yν(x)− yν−1(x)| ≤ M
(b− a)Re(α)

|Γ(α)|Re(α)

(
L

(b− a)Re(α)

|Γ(α)|Re(α)

)ν−1

(ν ∈ N). (3.17)

Applying (3.17) and taking the condition (3.15) into account, for any
x ∈ [a, b] we have

|y(x)− yν(x)| = lim
k→∞

|yν+k(x)− yν(x)|

= |[yν+1(x)− yν(x)] + [yν+2(x)− yν+1(x)] + · · · |

≤ MLν

(
(b− a)Re(α)

|Γ(α)|Re(α)

)ν+1

+ MLν+1

(
(b− a)Re(α)

|Γ(α)|Re(α)

)ν+2

+ · · ·

= MLν

(
(b− a)Re(α)

|Γ(α)|Re(α)

)ν+1

1+L

(b− a)Re(α)

|Γ(α)|Re(α)
+

(
L

(b− a)Re(α)

|Γ(α)|Re(α)

)2

+ · · ·

 .

From here we deduce the estimate (3.16), which completes the proof of
theorem.

From (3.16) it follows that ym(x) converges sufficiently fast to the solu-
tion y(x) of the Cauchy problem (1.7)-(1.8). However, as a rule, the iterative
process given by (3.5) is difficult to use for an effective construction of ym(x)
because of an integration operation.

In the next two sections we present a method without an integration
operation, which under the conditions on f [x, y] given in Section 2, allows
us to obtain almost the same results that can be deduced by the method of
successive approximations.
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4. AI-method. Auxiliary results

This and next sections deal with an approximate solution of the Cauchy
problem for the fractional differential equation (1.7) of order α > 1 with the
initial conditions (1.8). For this we apply the iterative-approximate method
developed in [4, p. 98-120], to an approximate solution of the nonlinear
Volterra integral equation (1.11). To this end, we rewrite the equation
(1.11) in the form

y(x) = g(x) +
1

Γ(α)

x∫

a

f [t, y(t)]K(x, t)dt (α > 1), (4.1)

where

g(x) =
n−1∑

j=0

bj

j!
(x− a)j , (4.2)

K(x, t) = (x− t)α−1. (4.3)

In this section we present some auxiliary results. We shall use stan-
dard Lagrange interpolation polynomials Ln, obtained by the mapping of
standard Lagrange polynomials L∗n, constructed at interpolation points

ξ
(l)
j = − cos

jπ

l
(j = 0, . . . , l),

from [−1, 1] into [a, b]; see [10, p.399]. This mapping is carried out by the
formula

t = a +
(b− a)(1 + ξ)

2
,

and therefore Ln is an interpolation polynomial constructed at interpolation
points

t
(l)
j = a +

(b− a)(1 + ξ
(l)
j )

2
(j = 0, . . . , l). (4.4)

It is known [4, p.111] the estimate
2
π

ln(n− 1) ≤ ‖L∗n‖ ≤
2
π

ln n + 1, (4.5)

and the relation

‖Ln‖ = ‖L∗n‖. (4.6)

Since the interpolation points ξ
(l)
j = − cos jπ

l (j = 0, . . . , l) are roots of
the polynomial
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◦
U l+1 (x) = (1− x2)Ul−1(x) =

√
1− x2 sin(l arccos x),

where Ul−1(x) is the Chebyshev polynomial of second kind of power l − 1
[4, (I.1.27)], then the fundamental polynomials l

∗(l)
j (ξ) can be represented

in the form [4, (I.3.20)]

l
∗(l)
j (ξ) = l

∗(l)
j (l; ξ) =

◦
U l+1 (ξ)

(ξ − ξ
(l)
j )

◦
U
′
l+1 (ξ(l)

j )

=
εj

l

[
1− (−1)l−jTl(ξ) + 2

l∑

ν=1

(−1)ν cos(jνπ)
l

Tν(ξ)

]
, (4.7)

where ε0 = εl = 1
2 and εj = 1 for any j = 1, 2, . . . , l − 1 and Tν(ξ) is the

Chebyshev polynomial of first kind.
On the basis of these fundamental polynomials for fixed natural l ∈ N

and m ∈ N we construct the matrix of numbers

a
(l,m)
ij =

ξ
(l)
i∫

−1

l
∗(l)
j (ξ)dξ (i = 0, . . . , l; j = 0, . . . , m),

see explicit expressions below in Lemma 3.
Denote by A an integral operator in the right-hand side of (4.1):

(Ay)(x) =
1

Γ(α)

x∫

a

f [t, y(t)]K(x, t)dt. (4.8)

Suppose that K(x, t) ≡ 0 for x ≤ t, and define the interpolation polynomial
operator A by

(Ay)(x) =
1

Γ(α)

l∑

i=0

t
(l)
i∫

a

m∑

j=0

f
[
t
(m)
j , y

(
t
(m)
j

)]
K

(
t
(l)
i , t

(m)
j

)
l
(m)
j dt · l(l)i (x).

(4.9)
Here the interpolation points t

(l)
i and t

(m)
j are defined by (4.4), while l

(l)
i (x)

and l
(m)
j are fundamental Lagrange polynomials at points of interpolation

t
(l)
i and t

(m)
i , respectively.

Using the iterative process with respect to ν, construct functions yν(x)
of the form

y0 = g(x), yν = g(x) + Ayν−1, ν = 1, 2, · · · . (4.10)
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Lemma 2. yν(x) are algebraic polynomials of the form

y0(x) = g(x), yν(x) = g(x) +
b− a

2Γ(α)

l∑

i=0

m∑

j=0

a
(l,m)
ij

× f
[
t
(m)
j , yν−1

(
t
(m)
j

)]
K

(
x

(l)
i , t

(m)
j

)
l
(l)
i (x), (4.11)

where l
(l)
i and l

(m)
j are fundamental Lagrange polynomials at interpolation

points t
(l)
i and t

(m)
j , respectively.

P r o o f. For ν = 0 the lemma follows from (4.10) and (4.2).
Let ν ∈ N. Making the change of variable t = a+ b−a

2 (ξ +1), and using

the notation l
(m)
j (t) := l

∗(m)
j

[
−1 + 2

b−a(t− a)
]
, we have

t
(l)
i∫

a

l
(m)
j (t)dt =

t
(l)
i∫

a

l
∗(m)
j

[
−1 +

2
b− a

(t− a)
]

dt

=
b− a

2

ξ
(l)
i∫

−1

l
∗(m)
j (ξ)dξ =

b− a

2
a

(l,m)
ij (i = 0, · · · , l; j = 0, · · · ,m). (4.12)

Thus lemma is proved.

The next assertion yields the explicit form for a
(l,m)
ij .

Lemma 3. Let l, m ∈ N (i = 0, . . . , l; j = 0, . . . , m). Then

a
(l,m)
ij =

εj

m

{
1− C

(l)
i +

1
2
C

(m)
j (1− C

(l)
2i )

+
m∑

ν=2

ενC
(m)
jν


C

(l)
(ν−1)i

ν − 1
−

C
(l)
(ν+1)i

ν + 1
− 2

ν2 − 1






 ,

where ε0 = εm = 1
2 , εν = 1 for ν = 1, . . . , m− 1, and C

(s)
k = cos(kπ

s ).

P r o o f. Using (4.7) and taking into account that for any ν = 2, 3, . . .
there holds the equality [4, p.105]

x∫

0

Tν(ξ)dξ =

π
2∫

arccos x

cos(νs) sin(s)ds =
1
2

{
Tν+1(x)
ν + 1

− Tν−1(x)
ν − 1

}
+
−
cν ,
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−
cν= const, we have

a
(l,m)
ij =

ξ
(l)
i∫

−1

l
∗(m)
j (ξ)dξ =

εj

m

{
ξ − ξ2 cos

(
jπ

m

)

+
m∑

ν=2

(−1)ν cos(jπν)
m

(
Tν+1(ξ)
ν + 1

− Tν−1(ξ)
ν − 1

)

−(−1)m−j

2

[
Tm+1(ξ)
m + 1

− Tm−1(ξ)
m− 1

]}∣∣∣∣∣
ξ
(l)
i

−1

=

{
1− cos

iπ

l
− cos

(
jπ

m

)(
cos2

(
iπ

l

)
− 1

)

+
m∑

ν=2

(−1)ν cos(jνπ

m

[
cos

[
(ν + 1)

(
1− i

l

)
π
]

ν + 1
− cos

[
(ν − 1)

(
1− i

l

)
π
]

ν − 1

−(−1)ν+1

(
1

ν + 1
− 1

ν − 1

)]
− (−1)m−j

2

[
cos

[
(m + 1)

(
1− i

l

)
π
]

m + 1

−cos
[
(m− 1)

(
1− i

l

)
π
]

m− 1
+ (−1)m

(
1

m + 1
− 1

m− 1

)]}

=
εj

m

{
1− cos

(
iπ

l

)
− cos

(
jπ

m

) (
cos2

(
iπ

l

)
− 1

)

−
m∑

ν=2

cos
jνπ

m

[
cos[(ν + 1)iπ/l]

ν + 1
− cos[(ν − 1)iπ)/l]

ν − 1
+

2
ν2 − 1

]

−(−1)j

2

[
cos[(m− 1)iπ/l]

m− 1
− cos[(m + 1)iπ/l]

m + 1
− 2

m2 − 1

]}

=
εj

m

{
1− cos

(
iπ

l

)
− 1

2
cos

(
jπ

m

) (
1− cos

(
2iπ

l

))

+
m∑

ν=2

εν cos
(

jπν

m

)[
cos[(ν − 1)iπ/l]

ν − 1
− cos[(ν + 1)iπ/l]

ν + 1
− 2

ν2 − 1

]}
.

Thus the lemma is proved.

Denote by W
(r)
2 = W

(r)
2 (µ; a, b) (r ∈ N) a class of functions f(x), having

absolutely continuous derivative of order r − 1 and derivative of order r on
[a, b] and satisfying the condition

b∫

a

[
f (r)(t)

]
dt ≤ µ2. (4.13)
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For a given x ∈ [a, b] we use the notation

sup
f∈W

(r)
2

|f(x)− Ll(f ; x)| = ELl
(W (r)

2 , x),

where Ll(f ; x) is the Lagrange interpolation polynomial at points of inter-
polation (4.4).

It is known [16, p. 26], that for a fixed x ∈ [a, b]

ELl
(W (r)

2 , x) =
µ

(r − 1)!
J

1
2 , (4.14)

where

J =

b∫

a

H2
r (t, x)dt,

Hr(t, x) = Kr(x− t)−
l∑

v=0

Kr(t(l)v − t)lv(x), Kr(u) =
{

(u)α−1, u > 0;
0, u ≤ 0.

It is clear that J = J1 − 2J2 + J3, where

J1 =

b∫

a

K2
r (x− t)dt,

J2 =

b∫

a

Kr(x− t)
l∑

v=0

Kr(t(l)v − t)lv(x)dt,

J3 =

b∫

a

l∑

k=0

l∑

v=0

Kr(t
(l)
k − t)Kr(t(l)v − t)lk(x)lv(x)dt.

Then, by using (4.5) we have

‖J1‖C ≤ (b− a)2r−1

2r − 1
,

‖J2‖C ≤ (b− a)r

r
(b− a)r−1‖Ll‖C ≤ (b− a)2r−1

r

(
2
π

ln l + 1
)

,

‖J3‖C ≤ (b− a)(b− a)r−1(b− a)r−1‖Ll‖2
C ≤ (b− a)2r−1

(
2
π

ln l + 1
)2

,
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and hence

‖J‖C ≤ (b− a)2r−1

[
1

2r − 1
+

2
r

(
2
π

ln l + 1
)

+
(

2
π

ln l + 1
)2

]
. (4.15)

We also need two other assertions. The first one follows from [4, p.113].

Lemma 4. Let B be the Banach space, let T : B → B and T : B → B
be operators from B into B, and let T be a contractive operator in a ball
K = {ψ ∈ B : ‖ψ‖ ≤ H} (H > 0):

∀ψ1, ψ2 ∈ K : ‖Tψ1 − Tψ2‖ ≤ q‖ψ1 − ψ2‖, q = const < 1,

and let TK ⊂ K.

Let {ϕν}∞ν=0 and {ϕν}∞ν=0 be sequences such that

ϕ0 = ϕ0 ∈ K, ϕν+1 = Tϕν , ϕν+1 = Tϕν , ν = 0, 1, . . . ,

and let

δ = sup
ψ∈K

‖Tψ − Tψ‖.
Then

‖ϕν − ϕν‖ ≤ δ
1− qν

1− q
, ν = 0, 1, · · ·

Lemma 5. Let α > 1, and let f [x, y] : [a, b]× Y → R (Y ⊂ R) satisfies
the conditions of Theorem 1. Then

1
Γ(α)

x∫

a

f [t, y(t)]
(x− t)1−α

dt ∈ W
[α]
2 (µ; , a, b), µ =

M(b− a)α−[α]+ 1
2

Γ(α− [α] + 1)
,

where M is given by (2.8).

P r o o f. Set

F (x) =
1

Γ(α)

x∫

a

f [t, y(t)]
(x− t)1−α

dt. (4.16)

Using [6, Lemma 4] (see also [7, Corollary 1]) we have

F ([α]−1)(x) =
1

Γ(α− [α] + 1)

x∫

a

f [t, y(t)]
(x− t)[α]−α

dt,
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and, in accordance with (2.8) and [14, (1.4)], F ([α]−1)(x) ∈ AC[a, b], where
AC[a, b] is the space of functions absolutely continuous on [a, b].

Further, by [6, Lemma 4],

F ([α])(x) =
1

Γ(α− [α])

x∫

a

f [t, y(t)]dt

(x− t)1−α+[α]
,

and taking (2.8) into account, we have

b∫

a

[
F ([α])(t)

]2
dt ≤ (b− a)M2

(Γ(α− [α]))2

(
(b− a)α−[α]

α− [α]

)2

=
(b− a)2(α−[α])+1M2

(Γ(α− [α] + 1))2
.

This completes the proof of lemma.

5. AI-method. Main theorem

Let α > 1 and r, n,m ∈ N. We introduce the following notations:

δlm =
Γ(α + 1)

Γ(α− [α] + 1)([α]− 1)!
Sl +

α(b− a)r+ 1
2
−α

(r − 1)!

(
2
π

ln l + 1
)

Sm,

Sl =

(
1

2[α]− 1
+

2
[α]

(
2
π

ln l + 1
)

+
(

2
π

ln l + 1
)2

) 1
2

,

Sm =

(
1

2r − 1
+

2
r

(
2
π

lnm + 1
)

+
(

2
π

ln m + 1
)2

) 1
2

. (5.1)

There holds the following statement.

Theorem 4. Let α > 1,KH = {y ∈ R, |y| < H, H > 0}, and let
f [t, y] : [a, b] ×KH → R be function satisfying the conditions of Theorem
3 and such that for fixed x ∈ [a, b] and y ∈ KH ,

f [t, y](x− t)α−1 ∈ W
(r)
2 (µ; a, b) (r ∈ N, µ > 0). (5.2)

Let

q =
L(b− a)α

Γ(α + 1)
< 1, (5.3)

where L is given in (3.2), and for some ε > 0

max
{

M(b− a)α

Γ(α + 1)
(1 + ε),

µ(b− a)α

Γ(α + 1)
(1 + ε)

}
≤ H, (5.4)
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where M is defined by (2.8).

Then the sequence of polynomials yν(x), constructed by using the AI-
algorithm in (4.9), approximates the solution y(x) of the Cauchy problem
(1.7)-(1.8) in such a way that for any natural l, m ∈ N such that

δlm < ε, (5.5)

there holds the inequality

‖y(x)− yν(x)‖C ≤ D
qν + δlm(1− qν)

1− q
, (5.6)

where

D = max
{

M(b− a)α

Γ(α + 1)
;
µ(b− a)α

Γ(α + 1)

}
. (5.7)

P r o o f. By Theorem 2, the Cauchy problem (1.7)-(1.8) has a unique
solution y(x) ∈ Cn−1[a, b].

Denote by CH [a, b] the following subset of C[a, b]:

K ≡ CH [a, b] = {y(x) ∈ C[a, b], ‖y(x)‖C ≤ H} .

According to (4.8) and (4.9), for any y(x) ∈ CH [a, b] we have

| (Ay) (x)− (
Ay

)
(x)| =

∣∣∣∣∣
1

Γ(α)

x∫

a

f [t, y(t)]K(x, t)dt

− 1
Γ(α)

l∑

i=0

t
(l)
i∫

a

m∑

j=0

f
[
t
(m)
j , y

(
t
(m)
j

)]
K

(
t
(l)
i , t

(m)
j

)
l
(m)
j dt · l(l)i (x)

∣∣∣∣∣

≤
∣∣∣∣∣

1
Γ(α)

x∫

a

f [t, y(t)]K(x, t)dt− 1
Γ(α)

l∑

i=0

t
(l)
i∫

a

f [t, y(t)]K
(
t
(l)
i , t

)
dt · · · l(l)i (x)

∣∣∣∣∣

+

∣∣∣∣∣
1

Γ(α)

l∑

i=0

t
(l)
i∫

a

f [t, y(t)]K
(
t
(l)
i , t

)
dt · l(l)i (x)

− 1
Γ(α)

l∑

i=0

t
(l)
i∫

a

m∑

j=0

f
[
t
(m)
j , y

(
t
(m)
j

)]
K

(
t
(l)
i , t

(m)
j

)
l
(m)
j dt · l(l)i (x)

∣∣∣∣∣ = I1 + I2.

(5.8)
Let Ll(F ; x) be the Lagrange interpolation polynomial, constructed at

the points of interpolations (4.4), of a function F (x) defined by (4.16). Using
the notation (4.3), Lemma 4 and the inequality (4.15) we have
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I1 =

∣∣∣∣∣
1

Γ(α)

x∫

a

f [t, y(t)]K(x, t)dt− 1
Γ(α)

l∑

i=0

t
(l)
i∫

a

f [t, y(t)]K
(
t
(l)
i , t

)
dt · l(l)i (x)

∣∣∣∣∣

= |F (x)− Ll(F, x)| < M(b− a)α−[α]+ 1
2 (b− a)[α]− 1

2

Γ(α− [α] + 1)([α]− 1)!

×
(

1
2[α]− 1

+
2

[α]

(
2
π

ln l + 1
)

+
(

2
π

ln l + 1
)2

) 1
2

=
M(b− a)α

Γ(α− [α] + 1)([α]− 1)!
Sl. (5.9)

Further, taking (5.2) and (4.15) into account, we obtain

I2 =
1

Γ(α)

∣∣∣∣∣
l∑

i=0

t
(l)
i∫

a

f [t, y(t)]K
(
t
(l)
i , t

)
dt · l(l)i (x)

−
l∑

i=0

t
(l)
i∫

a

m∑

j=0

f
[
t
(m)
j , y

(
t
(m)
j

)]
K

(
t
(l)
i , t

(m)
j

)
l
(m)
j dt · l(l)i (x)

∣∣∣∣∣

≤ (b− a)
Γ(α)

‖Ll‖C max
0≤i≤l

∣∣∣f [t, y(t)]K
(
t
(l)
i , t

)
− Lm(f ·K, t)

∣∣∣

≤ (b− a)‖Ll‖C

Γ(α)
M ′(b− a)r− 1

2

(r − 1)!

(
1

2r − 1
+

2
r

(
2
π

lnm + 1
)

+
(

2
π

lnm + 1
)2

) 1
2

≤ (b− a)r+ 1
2 µ

Γ(α)(r − 1)!

(
2
π

ln l + 1
)

Sm, (5.10)

where Sm is given by (5.1). Substituting (5.9) and (5.10) into (5.8), we
deduce the relation

‖ (Ay) (x)− (
Ay

)
(x)‖C ≤ M(b− a)α

Γ(α− [α] + 1)([α]− 1)!
Sl

+
(b− a)r+ 1

2 µ

Γ(α)(r − 1)!

(
2
π

ln l + 1
)

Sm. (5.11)

To estimate ‖yν − yν‖C , we apply Lemma 3. For this we prove that A
is a contractive operator in C[a, b]. By (4.8) and (3.2), we have
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‖ (Ay1) (t)− (Ay2) (t)‖C =

∥∥∥∥∥∥
1

Γ(α)

x∫

a

f [t, y1(t)]− f [t, y2(t)]
(x− t)1−α

dt

∥∥∥∥∥∥
C

≤ L(b− a)α

Γ(α + 1)
‖y1(x)− y2(x)‖C .

In accordance with the condition (5.3),

q =
L(b− a)α

Γ(α + 1)
< 1,

and, therefore, A is a contractive operator in C[a, b].
It follows from (5.11) that

δ = sup
y∈CH [a,b]

‖Ay −Ay‖C ≤ M(b− a)α

Γ(α− [α] + 1)([α]− 1)!
Sl

+
(b− a)r+ 1

2 µ

Γ(α)(r − 1)!

(
2
π

ln l + 1
)

Sm. (5.12)

Using (2.8) and (5.11), for any y ∈ CH [a, b] we have

‖Ay‖C ≤ ‖Ay‖C + ‖Ay −Ay‖C ≤ M(b− a)α

Γ(α + 1)
+

M(b− a)α

Γ(α− [α] + 1)([α]− 1)!
Sl

+
(b− a)r+ 1

2 µ

Γ(α)(r − 1)!

(
2
π

ln l + 1
)

Sm ≤ D(1 + δlm).

From here taking into account the condition (5.4), being valid for any l,m ∈
N such that δlm < ε, we obtain the estimate

‖Ay‖C ≤ D(1 + ε) ≤ H,

which means A(CH [a, b]) ⊂ CH [a, b]. Therefore, in accordance with Lemma
3 and estimates (5.3) and (5.12),

‖yν − yν‖C ≤ Dδlm
1− qν

1− q
. (5.13)

Applying Theorem 3 and the estimates (4.5) and (5.13), we obtain

‖y − yν‖C ≤ ‖y − yν‖C + ‖yν − yν‖C

le
(b− a)α

Γ(α + 1)
Mqν

1− q
+ Dδlm

1− qν

1− q
≤ D

qν + δlm(1− qν)
1− q

.

This yields the estimate (5.6), and theorem is proved.



CAUCHY PROBLEM FOR DIFFERENTIAL EQUATION . . . 319

6. Numerical examples

In this section we present two numerical examples.
Example 1. Consider the Cauchy problem for the differential equation

with the Caputo fractional derivative of order 3/2:
(

cD
3
2
0+y

)
(x) = y2(x) +

4
√

x√
π
− x4, y(0) = 0, y′(0) = 0. (6.1)

It is directly verified that y(x) = x2 is the exact solution of this problem.
We apply AI-method to approximate solution of (6.1) by taking l =

4, m = 15, ν = 10 and x ∈ [0; 0, 01]. As a result we obtain the following
polynomial y10(x) approximating the solution of the Cauchy problem (6.1):

y10(x) = −0, 000134983x + 1, 08366x2 − 13, 2886x3 + 625, 571x4. (6.2)

The exact solution y(x) and the approximate solution y10(x) together
with their difference y(x)− y10(x) are presented in Table 1.

x 0 0,002 0,004
y(x) 0 0,000004 0,000016

y10(x) 0 3,96839·10−6 0,0000161084
y10(x)− y(x) 0 -3,16134·10−8 1, 08355 · 10−7

x 0,006 0,008 0,01
y(x) 0,000036 0,000064 0,001

y10(x) 0,0000361424 0,0000640332 9,36017·10−7

y10(x)− y(x) 1,42384·10−7 3,31702·10−8 -6,39832·10−8

Table 1

Example 2. Consider the Cauchy problem for the differential equation
with the Caputo fractional derivative of order 5/2:
(

cD
5
2
0+y

)
(x) = y2(x)+

105
√

π

16
x−x7, y(0) = 0, y′(0) = 0, y′′(0) = 0. (6.3)

It is directly verified that y(x) =
√

x7 is the exact solution of this problem.
We apply AI-method to approximate solution of (6.3) by taking l =

4, m = 15, ν = 10 and x ∈ [0; 0, 01]. As a result we obtain the following
polynomial y10(x) approximating the solution of the Cauchy problem (6.3):

y10(x) = 8, 90217·10−8x−0, 000112757x2+0, 0691963x3+4, 11891x4. (6.4)
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The exact solution y(x) and the approximate solution y10(x) together
with their difference y(x)− y10(x) are presented in Table 2.

x 0 0,002 0,004
y(x) 0 3,57771·10−10 4,04772·10−9

y10(x) 0 3,46489·10−10 4,03498·10−9

y10(x)− y(x) 0 -1,12816·10−11 −1, 27323 · 10−11

x 0,006 0,008 0,01
y(x) 1,67313·10−8 4,57947·10−8 ≈ 1 · 10−7

y10(x) 1,67594·10−8 4,57953·10−8 ≈ 1 · 10−7

y10(x)− y(x) 2,81094·10−11 6,38602·10−13 -3,62857·10−14

Table 2.
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