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IMPROVED HYBRID MODEL OF HMM/GMM FOR SPEECH RECOGNITION 
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Abstract: In this paper, we propose a speech recognition engine using hybrid model of Hidden Markov Model 
(HMM) and Gaussian Mixture Model (GMM). Both the models have been trained independently and the 
respective likelihood values have been considered jointly and input to a decision logic which provides net 
likelihood as the output. This hybrid model has been compared with the HMM model. Training and testing has 
been done by using a database of 20 Hindi words spoken by 80 different speakers.  Recognition rates achieved 
by normal HMM are 83.5% and it gets increased to 85% by using the hybrid approach of HMM and GMM. 
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Introduction 
Speech signal primarily conveys the words or message being spoken. Area of speech recognition is concerned 
with determining the underlying meaning in the utterance. Success in speech recognition depends on extracting 
and modeling the speech dependent characteristics which can effectively distinguish one word from another. A 
general pattern recognition system consists of 4 parts, the feature extractor, pattern trainer, pattern classifier and 
decision logic. One of the most common and successful feature extraction processes is MFCC [Kotnik, 2002] 
which has been implemented in this model. Of the various speech/ speaker recognition models available, the 
most commonly used are Artificial Neural Networks (ANN), Hidden Markov Model (HMM) and Gaussian Mixture 
Model (GMM). Presently HMM is widely used as one of the successful speech recognition process. HMM 
considers the speech signal as quasi- static for short durations and models these frames for recognition. It breaks 
the feature vector of the signal into a number of states and finds the probability of a signal to transit from one 
state to another [Rabiner, Juang, 1993]. Viterbi search, forward-backward and Baum-Welch algorithms are used 
for parameter estimation and optimization [Rabiner, 1989], [Rabiner, Juang, 1991]. GMM on the other hand 
considers a signal to contain different components that are independent of each other. These components 
represent the broad acoustic classes that represent certain vocal tract configurations [Reynolds, Rose, 1995]. 
Thus it is more inclined towards modeling features concerning to words having specific characteristics. Each 
component is optimized using EM algorithm [Dempster, 1977]. Various ways of combining these models have 
been proposed. One way is to use a 3 state HMM and implement GMM on the middle state to obtain the 
observation probabilities for that state [Rodriguez, 2003].  Here we have proposed a novel model combining 
GMM and HMM to provide more enhanced speech recognition engine, which we call as the hybrid model.  We 
have proposed the extraction of likelihood value by combining the likelihood values of both the models using 
decision logic. In the rest of the paper we discuss individually about the HMM, the GMM and how the hybrid 
model was developed. At the end, we compare the HMM model with the hybrid model using a 20 word, 80 
utterances data set. 

Hidden Markov Model 
Hidden Markov model (HMM) is a statistical model in which the system being modeled is assumed to be a 
Markov process with unknown parameters, and the challenge is to determine the hidden parameters from the 
observable parameters. The extracted model parameters can then be used to perform further analysis, for 
example for pattern/speech recognition applications. In a hidden Markov model, the states are not directly visible, 
but variables influenced by the state are visible. Each state has a probability distribution over the possible output 
tokens. Also, the state transitions are probabilistic in nature. Therefore, the sequence of tokens generated by an 
HMM gives some information about the sequence of states. The complete HMM model is denoted as λ =(A,B,π ). 
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HMM Model Parameters 
1. A, the state probability distribution, A = {aij}. 
2. B, the observation symbol probability density, B = {bj(k)}. 
3. π, the initial state distribution, π = { πi}. 
The HMM training procedure requires codebook to estimate model parameters. In codebook, the large number of 
observational vectors of the training data is clustered into M observational vectors clusters using K-means 
iterative procedure.  Based on this clustered observational vectors, estimates of the model parameters are 
generated during HMM training. The HMM training procedure tries to estimate the value of state probability 
distribution (A), observation symbol probability density (B), and initial state distribution (π). The observational 
vectors of training sequences are segmented for each of the N states, a maximum – likelihood estimates of the 
set of the observations that occur within each state j each of the observation vectors within a state is coded using 
the M – code – word codebook. Before proper estimation of the model parameters they are initialized to good 
initial estimates that are essential for rapid and proper convergence of the re-estimation formulas. The 
parameters are re-estimated using Viterbi Algorithm, Forward- Backward Algorithm and Baum/Welch Algorithm.  
 

Forward- Backward Algorithm 
Forward Algorithm 
The forward variable αt(i) is defined as αt(i) = P(o1,o2,… ,ot,qT = i|λ) i.e. the probability of the partial observation 
sequence (until time t) and state i at time t, given the model λ. αt(i) is inductively computed by following steps: 
Initialization: 

1 1 1i iα ι π B ο ι Ν( ) = ( ),  ≤ ≤  (1) 
Induction:  

1 1( ) ,1 1t t ij j tj i a b t Tα α ο+ +( ) = [∑ ] ( )  ≤ ≤ −  (2) 

Termination: 
P(O| )  (i)tλ α= ∑  (3) 

 

Backward Algorithm 
The backward variable βt(i) is defined as βt(i) = P(ot+1,ot+2,…,oT,qT = i|λ) i.e. the probability of the partial 
observation sequence from t+1 to the end, given the state i at time t and the model λ. βt(i) is inductively solved as 
follows: 
Initialization:  

1 1tβ i i Ν( ) = ,  ≤ ≤  (4) 
Induction:  

t 1 1( ) ( ) ( ) ...    ij j j t ti a b b o j t iβ β+ + = ∑ ,   = Τ −1, Τ − 2, ,1, 1≤ ≤  Ν  (5) 
Combining Forward and Backward variables, we get: 

P(O| ) ( ) ( )t ti i tλ α β = ∑  ,1 ≤ ≤ Τ  (6) 
 

The Viterbi Algorithm 
To find the single best state sequence, for the given observation sequence, δt(i) = max P[q1q2…qt-1, qt = i, 
o1o2…ot|λ], δt(i) is the highest probability and ψt(i) is the track for path t. 
Initialization: 

Niobi ii ≤≤= 1),()( 11 πδ  

1( ) 0iψ =  
(7) 

Recursion: 
NjTtobaij tjjitt ≤≤≤≤= − 1,2),(])(max[)( 1δδ  (8) 
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1( ) argmax[ ( ) ],2 ,1t t i jt i a t T j Nψ δ −= ≤ ≤ ≤ ≤  

Termination: 
Ν ≤≤ ]1δ= it (i)[ max * P  

Tq *   a rg  m a x  [ ( i )t iδ= ]1 ≤ ≤  Ν  
(9) 

Path (state sequence) backtracking 
t 1 t 1qT*  (q* ),t ...ψ + +=  = Τ −1,Τ − 2, 1  (10) 

 
The Baum/Welch Algorithm 
To adjust the model parameters to satisfy a certain optimization criteria is done by the Baum/Welch algorithm. 
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Using the final re-estimated A, B and π, the value of LIHMM is calculated with respect to all the word models 
available with the recognition engine by using Viterbi algorithm. The Viterbi algorithm takes model parameters 
and the observational vectors of the word as input and returns the value of matching with all particular word 
models. This is the likelihood values of the word (LIHMM) passed to hybrid training model. 

The Gaussian Mixture Model 
The GMM can be viewed as a hybrid between parametric and non- parametric density models. Like a parametric 
model, it has structure and parameters that control the behavior of density in known ways. Like non-parametric 
model it has many degrees of freedom to allow arbitrary density modeling. The GMM density is defined as 
weighted sum of Gaussian densities: 

1
( ) ( , , )

M

G M m m m
m

p x w g x Cμ
=

= ∑  (15) 

Here m is the Gaussian component (m=1…M), and M is the total number of Gaussian components. wm are the 
component probabilities (∑wm = 1), also called weights. We consider K-dimensional densities so the argument is 
a vector x = (x1, ... , xK )T . The component pdf, g(x, µm, Cm), is a K-dimensional Gaussian probability density 
function (pdf). 
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where µm is the mean vector, and Cm is the covariance matrix.  
Now, a Gaussian mixture model probability density function is completely defined by a parameter list given by  
 θ = {w1, µ1, C1... w1, µ1, C1}m  m=1…M  
Organizing the data for input to the GMM is important since the components of GMM play a vital role in the 
making of word models. For this purpose, we use K- Means clustering technique to break the data into 256 
cluster centroids. These centroids are then grouped into sets of 32 and then passed into each component of 
GMM. As a result we obtain a set of 8 components for GMM. Once the component inputs are decided, the GMM 
modeling can be implemented. 
 

EM Algorithm 
The expectation maximization (EM) algorithm is an iterative method for calculating maximum likelihood 
distribution parameter estimates from incomplete data (elements missing in feature vectors). The EM update 
equations are used which gives a procedure to iteratively maximize the log-likelihood of the training data given 
the model. The EM algorithm is a two step process: 
Estimation Step in which current iteration values of the mixture are utilized to determine the values for the next 
iteration  

( ) ( ) ( )

( ) ( ) ( )
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(17) 

Maximization step in which the predicted values are then maximized to obtain the real values for the next 
iteration. 
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EM algorithm is well known and highly appreciated for its numerical stabilities under a threshold values of  λmin. 
Using the final re-estimated w, µ and C, the value of LIGMM is calculated with respect to all the word models 
available with the recognition engine as: 

1

1 log ( )
T

GMM GM t
t

L P x
T =

= ∑  (21) 

The Hybrid Model 

The GMM/HMM hybrid model has the ability to find the joint maximum probability among all possible reference 
words W given the observation sequence O. In real case, the combination of the GMMs and the HMMs with a 
weighted coefficient may be a good scheme because of the difference in training methods. The ith speaker 
independent GMM produces likelihood LiGMM, I = 1, 2,…, W, where W is the number of words. The ith speaker 
independent HMM also produces likelihood LiHMM, I = 1, 2,…, W. All these likelihood values are passed to the so 
– called likelihood decision block, where they are transformed into the new combined likelihood L’ (W): 

i i'( ) (1 ( )) ( )G M M H M ML W x W L x W L= − +  (22) 

where x(W) denotes a weighting coefficient. 
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The value of x is calculated during training of the 
Hybrid Model. In Hybrid Testing, the subset of 
training data is used and it’s HMM & GMM 
likelihood values are calculated which are combined 
using weighing coefficient. Static values of weighted 
coefficient are also used in order to get higher 
recognition rate. 

Results and Conclusions 
The HMM model developed had been tested for 
different combinations of cluster sizes and number 
of states. The success rate (%) with different 
combinations of clusters and states are shown in 
figure 2. It was observed that as the cluster size 
increases success rate also increases, because of 
the reduction in quantization distortion , while 
increasing the number of clusters. Secondly the 
time complexity of the recognition engine is also 
computed with various cluster sizes, and it was 
observed that 3- state HMM model having 128 cluster size has the least time complexity as comparing with other 
combinations. Since its time complexity is  small it  can be useful in applications where speed is the deciding 
factor. The GMM/HMM Hybrid model created has 8 components and 256 clustering size in GMM and 3 states 
and 128 clustering size in HMM . Success rate with fixed as well as varying values of weighed coefficient was 
tested and is shown in figure 4. It was observed, that  with the  varying value of the weighted coefficient  x ,the 
success rate of word recognition by using hybrid model has increased to  84.38% , which earlier was 83.6% with 
HMM alone. And by fixing the value of x to 0.9  success rate further increased to 85%. The complexity curve for 
different cluster size is shown in figure 3.  
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Figure 3: Complexity v/s clusters and states 

 
Figure 1: Hybrid Model Block Diagram 
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Figure 4: Success Rate v/s weighing coefficient 
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