
International Book Series "Information Science and Computing"

69

IMPROVED HYBRID MODEL OF HMM/GMM FOR SPEECH RECOGNITION

Poonam Bansal, Anuj Kant, Sumit Kumar, Akash Sharda, Shitij Gupta

Abstract: In this paper, we propose a speech recognition engine using hybrid model of Hidden Markov Model
(HMM) and Gaussian Mixture Model (GMM). Both the models have been trained independently and the
respective likelihood values have been considered jointly and input to a decision logic which provides net
likelihood as the output. This hybrid model has been compared with the HMM model. Training and testing has
been done by using a database of 20 Hindi words spoken by 80 different speakers. Recognition rates achieved
by normal HMM are 83.5% and it gets increased to 85% by using the hybrid approach of HMM and GMM.

Keywords: Speech Recognition, GMM, HMM

ACM Classification Keywords: I5.4 Pattern Recognition- Applications- Conference proceedings

Conference: The paper is selected from International Conference "Intelligent Information and Engineering Systems"
INFOS 2008, Varna, Bulgaria, June-July 2008

Introduction
Speech signal primarily conveys the words or message being spoken. Area of speech recognition is concerned
with determining the underlying meaning in the utterance. Success in speech recognition depends on extracting
and modeling the speech dependent characteristics which can effectively distinguish one word from another. A
general pattern recognition system consists of 4 parts, the feature extractor, pattern trainer, pattern classifier and
decision logic. One of the most common and successful feature extraction processes is MFCC [Kotnik, 2002]
which has been implemented in this model. Of the various speech/ speaker recognition models available, the
most commonly used are Artificial Neural Networks (ANN), Hidden Markov Model (HMM) and Gaussian Mixture
Model (GMM). Presently HMM is widely used as one of the successful speech recognition process. HMM
considers the speech signal as quasi- static for short durations and models these frames for recognition. It breaks
the feature vector of the signal into a number of states and finds the probability of a signal to transit from one
state to another [Rabiner, Juang, 1993]. Viterbi search, forward-backward and Baum-Welch algorithms are used
for parameter estimation and optimization [Rabiner, 1989], [Rabiner, Juang, 1991]. GMM on the other hand
considers a signal to contain different components that are independent of each other. These components
represent the broad acoustic classes that represent certain vocal tract configurations [Reynolds, Rose, 1995].
Thus it is more inclined towards modeling features concerning to words having specific characteristics. Each
component is optimized using EM algorithm [Dempster, 1977]. Various ways of combining these models have
been proposed. One way is to use a 3 state HMM and implement GMM on the middle state to obtain the
observation probabilities for that state [Rodriguez, 2003]. Here we have proposed a novel model combining
GMM and HMM to provide more enhanced speech recognition engine, which we call as the hybrid model. We
have proposed the extraction of likelihood value by combining the likelihood values of both the models using
decision logic. In the rest of the paper we discuss individually about the HMM, the GMM and how the hybrid
model was developed. At the end, we compare the HMM model with the hybrid model using a 20 word, 80
utterances data set.

Hidden Markov Model
Hidden Markov model (HMM) is a statistical model in which the system being modeled is assumed to be a
Markov process with unknown parameters, and the challenge is to determine the hidden parameters from the
observable parameters. The extracted model parameters can then be used to perform further analysis, for
example for pattern/speech recognition applications. In a hidden Markov model, the states are not directly visible,
but variables influenced by the state are visible. Each state has a probability distribution over the possible output
tokens. Also, the state transitions are probabilistic in nature. Therefore, the sequence of tokens generated by an
HMM gives some information about the sequence of states. The complete HMM model is denoted as λ =(A,B,π).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62659169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Intelligent Technologies and Applications

70

HMM Model Parameters
1. A, the state probability distribution, A = {aij}.
2. B, the observation symbol probability density, B = {bj(k)}.
3. π, the initial state distribution, π = { πi}.
The HMM training procedure requires codebook to estimate model parameters. In codebook, the large number of
observational vectors of the training data is clustered into M observational vectors clusters using K-means
iterative procedure. Based on this clustered observational vectors, estimates of the model parameters are
generated during HMM training. The HMM training procedure tries to estimate the value of state probability
distribution (A), observation symbol probability density (B), and initial state distribution (π). The observational
vectors of training sequences are segmented for each of the N states, a maximum – likelihood estimates of the
set of the observations that occur within each state j each of the observation vectors within a state is coded using
the M – code – word codebook. Before proper estimation of the model parameters they are initialized to good
initial estimates that are essential for rapid and proper convergence of the re-estimation formulas. The
parameters are re-estimated using Viterbi Algorithm, Forward- Backward Algorithm and Baum/Welch Algorithm.

Forward- Backward Algorithm
Forward Algorithm
The forward variable αt(i) is defined as αt(i) = P(o1,o2,… ,ot,qT = i|λ) i.e. the probability of the partial observation
sequence (until time t) and state i at time t, given the model λ. αt(i) is inductively computed by following steps:
Initialization:

1 1 1i iα ι π B ο ι Ν() = (), ≤ ≤ (1)
Induction:

1 1() ,1 1t t ij j tj i a b t Tα α ο+ +() = [∑] () ≤ ≤ − (2)

Termination:
P(O|) (i)tλ α= ∑ (3)

Backward Algorithm
The backward variable βt(i) is defined as βt(i) = P(ot+1,ot+2,…,oT,qT = i|λ) i.e. the probability of the partial
observation sequence from t+1 to the end, given the state i at time t and the model λ. βt(i) is inductively solved as
follows:
Initialization:

1 1tβ i i Ν() = , ≤ ≤ (4)
Induction:

t 1 1() () () ... ij j j t ti a b b o j t iβ β+ + = ∑ , = Τ −1, Τ − 2, ,1, 1≤ ≤ Ν (5)
Combining Forward and Backward variables, we get:

P(O|) () ()t ti i tλ α β = ∑ ,1 ≤ ≤ Τ (6)

The Viterbi Algorithm
To find the single best state sequence, for the given observation sequence, δt(i) = max P[q1q2…qt-1, qt = i,
o1o2…ot|λ], δt(i) is the highest probability and ψt(i) is the track for path t.
Initialization:

Niobi ii ≤≤= 1),()(11 πδ

1() 0iψ =
(7)

Recursion:
NjTtobaij tjjitt ≤≤≤≤= − 1,2),(])(max[)(1δδ (8)

International Book Series "Information Science and Computing"

71

1() argmax[()],2 ,1t t i jt i a t T j Nψ δ −= ≤ ≤ ≤ ≤

Termination:
Ν ≤≤]1δ= it (i)[max * P

Tq * a rg m a x [(i)t iδ=]1 ≤ ≤ Ν
(9)

Path (state sequence) backtracking
t 1 t 1qT* (q*),t ...ψ + += = Τ −1,Τ − 2, 1 (10)

The Baum/Welch Algorithm
To adjust the model parameters to satisfy a certain optimization criteria is done by the Baum/Welch algorithm.

ij j t 1 t 1

1 1
1 1

(i)a b (o)ß (j)(i,j)
() () ()

t
t N N

t ij j t t
i j

i a b o j

αξ
α β

+ +

+ +
= =

=
∑ ∑

 (11)

1
() (i , j)

N
t t

j
iγ ξ

=
= ∑ (12)

1

1
1

1

(,)

()

T
t

t
ij T

t
t

i j
a

i

ξ

γ

−

=
−

=

=
∑

∑
 (13)

1

1

()

()

t k

T
t

t
o v

ij T
t

t

j

b
j

γ

γ

=
=

=

=

∑

∑

(14)

Using the final re-estimated A, B and π, the value of LIHMM is calculated with respect to all the word models
available with the recognition engine by using Viterbi algorithm. The Viterbi algorithm takes model parameters
and the observational vectors of the word as input and returns the value of matching with all particular word
models. This is the likelihood values of the word (LIHMM) passed to hybrid training model.

The Gaussian Mixture Model
The GMM can be viewed as a hybrid between parametric and non- parametric density models. Like a parametric
model, it has structure and parameters that control the behavior of density in known ways. Like non-parametric
model it has many degrees of freedom to allow arbitrary density modeling. The GMM density is defined as
weighted sum of Gaussian densities:

1
() (, ,)

M

G M m m m
m

p x w g x Cμ
=

= ∑ (15)

Here m is the Gaussian component (m=1…M), and M is the total number of Gaussian components. wm are the
component probabilities (∑wm = 1), also called weights. We consider K-dimensional densities so the argument is
a vector x = (x1, ... , xK)T . The component pdf, g(x, µm, Cm), is a K-dimensional Gaussian probability density
function (pdf).

()
()

() ()11
2

1/ 2/ 2
1, ,

2

T
m m mx C x

m m K
m

g x C e
C

μ μμ
π

−− − −
= (16)

Intelligent Technologies and Applications

72

where µm is the mean vector, and Cm is the covariance matrix.
Now, a Gaussian mixture model probability density function is completely defined by a parameter list given by
 θ = {w1, µ1, C1... w1, µ1, C1}m m=1…M
Organizing the data for input to the GMM is important since the components of GMM play a vital role in the
making of word models. For this purpose, we use K- Means clustering technique to break the data into 256
cluster centroids. These centroids are then grouped into sets of 32 and then passed into each component of
GMM. As a result we obtain a set of 8 components for GMM. Once the component inputs are decided, the GMM
modeling can be implemented.

EM Algorithm
The expectation maximization (EM) algorithm is an iterative method for calculating maximum likelihood
distribution parameter estimates from incomplete data (elements missing in feature vectors). The EM update
equations are used which gives a procedure to iteratively maximize the log-likelihood of the training data given
the model. The EM algorithm is a two step process:
Estimation Step in which current iteration values of the mixture are utilized to determine the values for the next
iteration

() () ()

() () ()

1

(, ,)(,)
(, ,)

i i i
m t m m

M
i i i

j t j j
j

w g X Cm t
w g X C

μ
γ

μ
=

=
∑

(17)

Maximization step in which the predicted values are then maximized to obtain the real values for the next
iteration.

,(1) 1

,1

T
m t ti t

m T
m tt

Xγ
μ

γ
+ =

=

= ∑
∑

 (18)

(1)
,1

Ti
m m ttW γ+

== ∑ (19)

(1) 2
, , ,(1) 1

,
,1

()T i
m t t j m ji t

m j T
m tt

xγ μ
λ

γ

+
+ =

=

−
=

∑
∑

 (20)

EM algorithm is well known and highly appreciated for its numerical stabilities under a threshold values of λmin.
Using the final re-estimated w, µ and C, the value of LIGMM is calculated with respect to all the word models
available with the recognition engine as:

1

1 log ()
T

GMM GM t
t

L P x
T =

= ∑ (21)

The Hybrid Model

The GMM/HMM hybrid model has the ability to find the joint maximum probability among all possible reference
words W given the observation sequence O. In real case, the combination of the GMMs and the HMMs with a
weighted coefficient may be a good scheme because of the difference in training methods. The ith speaker
independent GMM produces likelihood LiGMM, I = 1, 2,…, W, where W is the number of words. The ith speaker
independent HMM also produces likelihood LiHMM, I = 1, 2,…, W. All these likelihood values are passed to the so
– called likelihood decision block, where they are transformed into the new combined likelihood L’ (W):

i i'() (1 ()) ()G M M H M ML W x W L x W L= − + (22)

where x(W) denotes a weighting coefficient.

International Book Series "Information Science and Computing"

73

The value of x is calculated during training of the
Hybrid Model. In Hybrid Testing, the subset of
training data is used and it’s HMM & GMM
likelihood values are calculated which are combined
using weighing coefficient. Static values of weighted
coefficient are also used in order to get higher
recognition rate.

Results and Conclusions
The HMM model developed had been tested for
different combinations of cluster sizes and number
of states. The success rate (%) with different
combinations of clusters and states are shown in
figure 2. It was observed that as the cluster size
increases success rate also increases, because of
the reduction in quantization distortion , while
increasing the number of clusters. Secondly the
time complexity of the recognition engine is also
computed with various cluster sizes, and it was
observed that 3- state HMM model having 128 cluster size has the least time complexity as comparing with other
combinations. Since its time complexity is small it can be useful in applications where speed is the deciding
factor. The GMM/HMM Hybrid model created has 8 components and 256 clustering size in GMM and 3 states
and 128 clustering size in HMM . Success rate with fixed as well as varying values of weighed coefficient was
tested and is shown in figure 4. It was observed, that with the varying value of the weighted coefficient x ,the
success rate of word recognition by using hybrid model has increased to 84.38% , which earlier was 83.6% with
HMM alone. And by fixing the value of x to 0.9 success rate further increased to 85%. The complexity curve for
different cluster size is shown in figure 3.

75

80

85

90

95

3 5 7
No. of states

Su
cc
es

s
Ra

te
 (%

)

128 Clusters 256 Clusters 512 Cluste

Figure 2: Success Rate verses different combinations of clusters and states

0

500

1000

1500

3 5 7
No. of States

Ti
m
e
(s
ec
on

ds
)

128 Clusters 256 Clusters 51

Figure 3: Complexity v/s clusters and states

Figure 1: Hybrid Model Block Diagram

Intelligent Technologies and Applications

74

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 variable x
Weighing Coefficient (X)

Su
cc

es
s

R
at

e
(%

)

Figure 4: Success Rate v/s weighing coefficient

Bibliography
[Dempster, 1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM

algorithm. In: Journal of the Royal Statistical Society: Series B, 39(1) pp. 1–38, November 1977.
[Kotnik, 2002] B. Kotnik, D. Vlaj, Z. Kačič, B. Horvat. Robust MFCC Feature Extraction Algorithm Using Efficient Additive and

Convolutional Noise Reduction procedures .In: ICSLP’02 Proceedings, Denver, Colorado, USA pp 445- 448, 2002.
[Rabiner, Juang, 1993] L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice Hall, New Jersey, 1993.
[Rabiner, Juang, 1991] B. H. Juang, L. R. Rabiner. Hidden Markov Models for Speech Recognition. In: Technometrics, Vol.

33, No. 3, pp. 251-272, August 1991.
[Rabiner, 1989] L. Rabiner. A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, In:

Proceedings of IEEE Volume 77 No. 2 pp 257-286, February 1989.
[Reynolds, Rose, 1995] D. A. Reynolds and R.C. Rose. Robust text-independent speaker identification using Gaussian

mixture speaker models. In: IEEE Transactions on Speech and Audio Processing, 3(1), pp. 72–83, 1995
[Rodriguez, 2003] E. Rodriguez, B. Ruiz, A. G. Crespo, F. Garcia. Speech/Speaker Recognition Using a HMM/GMM Hybrid

Model. In: Proceedings of the First International Conference on Audio- and Video-Based Biometric Person
Authentication, pp. 227- 234, April 2003

Authors' Information

Poonam Bansal – Assistant Professor , Department of Computer Science and Engineering, Amity School Of
Engineering and Technology, 580, Delhi Palam Vihar Road, Bijwasan, New Delhi 110061, India ; Member ITHEA.
e-mail: pbansal89@yahoo.co.in
Anuj Kant – Department of Computer Science and Engineering, Amity School Of Engineering and Technology,
580, Delhi Palam Vihar Road, Bijwasan, New Delhi 110061, India.
Akash Sharda – Department of Computer Science and Engineering, Amity School Of Engineering and
Technology, 580, Delhi Palam Vihar Road, Bijwasan, New Delhi 110061, India.
Sumit Kumar – Department of Computer Science and Engineering, Amity School Of Engineering and
Technology, 580, Delhi Palam Vihar Road, Bijwasan, New Delhi 110061, India.
Shitij Gupta – Department of Computer Science and Engineering, Amity School Of Engineering and Technology,
580, Delhi Palam Vihar Road, Bijwasan, New Delhi 110061, India.

