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Abstract

The aim of this paper is to establish some mixture distributions that
arise in stochastic processes. Some basic functions associated with the prob-
ability mass function of the mixture distributions, such as k-th moments,
characteristic function and factorial moments are computed. Further we
obtain a three-term recurrence relation for each established mixture distri-
bution.
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1. Introduction

A particular mixture distribution stems when some or all parameters of
a distribution vary according to some given probability distribution, called
the mixing distribution. A well known example is the Poisson distribution
mixture with gamma mixing distribution leading to negative binomial dis-
tribution. Such distributions have been used in a number of applications
including accident proneness [2] and entomological field data [2].

In a recent paper Ghitany et al. [6] have shown that the hypergeomet-
ric generalized negative binomial distribution has moments of all positive
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orders, is overdispersed, skewed to the right and obtained a three term
recurrence relation. Special functions have been used to define a variety
of probability distributions [12, 13]; generalized gamma-type [8, 9], inverse
gaussian [7] using a generalized form of Kobayashi’s [10] gamma function.
We consider here several mixture distributions which can be obtained by
mixing discrete distributions with continuous ones. In Section 2, we de-
fine some special functions and give some basic results that will be used in
latter sections. Our first mixture distribution is obtained in Section 3 by
mixing a hyper Poisson distribution f;(z/A), defined in [2], with the new
generalized gamma distribution g;(\) defined in (18). In Sections 4, 5 and
6 we consider our second, third and fourth mixture distributions which are
obtained by mixing the usual Poisson distribution together with the new
generalized gamma distributions ga(\), g3(\) and g4(\) defined in (33),(45)
and (53) respectively. In each section of the last three sections we derive
k-th moments, characteristic function, factorial moments and three-term
recurrence relation for the mixture distribution obtained.

It is interesting to observe that the results obtained by Ghitany et al.
[6] follow as special case of our general distributions considered in this work.
Moreover, our first mixture distribution generalizes the mixture distribution
obtained in [2].

2. Definitions and preliminaries

Throughout the sequel, we shall use the following definitions, Laplace
integrals and recurrence relations:

Special functions
(1) The Kummer confluent hypergeometric function, [14]:

111 (o 35 2) = Zgg;n

n=0

Z?’L
H? ’Z’<OO7 a7ﬂ>07 (1)

where (c),, denotes the Pochhammer’s symbol, (c), = c(c+1)...(c+n—1).
(2) The w— confluent hypergeometric function, [16, 17

w o T(B)~=T(a+uwk) *

ICI)I(a’ﬁ’Z)_F(a)kZ:OF(ﬂ—ka) k' (2)
|z| < o0, w>0, (B+wk)#0,—1,-2,...

For w = 1, (2) reduces to (1).
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(3) The hypergeometric function [14, 15]:

oF1 (o, B85 75 Z)Zz(a)(’fy)(m” %T:, lz| <1,y #0,—-1,-2, ... (3)
n=0 n ’

By means of analytic continuation [3] the function can be defined for all
values of z, with |arg (1 — z)| < 7.
(4) The generalized hypergeometric function, [3, 15]:

nFm(Z):nFm( a,(ai) ):

p,(pi) ; =

L=

(as) (a)g G

TN 1 0 (4)
(pi)y, (), K

NE

=

Il

o
WSE

n and m are non-negative integers, and no p; [i = 1,...,m| is zero or non-
negative integer. If (i) n < m + 1, the series converges for all (finite) z, If
(ii) n = m + 1, the series converges for |z| < 1 and diverges for |z| > 1, If
(iii) n > m + 1, the series diverges for all z except z = 0.

(5) The w—hypergeometric function, [16]:

w > 6+ wk
oRy (a0, 05 7 ; Z b )k w >0, |z] <1. (5)
— !

For w =1, (5) reduces to (3).
(6) We shall use the following Appell hypergeometric function of two
variables, [14, 4]:

(@i (B)y 2°(B), w"

Fl (Oé,b,ﬂ ; € ;Z,U}) =
e @i K !

oLl lwl <1, (6)

N () M () PO
n;g( )n—i—k n! (C)n A (’y)k )

2], o] < 1.

(7)
(7) The Horn’s confluent hypergeometric function of two variables, [3,
4, 14, 15):

FQ(aawa; C, Y ;Z,"LU)Z

B ez = Y ek D 200 g

o (c)n+k k! n!
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The corresponding integral representations for these functions can be
found, for example, in [3, 14].

The following recurrence relations for hypergeometric functions are
used in our analysis [3], [16] and [5]:

b(l—2) oF1(b+1)=(p—0b) oF1(b—1)+ (20 —p+ (a—1b) 2) 2F1(b),
(9)

where
oF1 (b) = oFi(a,b; p; 2);

aw (1 — 2) 2;)?1 (a+1)=(p—wa) glwi’l (a—1)+Q2wa —p+ (b —wa) z) 2;}21 (a),

(10)
where y y
oR1 (a) = aR1(a ,b; p; 2),
n—2 .
(200 = p) n1Fn (a)=a pp1Fp (@ + 1)+ (a0 = p) ns1Fn (o — 1)—1—2.1;[0%
a,a,(1+a;) ) <Oé+1,a,(1+ai)>}
% a=a)n Fn —Qn Fn ’
{( ) ( p,(L+pi); 2 H p,(L+pi); 2
(11)

and (@)
_ @ ,a,(a;
n-‘ran (Oé) - TL-I-IFTL < D, (pz) : 2 ) .
We also make use of the following Laplace integrals, [1], [11] and [14]:

o0

B s w T w 1
//\7 Lem™ 1@y (a;psA) dN = S(;Y>2R1<%a;p;s), (12)

0

ER’%%(S_]')? w > 0’

[e.o]

[t emabn (500 ) o= E i wara (G0 ) 09

0

n < m Ry, Rs > 0,
= m Ry >0, RNs > 1,

0 r 1
/M‘le‘ﬁ@l(a,p;m&k) dA = s(;Y)Fl (a,p,7;6;578>(14)
0

Ry,R(s—1) > 0
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T r 11
/)\,y_le_SAlFl(a;ﬁ;A)lFl(a;b;)‘)d)\ = S(;Y)F2 <77057a;ﬁ7b;818>7
0

Ry, R(s—2) > 0. (15)

The hyper Poisson distribution, defined in [2], with parameters
b, q, A, has a probability mass function (pmf):

)= (@), 171 (b A)

which yields for b = ¢, the usual Poisson distribution whose (pmf) is given
by

byg, A\>0, =0,1,2,...  (16)

E(x)="= e, A>0, 2=0,1,2,... (17)

3. The first mixture distribution f(z)

In this section we consider a more general family of continuous mixture
distribution. This distribution is obtained by mixing a Hyper Poisson dis-
tribution fi(z/\) defined in [2], with a new generalized gamma distribution
defined here by relation (18). The recent results of Ghitany et al. [6] follow
as special cases of our general results derived in this section. We derive
some basic functions associated with this density function, namely the k-th
Moment, characteristic function and factorial moments. Furthermore, we
establish a three-term recurrence relation for the new mixture distribution.
We begin this section by defining the function g; () as

1Fi(aspsA) 1F1(Dsq ;)

F2 ("}’,G,b; b,q 7%4&7%4&)

(a+2)7 e~ (@F2A , A>0.

(18)
oo

This function is non-negative and satisfies the condition [g1(A\)d\ = 1
0

by virtue of the result (15). Therefore (18) represents a continuous distri-
bution of the product of two confluent hypergeometric functions, involving
Appell’s function, which yields for p = v = b = ¢, the probability density
function defined in [6]. Let X has a conditional hyper Poisson distribution
(16) with parameters b, g, A, that is, X has a conditional probability mass
function (pmf)

/)= — , byg, A>0, £=0,1,2, ... 19
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whose characteristic function, for any real ¢, is given by

xS (), ()T 1F (bsg s AeT)
() =B [/ =] = 1Fy (b;q;>\),;0 (@), = — 1Fi(b;q;N)
(20)

from which moments of any order could be evaluated by

dar it
G711 (0 5q 50 Ji=o
E[X" /A=)\N=i" & () |g = 1 1 =1,2,...
X"/ | =i (t) lt=0 NI ,r=1,2,
(21)

In particular, the mean is

Ab B (b+15g+15))
q 1Fr(bigs )

EX /A=N=i" oW(t)]— = (22)

From (21), we obtain the factorial moments of the hyper Poisson distribution

A (D), 1FL(b+75q+735))

EX(X-1)..(X—=r41) /A=) = o SACEEY

(23)
Now we state and prove our first theorem.
THEOREM 1. The unconditional pmf of X is given by
. L1
), (b) 2 F1 (a,er% p»@)
filz) = ' = 5”233 ; N x=0,1,2,..,
L (q)x (Oé+ ) F2(’Y7a7b;paq;r+27a7+2>
(24)
whose characteristic function, for any real t, is given by
FQ(’yab‘pQ'L 67”)
. ) ) ) b ) 27 2
Uy (t) = E ["Y] = o or (25)

)
F2 (’7,(1,1) y P, q 7%%)%%)
its factorial moment is

EX(X-1) (X —1+1)]

. L1 1
— (7)1” (b)r F2 (’7+T,a,b+7” ' p’q—i_r 7m7m) (26)

T
(a), (@+2) Fy (%ajb; pﬂ;%ﬁ,#g)
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and its rth—moment is given by

. .1 1
"= g (7)7” (b)r F2('7+7‘,(I,b—|—r7p7q+r7a7+2’a—+2)
E[X]—7;)S(T,n) @ at2

FZ (77a7b; pvQ7%+27%+2>

(27)

where .

- n) (=" (n—k)
S(r,n) = < I ) oy . (28)
k=0
Proof From (18) and (19) the unconditional pmf of X is
fila) = [ fila/n) (i
0
’y o

_ (b)m (a + 2) 1 /\:Jc+'y—1€—(a+2)>\lFl (a;p; )\) d\

2 (0,7 () (*y,a,b;p,q;a%z,a%g) g

(7). (b), o F (a,x+fy; p§%+2>

rx=0,1,2,...
‘ xX ) ) M M
ot (g), (@+2)" (%a,b; p,q oﬁﬁ)

Using (20) the characteristic function of X is

W) = B[] = B [B[/a)] = |11 ;Ae“)]

1F1(b;q;A)

it
F2 <’77a7b; p,q ;ﬁ:cirz)

)

F2 <’Yaa7b y b4 7%_’_27%4_2)
From (22) the factorial moment of X is
EX(X-1)..(X—r+1)]|=F FX(X-1)..(X—r+1)/A]]

_ A" (b), 1Fi(b+75q9+7;A)
=k [ (q), 1F1 (b;q; A) ]

. 1 1
(7)7' (b)r‘ FQ(’)/—i-T,a,b—l—?“,p,q—I—T,m,m)

-
(), (a+2) F <%a,b; p,q;%wa%a)

)
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Finally, the rth—moment of X is obtained using the relation
T
E[X" =) S(rn) E[XX-1)..(X-r+1)],
n=0

which completes the proof. ]

THEOREM 2. The distribution of X satisfies a three-term recurrence
relation
(p—v-—2) (v+z-1) (b+z—1),
r+1 r+1) = r—1 29
(o +1) file +1) e D, e @)
b+x a—vy—=z
(g+z) (a+1) a+2

+2(y+x)—p| fi(z)

P r o o f. Using the recurrence relation (9), for b = = + ~, z:a%r?,we
get
a+2
rta)Flety+l) = ——{p-v-2)Fl+y-1) (30)
a—vy—x
—+2 —p| F
+[ ar2 T20+t2) p} (w+7)},
where
1
F =9 F}
(IL’) 2 1(a7$7paa+2>
Rewrite fi(x), given by (24), as
filx) =vi(x) oF +v5 D ! =0,1,2 (31)
1) =01 \@ 2L { a,® ’Y>p7a+2 , L=U,1,4,..
where
b 1
v (z) = s ()xQx L r=0,1,2,..
x! (q>:p (a+ ) Fy (fy’a,b; qu;ﬁjﬁ)
from which we get
(b+=z) (vy+2)
vi(x+1)= v (@
)G ) ey M
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_ bta-1), rae—1),
(@) (Q+x2— 1), (a+2)22 =1, (32)

Using (30), (31) and (32), we obtain, for x = 1,2, ...

(z+1) filz4+1) = (z +1) v (z +1) 21 (a,x+7+1 ; p;a_lk2>

_ (@+1)(e+2) {(p—v—x)(b+w—1)2(7+w—1)2 i (z—1)F(z4v—1)

(7+$)(a+1) ($)2(q+1}_1)2(a+2)2
(b-l—l‘) (’y—}—;[;) a—y—zx
(x+1) (¢g+=z) (a+2) [ o+ 2 +2(’Y+x)—P] vy () F(x+7)}

_p=v—z) (vt 1) (b+z—1), -

= T (q+x—1)2 (Oz+1)2 fa( 1)
b+z a—v—1x

+(q+x) (a+1) [ o+ 2 +2(7+$)—p} fi(),

and the proof is complete. ]

Figure 1 and Figure 2 respectively, show the probability mass function
fi(x) and its distribution function Fj(z) for the selected specific values of

v, a, b, p, q, .
0. 3¢t ¢ ¢

0.25;) .

0.15)

0. 05 .

25 5 7.5 10 12.5 15
Figure 1: The probability mass function f;(z). The symbol * represents
fi(x) wheny =3, a=4, b=5, p=6, ¢=7and a=.2,

whereas the symbol ¢ represents f(z)
when y=6, a=7,b=5 p=4, ¢q=2 and a="T.
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o
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0.6¢f

0.4r

Figure 2: The distribution function Fj(z). The lower graph represents
Fi(z) wheny=3, a=4,b=5, p=6, ¢g=Tand a=.2,
whereas the upper graph represents Fj(x) when
y=6,a=7,b=5,p=4, g=2and a=".

4. The second mixture distribution fs(z)

In this section we consider a more generalized family of continuous mix-
ture distribution. This distribution is obtained by mixing a Poisson distri-
bution fa(x/A) defined in (17), with a new generalized gamma distribution
defined below by the result (33). The work done in [6] follows as a special
of this section, when we take w = 1 and v = a. Further, we compute the
k-th moments, characteristic function , factorial moments and a three-term
recurrence relation. We begin this section by defining the function g2(\) as,

B L L LA P

g2(N)
P w
) o Ry (%a D rh)

JA>0. (33)

e.¢]
This function is non-negative and satisfies the condition [g2(A)d\ =1
0

by virtue of the result (12). Thus (33) represents a continuous distribution
of confluent hypergeometric function type, which yields for w = 1 and v =
a,the probability density function considered by Ghitany et al. [6]. Let X
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has a conditional Poisson distribution (17) with parameter A, that is, X has
a conditional probability mass function

e, A>0,2=0,1,2,.., (34)

x
!

Fale/3) =2

whose characteristic function, for any real ¢, is given by
A zt i
(I)(t) — [ itX / A= )\ —)\ Z e )\(1—6 t) ‘ (35)

Putting b = ¢ in (23), we obtain the factorial moments of the Poisson
distribution
EXX-1)..(X—-r+1)/A]l= A". (36)

THEOREM 3. The unconditional pmf of X is given by

Fs . L
(0, (a1 2 (st raipizh)
| T4y w
ol (o +2) 2Ry (%a;p;%ﬂ)

fo(z) = , £=0,1,2,...., (37

whose characteristic function, for any real t, is given by

7 1
. 1 g 2R1<%a;p;ﬁ>
Uy (t) = B[] = atl otz—e’) (38)
a+2—ett o 1
2Ry (%a ;p;m)
its factorial moment is,
2Ry <7+T,a ;p;#)
EX(X 1) (X —r+1)] = <(’er1)¢ _ ) (39)
“ 2R1<%a;p;%+1>
and its rth—moment is given by
}“% 1
r 2 1(7"‘7“:@;27;7)
=Y S U o)
+1)" ¢ 1
n=0 2Ry (%a P m)

where S (r,n) are given by (28).
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Proof. From (33) and (34) the unconditional pmf of X is

folz) = / fo(/0) ga(N)dA
0

a+1)7 1 °r otr—1 —(o w
’ 2R1<'y,a;p;m>0

i : L)
_ (V)m (a_|_1)7 2R1<x+%a,])7a+2 C2=0.12,..

| x4y w
ot (at2) 20 (va:pi )

Using (35) the characteristic function of X is

1F1 (b 5q ;Ae')
1F1(biq;A)

Ux(t) = E[Y]=F [E["*/A]|=FE

ezt

F (%a,b; P o s

Fz(%a,b;p,q;a%g,a%g)

From (36) the factorial moment of X is

EIX(X-1). (X =1+ 1)]|=E[E[X (X -1).. (X =1+ 1) /A]] = E[A"]

(’Y)T' (b)T F2<7+T7aab+r;p7q+r;%+27%+2>
(@), (@+2)"

Py (%a,b; P,q C%Ha%g)
Finally, the rth—moment is obtained in a similar way as in the previous
section. -

THEOREM 4. The distribution of X satisfies a three-term recurrence
relation

(vtz-1p—(y+2)u]

(.’I)—i-l)fg(x—i-l): W$(Oé+1)(04+2)

f2(z—1)

1 a—(y+2)w

+(a+1)w a+2

+2(y+2)w—p| f2(z). (41)
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P r o o f. Using the recurrence relation (10), for a = z + 1, z = —=5

a+2?
we get

() b+ = 2 - G a)el afa @y -1

(+1)

+[W+2(V+$>w—p] 2§1(w+w>}, (42)
where

R R L
oR1 (7 +2)= 2 1<’Y+£C,a,paa+2>-

Rewrite fo(x), given by (37), as

w 1
fQ('CL'):’UQ (.I) QRl (x+7aaap7a_|_2) ) x:0a152a"'a (43)
(1), (@+1)7 1

va (2) =
@A™ LR (vaspghy)

, t=0,1,2,...,

from which we get

(v + ) _ (ytx-1)
GiDta 2= (@), (04—1-2)22 (=1 (44)

Using (42), (43) and (44), we obtain, for x = 1,2, ...

va(x+1) =

@+ 1) foz+1) =@+1) vo(z+1) 2R (z+7+1)

_ltl) (@+1) (a+2) fo B e
= et (e s

T [W+2(7+x)w—p] 2ﬁ1($+7)}

oa+2
_Otz—Yp-O+2)u] (
 wax (at+1)(a+2) 2
1 [a—(’y%—x)w
(a+ 1w o+2
(Ytz-1)p-(v+z)u]
wz (a+1)(a+2)

(aJrll)w [a—gy:;)w +2(7+x)w_p] f2 (@)

and the proof is complete. ]

—1) oy (z+v-1)

+ +2(7+x)w—p} v (@) 2Ry (@ +7)

fa(z—1)
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5. The third mixture distribution f3(z)

In this section we consider another generalized family of continuous mix-
ture distribution. This distribution is obtained by mixing a Poisson distri-
bution f3(x/A) defined in (17), with a new generalized gamma distribution
defined in (45). We derive similar results as obtained for previous mixture
distributions for our new mixture distribution f3(x). We start by defining
the function g3(\) as,

F < a ?(al) >
-t "\ g i) ;A
g3(A) = A (a+1)7 e~latDA P (p) , n<my, A>0
b, (pz) e |
(45)

This function is non-negative and satisfies the condition [gz(A)d\ =1
0

by virtue of the result (13). Therefore (45) represents a continuous distri-
bution of generalized hypergeometric function, which yields for n = m =1
and v = a,the probability density function defined in [6]. Let X has a con-
ditional Poisson distribution with parameter A\ as in the previous section,
i.e. its pmf is

fa(z/N) = A e, 2=0,1,2,..,A> 0.

xX
z!
THEOREM 5. The unconditional pmf of X is given by

f3(z) = (’7)93 (a4 1)’7 i1 Em < p, (pi) ; a—1|—2

a x! (OZ + 2)l?+’7 +1F ( v, a, (ai)l >
n m .
b, (pz) ) a1

, 2=0,1,2,..., (46)

whose characteristic function, for any real t, is given by

7 5 a (a;) )

F,
a+1 >” e m( P (Pi) 5 graam

a+2_6it 1F < Vvaa(ai) >
() s 25

Uy (t) = B[] = ( , (47)
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its factorial moment is

EX(X-1).(X=-r+1)]=

and its rth—moment is given by

EX" = ZS(r,n) (
n=0

where S (r,n) is defined by (28).

Proof From (45) and (34) the unconditional pmf of X is
fala) = [ fala/) gs(3ix
0

_ (a+1)7 1 /)\m+7_1 e (@t+2)X JF, < a, (a;) ) d\
z!IT () F ( v, a, (a;) > / P, (pi); A
n+ m

P, (Pi)s 5

x +7,a,(a;)
(), (@t 1) "*1Fm< P, (Pi); 555 >

a ! (Oé + 2)1‘+’Y 1F < Y, @, (al) >
A p (0); 2

L =0,1,2,...

Using (35) the characteristic function of X is
Ux(t) = B[] = B [B [¢*X/A]] = B [ 20|

, @y \ay
~ n+1Fm ( ’YA . ( Z)1 >
_ ( e} + 1 > p) (pl) 9 a+27eit

a+2_€it 1F < ’Y)av(ai) >
T p ()
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From (36) the factorial moment of X is

EX(X-1) (X —r+1)]=E [E[X (X -1)..(X —r +1) /A]] = E[A"]

. L1 1
(ry)r (b)r F2(7+Taavb+rap7Q+raT4_27m>

.
(), (a+2) By (1,005 0,05 550 5k

Finally, the rth—moment of X is obtained as in previous cases. ]

THEOREM 6. The distribution of X satisfies a three-term recurrence
relation

2(y+z)—p (z+y-1)[p—(v+2)
Tarz PEOETG gy B

n=2q, ;i1 x+1 r+v+1a, (14 a)
+1 =) e+ 1) F BN
=0 Pr; 3@+ 1) g en p,(1+pi); 75

(x + 1) fg(x-i-l) =

Y+x—a

o x+’y,a,(1—|—ai)>}'

p,(14+pi); 755

v3 (2) n+lﬁ%/<

P r o o f. Using the recurrence relation (4), for a« = x 47, z = %ﬁ, we
get

(Yt+z) Fla+y+)=20+2)—pl Flz+y)+p—-(y+2)] Fz+~v-1)

n—2q,_; +x r+v+1,a,(1+a
+an+1{7 n+1n< Y ( Z))

=0 pp—i (a+2 P, (L+pi) ; %H
Ytz —a x+%a,(1+az‘)>}
s nF ; 50
Oz+2 n+1 n<pv(1+pi);a-11-2 ( )
where
x4+ ,a,(a;) )
F(y+z)= F,
(7 ) n+14'n < D, (pz) : %H
Rewrite f3(x), given by (46), as
x +,a,(a;
fs(z) = v3 (2) n+1Fn( S Q > L =0,1,2, ..., (51)
b, (pl)a a+2
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where
1)7 1
v3 (2) = (), (a +xl ,1=0,1,2, ...,
z! (o +2)"7 7 ( v, a, (a;) )
n+14'n P, (pz) : %_;'_1
from which we get
+x +z—1
vt = —OFD 2 O e gy ey

(z+1) (a+2) (2)y (a+2)?
Using (50), (51) and (52), we obtain, for z = 1,2, ...

,TE—F’)/—{—].,CL,(CLi) )
A
P, (i) o33

(1) fo(x+1) = (z+1) vs (x + 1) +F(

- ((’jj-wl; vs(@+ {20y +a) —p Fz+9) +[p— (v +2)] Fz+v-1)}

+ug (x 4+ 1)

(w+1)nH2an_i+1{’)’+iL' r (x—i-’y—{—l,a,(l—i—ai))
- ] n+14'n 1 N. 1
(’7 + .%') =0 Pn—i a+2 b, ( +p2) )

Ttz—a <x+%a,(1+ai))}

a+2 p,(L+pi); 592
B W%(w) F(z+7)
+($+7;(1;[i;)§7+$)] vs(x—1)F(x+v—1)
B (e Fnn (L)

Yyt+r—a x—l—fy,a,(l—kai))}
—_—— U X F
(a+2)? 3(#) nt1 "( p,(1+pi); 75

_2(y+x)-p o @rr=1p—(y+2)
B a+2 fa (@) + x(a+2)2

n=2q, ;i1 x+1 r+v+1a, (14 a;)
+ 0 2= s (4 1) —— i B '
i=0 P 2 (@ 1) g p,(1+pi); 7

Y+zxr—a x—i—’y,a,(l—i—ai))}

———u3 (= F,
(o +2)? 3(#) 1 "( p,(1+pi); 75

and the proof is complete. ]

fa(x—1)
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6. The fourth mixture distribution f,(z

In this section we obtain our last mixture distribution f4(z). This distri-
bution is obtained by mixing a Poisson distribution fo(z/\) defined before
with a new generalized gamma distribution defined in (53). We begin by
defining our last generalized gamma distribution g4(\) as

Py (a,p; c;0,M)
F1<a7p7’y; 6;57%“>

g\ = =— (a+1)7 (@A ., A>0 (53)

o

This function is non-negative and satisfies the condition [g4(A\)d\ = 1 by
0

virtue of the result (14). Thus (53) represents a continuous distribution of

Appell and confluent hypergeometric function type, which yields for § = 0
and v = a,the probability density function defined in [6]. As in previous
section we let X to have a conditional Poisson distribution with parameter

A
THEOREM 7. The unconditional pmf of X is given by

. . 1
(’Y)x(a_“]-)’y F1<a,p,x+’y,0,5,a—+2

>, z=0,1,2,...
z! (o +2)""7 P (a,p,w; 6;5,0%1)

fa(z) =

(54)
whose characteristic function, for any real t, is given by

. . 1
a+1 )PYFl(a7p’r}/7c,5’OH_2_cht>’ (55)

Ux(t) = F [eX —< .
X() [ ] a+2_elt Fl(ap”)/cé%)
) ) ) ) k6%

its factorial moment is

(), F1<a,p,7+r;6;5,m)
T )
(a+1) Fl(a,p,v;C;cS,a%l)

EX(X-1)..(X—-r+1)]=

(56)
and its r-th moment is given by
r F1<a7p77+r;c;57i)
E[X" =Y S (rn) ) otl (57)
n=0 (Oé—|—].) Fl(aapfy;c;(sL)
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Proof. From (53) and (34) the unconditional pmf of X is

r) = / fo(/A) ga(N)dA
0

o0

1)7 1
— (O:JF ) /)\x+716(a+2)Aq)1(a’p; 0;5’)\)01)\
IO R (a,p,v; 6;576#1) g

(7)1: (Oé—{—l),y F1<aapa$+’77€ 570474_2) 0.1.2
= , =0,1,2,...
x! (Oz+2)x+7 F1<ap'y,c 5,a+1)
Using (35) the characteristic function of X is

Ux(t)=E["*] =E[E[e"*/A]] = E [e—/\(l—e“)}

( a1 >WF1<a,p7v;C;57M;_eu)
a+2-—et Fl(a,p,’y;C;é,a%J '
From (36) the factorial moment of X is

EX(X-1)..(X—=r+1)]=E [E[X(X—1)..(X —r+1)/A]] = E[A"]

. 1 1
(7)1” (b)r F2(7+raa7b+rapvq+rar+gvr+g)

=
(), (@+2) Fy (%a,b; p,q;a%g,a%g)
Finally, the r-th moment of X is obtained as before. ]

Now we state our last result.

THEOREM 8. The distribution of X satisfies a three-term recurrence
relation

(x4 1) fa(z+1) ZAk O+ a+(i)+(§+3)x)v4(a:—1)F(x+’y—1)
(58)
A [a+k—vy—x
+ZO&—|—1|: o+ 2 +2(’Y+$)—(C+k‘) U4($)F(x+’7)a
k_
where

— W P2 (59)
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P r o o f. Using the recurrence relation (9), for b = x + ~, z:a%r?,we
get
a+2
(’y+x)F(az+’y+1):r+1{(c+k—'y—af)F(af—|—’y—1) (60)
k—~—
—i—[W—&-Q(’y—i—m)—(c—i—k)} F(:c+’y)},
where )
F(’y—i—x)—gFl(a—i—k,’y—i—x c+k; +2>
Rewrite fy(x), given by (54), as
1
f4($):’l)4($) Fl (a7p7$+7; 0;67M> 3 .%':0,1,2,..., (61)
where )
F 1; —_—
1<a,p,x+’y+ c; 0, +2>
- 1
= > ARy <a+k,7+m+1; c+k;> (62)
Pt o+ 2
and
1)7 1
vy () = (7)”” (a+xlv , x=0,1,2,...,
T (Oé+2) F1<a/7p77; 0357%“)
from which we get
—1
vy (z+1)= (y +2) () = (O +z=1) vg(z—1). (63)

@+1) (@+2) T @), (a+2)?

Using (60), (61) and (63), we obtain, for x = 1,2, ...

1
(x+1) falx+1)=(z+1) v4(x+1)F1<a,p,:c—i—’y+1;0;5,M>
(z+1)(a+2)
— 1 A k— F -1
vy (x + )(7+x @t 1) kzo g {[c+ (v+2)]F(x+~v-1)
at+k—v—x

a+2 +2(7+5’3)—(C+k)] F(m+7)}
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_ iAk (y+z—1)(c+k—7—x)

z (a+1)(a+2) va(z—1) Fz+v-1)

which completes the proof. ]

R em ar k (Added during proofreading !). For further results of this

type, please see: Y. Ben Nakhi and S.L. Kalla, On a generalized mixture
distribution. Applied Mathematics and Computation 169 (2005), 943-952.
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