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ON THE RELATIONSHIP BETWEEN QUANTIFIED REFLECTIVE LOGIC AND 
QUANTIFIED DEFAULT LOGIC 

Frank M. Brown 
Abstract: Reflective Logic and Default Logic are both generalized so as to allow universally quantified 
variables to cross modal scopes whereby the Barcan formula and its converse hold.  This is done by 
representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as 
necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before 
the defaults.  The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are 
then compared by deriving metatheorems of Z that express their relationships.  The main result is to show that 
every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the 
equivalence for Quantified Reflective Logic.    It is further shown that Quantified Reflective Logic and 
Quantified Default Logic have exactly the same solutions when no default has an entailment condition. 
Keywords: Quantified Reflective Logic, Quantified Default Logic, Modal Logic, Nonmonotonic Logic. 

1. Introduction 

Two nonmonotonic logics which inherently deal with entailment conditions in addition to possibility conditions 
in their defaults; are Reflective Logic and Default Logic [Reiter 1980] [Antoniou 1997].  The fixed-point 
solutions to Default Logic are defined by the set theoretic equation κ=(dl κ  Γ αi:βij/χi) where: 
(dl κ Γ αi:βij/χi) =df  ∩{p:(p⊇(fol p))∧(p⊇Γ)∧ ∧i(((αiεp)∧ ∧j=1,mi((¬βij)∉κ))→(χiεp))} 
where αi, βij, and χi are closed sentences of First Order Logic (i.e. FOL) and Γ is a set of closed sentences 
of FOL   ∧j=1,mi  stands for the conjunction of the formula that follows it as j ranges from 1 to mi.  If mi=0 then 
it specifies #t.  ∧i is also a conjunction.  By closed it is meant that no sentence may contain a free variable.  
(fol p) is the set of theorems deducible in FOL from the set p.  The fixed-point solutions for Reflective Logic, 
can be defined by the simpler set theoretic equation κ=(rl κ Γ αi:βij/χi) given in [Brown 1989] where: 
(rl κ Γ αi:βij/χi) =df fol(Γ∪{χi:(αiεκ)∧ ∧j=1,mi((¬βij)∉κ)}) 
where αi, βij, and χi are again closed sentences of FOL and Γ is a set of closed sentences of FOL.  

These two nonmonotonic systems have the basic problem that they do not explicate the case where 
free variables occur in the αi, βij, and χi sentences and which are universally quantified just over the scope of 
those sentences.  To carry out such an explication we want to transform (dl κ Γ αi:βij/χi) into something like: 

∩{p:(p⊇(fol p))∧(p⊇Γ)∧ ∧i∀ξi(((αiεp)∧ ∧j=1,mi((¬βij)∉κ))→(χiεp))} 
and (rl κ Γ αi:βij/χi) into something like:5  fol(Γ∪{Ψ: ∨i∃ξi(Ψ=χi∧(αiεκ)∧ ∧j=1,mi((¬βij)∉κ))}) 
where ξi is a sequence of variables and the universal quantifier really means universal quantification.  That is, 
the Barcan formula and its converse hold [Carnap 1946] so that a property universally holds (in κ) if and only 
if it holds (in κ) for everything: ((∀ξα)εκ)↔(∀ξ(αεκ)).  The problem lies in the fact that αi, βij, and χi are 
necessarily closed sentences of FOL.6 
However,  [Brown 2003a] showed how Reflective Logic can be represented in Modal Logic by the necessary 
equivalence: κ≡(RL κ Γ αi:βij/χi) where: 
 (RL κ Γ αi:βij/χi) =df Γ∧∧i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
Likewise  [Brown 2003b] showed how Default Logic can be represented in Modal Logic by the necessary 
equivalence: κ≡(DL κ Γ αi:βij/χi) where: 
 (DL κ Γ αi:βij/χi) =df ∃p(p∧([p]Γ)∧∧i((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 

                                                           
5When the set theoretic notation is unravelled the existential quantifiers specified herein are essentially universally quantified over the defaults as can 
be seen in the equivalent equation: k=∩{p:(p⊇(fol p))∧(p⊇Γ)∧ ∧i∀ξi(((αiεk)∧∧j=1,mi((¬βij)∉k))→(χiεp))} 
6Of course one generally gives a meaning to such a sentence by saying that all the free variables are implicitly universally quantified or that all such 
variables are implicitly existentially quantified.  However, neither approach allows a quantifier to refer to the same free variable in αi, βij, and χi. This 
issue is discussed in more detail in section 3.2 in [Antoniou 1997]. 
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The advantage of the modal representations is that quantifiers can be embedded in them wherever we wish 
thus allowing inserted universal quantifiers to capture the free variables in αi, βij, and χi , giving the 
generalizations: 
(QRL κ Γ αi:βij/χi) =df Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
(QDL κ Γ αi:βij/χi) =df ∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Having created two new nonmonotonic systems (i.e. QRL and QDL) the question arises as to how their fixed-
point solutions are related.  Herein we address this question.  Section 2 axiomatizes the Z Modal 
Quantificational Logic. Quantified Reflective Logic (i.e., QRL) is defined in section 3 and some basic theorem 
schemata about it are proven.  Quantified Default Logic (i.e., QDL) is defined in section 4 and some basic 
theorem schemata about it are proven.  The main result is proven in section 5.  Finally, some conclusions are 
drawn in section 6. 
 

2. Axiomatization of Z Modal Logic 

The Modal Quantificational Logic Z [Brown 1987] is a seven tuple: (→, #f, ∀, [], vars, predicates, functions) 
where →, #f, ∀, and [] are logical symbols, vars is a set of variable symbols, predicates is a set of predicate 
symbols each of which has an implicit arity specifying the number of terms associated with that predicate, 
and functions is a set of function symbols each of which has an implicit arity specifying the number of terms  
associated with that function.  The sets of logical symbols, variables, predicate symbols, and function 
symbols are pairwise disjoint.  The set of terms is the smallest set which includes the variables and is closed 
under the process of forming new terms from other terms using the function symbols of the language.  The set 
of sentences is the smallest set which includes #f, the variables, and each of the predicates followed by an 
appropriate number of terms, and is closed under the process of forming new sentences from other 
sentences using the logical symbols of the language, provided that no variable in any subexpression has free 
occurrences both as a sentence and as a term.  Variables that occur only in term positions are called concept 
variables.  Variables which occur only in sentence positions are called propositional variables.  Lower case 
Roman letters possibly indexed with digits are used as variables of Z.  Greek letters are used as syntactic 
metavariables.  γ, γ1,...γn, range over the variables, ξ, ξ1,...ξn range over a sequence of variables of an 
appropriate arity, π,π1...πn,ρ,ρ1...ρn range over the predicate symbols, φ, φ1...φn range over function 
symbols, δ, δ1...δn range over terms, Δ, Δ1...Δn range over a sequence of terms of an appropriate arity, and 
α, α1...αn, β, β1...βn,χ, χ1...χn, Γ, and Ψ range over sentences.  Thus, the terms are of the forms γ and (φ 
δ1...δn), and the sentences are of the forms (α →β), #f, (∀γ α), ([]α), (π δ1...δn), and γ.  A nullary predicate 
π or function φ is written as a sentence or term without parentheses.  The primitive symbols of Z are shown in 
Figure 1. 
 

Symbol Meaning  Symbol Meaning 
α→ β if α then β.  ∀γ α for all γ, α. 
#f falsity  [] α α is logically necessary 

Figure 1: Primitive Symbols of Z 
 

The defined symbols of Z are listed in Figure 2 below with their intuitive interpretations. 
 

Symbol Definition Meaning  Symbol Definition Meaning 
¬α α → #f not α  α∧β ¬(α → ¬β) α and β 
#t ¬ #f truth  α↔ β (α→ β) ∧ (β→ α) α if and only if β 
α∨β (¬ α)→ β α or β  ∃γ α ¬∀γ ¬α for some γ , α 
<> α ¬[]¬α α is  logically possible  [β] α  ([](β→α)) β entails α 
α≡ β [](α↔β) α is logically equivalent toβ  <β> α (<>( β∧α)) α is possible with β 
δ1=δ2 (πδ1)≡(π δ1) δ1is logically equal to δ2     

Figure 2: Defined Symbols of Z 
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Z is effectively axiomatized with a recursively enumerable set of theorems as the set of axioms is itself 
recursively enumerable and its inference rules are recursive.  The classical (i.e., non-modal) axioms and 
inference rules of Z include those of Quantificational Logic [Mendelson 1964] given in Figure 3.  The laws 
MR1, MR2, MA1-MA7 are a standard set of axioms and inference rules for First Order Quantificational Logic 
except for the following: point:  Because γ in MR2, MA4, and MA5 may be a propositional variable these laws 
constitute a fragment of Second Order Logic.  Propositional quantifiers in modal logics have been investigated 
in [Fine 1970].  
 
MA1: α → (β→ α)     MR1: from α and (α→ β) infer β 
MA2: (α→ ( β→ ρ)) → ((α→ β)→ (α→ ρ))  MR2: from α infer (∀γ α) 
MA3: ((¬ α)→ (¬ β))→ (((¬ α)→ β)→α) 
MA4: (∀γ α)→ β   where β is the result of substituting an expression (which is free for the free positions 
        of γ  in α) for  all the free occurrences of γ  in α. 
MA5: ((∀γ (α → β)) →  (α →(∀γ β)))  where γ does not occur in α. 

Figure 3: The Classical Rules and Axioms of Z 
 
The modal inference rule and axioms of Z about logical necessity (i.e., []) are given in Figure 4.  R0, A1, A2, 
and A3 constitute an S5 Modal Logic [Hughes and Cresswell 1968] which, with the nonmodal laws, is an S5 
modal quantificational logic similar to [Carnap 1946], [Carnap 1956], and a First Order Logic version [Parks 
1976] of [Bressan 1972] in which the Barcan formula: (∀γ([]α))→([]∀γα) and its converse hold.  R0 implies 
that all  assertions are logically necessary.  Thus, in any logic with R0, contingent facts Γ holding in a 
knowledgebase κ are specified by asserting ([κ]Γ).  If Γ is all that is in κ then   κ≡Γ is asserted.  The variable 
κ may occur in Γ. 
 
R0: from α infer ([] α)   A4: ([]α) → ([](α{π / λξβ} 
A1: ([]p) → p    A5: ([]α) → ([](α{φ / λξδ} 
A2: ([p]q) → (([]p)→ ([]q))  A6: ¬(∀x∀y(x=y)) 
A3: ([]p) ∨ ([]¬[]p)) 

Figure 4: The Modal Inference Rule and Axioms of Z 
 
A4 is the key axiom schema of Z. It is far stronger than the trivial possibility axioms such as 
∃pq((¬[p]q)∧(¬[p]¬q)) assumed in [Lewis 1936] and ∃p((<>p)∧(<>¬p)) assumed in [Bressan 1972].  It also 
extends certain axiom schemata used in propositional logic, including the PropPosAx schema in [Brown 
1979], S13 [Cocchiarella 1984], and S5c [Hendry and Pokriefka 1985]. 
 

3. Quantified Reflective Logic 

The formula for Quantified Reflective Logic7 (i.e., QRL) [Brown 1989] is defined in Z as follows: 
RL0:   (QRL κ Γ αi:βij/χi) =df Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
where Γ, αi, βij, and χi are sentences of Z and κ does not occur in ξ.  These sentences may contain free 
variables some of which may be captured by the ∀ξi quantifiers.  When the context is obvious Γ αi:βij/χi is 
omitted and instead just (QRL κ) is written.  Interpreted as a doxastic logic, the equivalence: 

κ≡(QRL κ) 
states: 
 

                                                           
7 In the QRL generalization of Reflective Logic the Barcan formula and its converse hold for [k]: 
([k]∀ξα)↔(∀ξ[k]α) since they are inherited from the S5 modal properties of [].   In terms of set theoretic 
fixed-points this amounts to saying that ('(∀ξα)εk)→(∀ξ('αεk)) holds except for the problem that that in the 
set theory  representation 'α is a closed sentence. 
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that which is believed is logically equivalent to 
 Γ and  for each i, for all ξi if αi is believed and for each j, βij is believable then χi 

Here are some simple properties of QRL, namely that (QRL κ) entails Γ and any conclusion χi of a default 
whose conditions hold: 
R1:  [(QRL κ)]Γ 
proof: Unfolding QRL gives: [Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)]Γ  which is a tautology. QED. 
 
R2: (([κ]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi) 
proof: Unfolding QRL gives: (([κ]αi)∧(∧j=1,mi(<κ>βij)))→([Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)]χi) 
Using the hypotheses on the ith instance and where the quantified ξi is instantiated to ξi gives: 
(([κ]αi)∧(∧j=1,mi(<κ>βij)))→([Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)∧χi]χi) which is a tautology. QED. 

4. Quantified Default Logic 
The formula for Quantified Default Logic (i.e., QDL) [Brown 1989] is defined in Z as follows: 
D0: (QDL κ Γ αi:βij/χi) =df ∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
where Γ, αi, βij, and χi are sentences of Z without any free occurences of p and neither p nor κ occur in ξi.  
These sentences may contain free variables some of which may be captured by the ∀ξi quantifiers.  When 
the context is obvious Γ αi:βij/χi is omitted and just (QDL κ) is written.  Interpreted as a doxastic logic the 
equivalence: 

κ≡(QDL κ) 
states: 
that which is believed is logically equivalent to 
   the disjunction of all potential belief states such that: 
       Γ is potentially believed 
       and for each i, for all ξ 
          if αi is potentially believed and for each j, βij is believable then χi is potentially believed. 

Given below are some simple properties of QDL.  The first two state that QDL entails Γ and any conclusion χi 
of a default whose entailment condition holds in QDL and whose possible conditions are possible with κ. 
D1: [(QDL κ)]Γ 
proof: Unfolding QDL gives: [∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]Γ 
Since p is not free in Γ, pulling ∃p out of the hypothesis of the entailment gives: 
∀p((([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) →([p]Γ))   which is a tautology. QED. 
 
D2: (([(QDL κ)]αi)∧(∧j=1,mi(<κ>βij))) →([(QDL κ)]χi) 
proof: Unfolding both occurrences of QDL gives: 
(([∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]αi)∧(∧j=1,mi(<κ>βij))) 
→([∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]χi) 
Since p is not free in αi and χi, pulling ∃p out of the hypotheses of the entailments gives: 
((∀p((([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]αi))∧(∧j=1,mi(<κ>βij)))) 
→∀p((([p]Γ) ∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]χi)) 
Instantiating the p in the hypothesis to the p in the conclusion gives: 
(((([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]αi)) 
∧(∧j=1,mi(<κ>βij))∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]χi) 
which simplifies to 
just:(([p]αi)∧(∧j=1,mi(<κ>βij))∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]χi) 
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Since p is not in ξ, forward chaining using the first and second hypotheses on the fourth proves the theorem. 
QED. 
 
A slightly stronger version of QDL is defined below: 
D3:  (QDL* κ Γ αi:βij/χi) =df ∃p(p∧([κ]p)∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
 
D4: [(QDL* κ)](QDL κ) 
proof:  Unfolding QDL* and QDL gives: [∃p(p∧([κ]p)∧([p]Γ) ∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))] 
∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Letting p in the conclusion be the p in the hypothesis results in a tautology. QED. 
 
Theorem D5 shows that QDL and QDL* are logically equivalent whenever κ entails the QDL formula: 
D5: ([κ](QDL κ))→((QDL κ)≡(QDL* κ)) 
proof: From Theorem D4, it suffices to prove: ([κ](QDL κ))→([(QDL κ)](QDL* κ)) 
Unfolding QDL* gives:([κ](QDL κ))→([(QDL 
κ)]∃p(p∧([κ]p)∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))) 
Since p and κ are not in ξ and p is not free in Γ, αi, βij, and χi, letting p be (QDL κ) gives: 
 ([κ](QDL κ))→   
       ([(QDL κ)]((QDL κ)∧([κ](QDL κ))∧([(QDL κ)]Γ)∧∧i∀ξi((([(QDL κ)]αi)∧(∧j=1,mi(<κ>βij)))→([(QDL 
κ)]χi)))) 
which holds by D1, D2,  and the hypothesis. QED 
 
 

5. Relationship between QRL and QDL 

The following theorems characterize the relationship between QDL and QRL: 
 
RD1: (κ≡(QDL κ)) → [κ](QRL κ) 
proof: Unfolding the definition of QRL gives: (κ≡(QDL κ))→ [κ](Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)) 
Since κ is not in ξ, pushing [κ] to lowest scope using the laws of ΚU45 modal logic on [κ] gives: 
(κ≡(QDL κ))→  (([κ]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([κ]χi))) 
Since κ is not in ξ, using the hypothesis to replace the first κ in the conclusion by (QDL κ) gives [(QDL κ)]Γ 
which by theorem D1 is true.  It remains only to prove: (κ≡(QDL κ))→ ((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([κ]χi)) 
Since κ is not in ξi, replacing two occurrences of κ by using the hypothesis  and then dropping the hypothesis 
gives: (([(QDL κ)]αi)∧(∧j=1,mi(<κ>βij)))→([(QDL κ)]χi) which by theorem D2 is true. QED. 
 
RD2:  (κ≡(QDL κ))→ [(QRL κ)]κ 
proof: Using the hypothesis to replace the entailed κ in the conclusion gives: (κ≡(QDL κ))→ ([(QRL κ)](QDL 
κ)) 
Unfolding QDL in the conclusion gives:  
(κ≡(QDL κ)) → [(QRL κ)]∃p(p∧([p]Γ) ∧∧i∀ξi ((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Since p and κ are not in ξ and p is not free in Γ, αi, βij, and  χi, letting p be (QRL κ) gives: 
(κ≡(QDL κ))→[(QRL κ)]((QRL κ)∧([(QRL κ)]Γ)∧∧i∀ξi((([(QRL κ)]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi))) 
The hypothesis κ≡(QDL κ) and RD1 imply ([κ](QRL κ)) which, since κ is not in ξ, allows the above sentence 
to be generalized to: 
(κ≡(QDL κ))→[(QRL κ)]((QRL κ)∧([(QRL κ)]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi))) 
which by RL1 and RL2 is true. QED. 
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From RD1 and RD2 we may infer that every solution of the reflective equivalence of Quantified Default Logic 
is a solution of the equivalence for Quantified Reflective Logic: 
RD3: (κ≡(QDL κ))→ (κ≡(QRL κ)) 
 
It also follows that every solution to Quantified Reflective Logic entails (QDL κ). 
RD4: ([κ](QRL κ))→ [κ](QDL κ) 
proof: Unfolding the definition of QDL gives: 
([κ](QRL κ))→ [κ]∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Since p and κ are not in ξi and p is not free in Γ, αi, βij, and χi, letting p be κ gives: 
([κ](QRL κ))→ [κ](κ∧([κ]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([κ]χi))) 
Since κ is not in ξi, using  the  hypothesis to replace two  occurrences of κ by  (QRL κ) gives the 
generalization: 
([κ](QRL κ))→ [κ](κ∧([(QRL κ)]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi))) 
which is true by RL1 and RL2. QED 
. 
From RD3 and RD4 we may infer that the solutions to QDL are precisely those solutions to QRL which are 
entailed by (QDL κ):  
RD5: (κ≡(QDL κ)) ↔ ((κ≡(QRL κ))∧([(QDL κ)]κ)) 
 
Likewise since κ≡(QRL κ) in RD5 implies ([κ](QDL κ)) by RD3 and since ([κ](QDL κ)) implies that (QDL κ) is 
logically equivalent to (QDL* κ) by D5, it follows that:  
RD6: (κ≡(QDL κ)) ↔ ((κ≡(QRL κ))∧([(QDL* κ)]κ)) 
 

 RD6 characterizes the relationship between QRL and QDL in terms of [(QDL* κ)]κ.  We now show 
that ([(QDL* κ)]κ) is equivalent to the notion of being constructive, defined as follows: a Reflectivec solution κ 
is constructive iff it is not the case that there exists a proposition which satisfies the following four conditions: 
(1) κ entails that proposition, (2) the proposition does not entail κ, (3) the proposition entails Γ, and (4) for 
each i and for all ξ the proposition entails the conclusion χi of each default whose presupposition αi is 
entailed by that proposition and whose βij formulas are possible with κ. 
RD7: (Constructive κ Γ αi:βij/χi)  

=df¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξ((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
 

RD8: ([(QDL* κ)]κ)↔(Constructive κ) 
proof: Unfolding the (QDL*  κ) in ([(QDL* κ)]κ) gives: 
[∃p(p∧([p]Γ)∧([κ]p)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]κ 
Pulling ∃p out of the hypothesis of the entailment gives: 
∀p((∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))∧([p]Γ)∧([κ]p))→([p]κ)) 
Pushing a negation through the formula gives: 
¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ) ∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
which is the definition of being constructive. QED. 
 

Being constructive isequivalent to the notion of being strongly grounded.  A Quantified Reflective 
solution κ is strongly grounded iff it is not the case that there exists a proposition which satisfies the following 
four conditions: (1) κ entails that proposition,  (2) the proposition does not entail κ, (3) the proposition entails 
Γ, and (4) for each i and all ξ the proposition entails the conclusion χi of each default whose βij formulas are 
also possible with κ in addition to being such that the default's presupposition αi is entailed by that 
proposition and the default's βij formulas  are possible with that proposition:8 

                                                           
8  When no variables cross modal scopesthis concept may be defined in set theory as: 
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RD9: (Strongly-grounded κ Γ αi:βij/χi) =df 
  ¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ) ∧∧i∀ξ((∧j=1,mi(<κ>βij))→((([p]αi)∧(∧j=1,mi(<p>βij)))→([p]χi)))) 
 

RD10: (Constructive κ)↔(Strongly-grounded κ) 
proof: Unfolding Strongly-grounded gives: 
 ¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξi((∧j=1,mi(<κ>βij))→((([p]αi)∧(∧j=1,mi(<p>βij)))→([p]χi)))) 
Since ([κ]p), (<κ>βij) implies (<p>βij)).  Since p and κ do not occur in ξ, the above sentence is equivalent to:  
¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξi((∧j=1,mi(<κ>βij))→((([p]αi)∧#t)→([p]χi)))) 
or rather: ¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
which is the definition of being constructive. QED. 
 

The above theorems give five characterizations of QDL in terms of QRL:9 
RD11: All the following are equivalent: 
(1) κ≡(QDL κ), (2) (κ≡(QRL κ))∧(κ≡(QDL κ)), (3) (κ≡(QRL κ))∧([(QDL κ)]κ), (4) (κ≡(QRL κ))∧([(QDL* 
κ)]κ),  
(5) (κ≡(QRL κ))∧(Constructive κ), (6) (κ≡(QRL κ))∧(Strongly-grounded κ) 
proof: The second formula follows from RD3, the third from RD5, the fourth from RD6, the fifth from RD8 and 
the sixth from RD10. QED. 
 

Having shown that the Quantified Default solutions are the strongly grounded Quantified Reflective solutions, 
it is now shown that being strongly grounded essentially applies only to the defaults with entailment conditions 
since if there are essentially no entailment conditions in the defaults (i.e., αi is #t for every ith default since #t 
is entailed by anything) then the Quantified Default solutions are precisely the Quantified Reflective solutions: 
RD12:  (QDL κ Γ #t:βij/χi) ≡  (QRL κ Γ #t:βij/χi)  
proof: Unfolding (QDL κ Γ #t:βij/χi) gives: ∃p(p∧([p]Γ)∧∧i∀ξi((([p]#t)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
which simplifies to: ∃p(p∧([p]Γ)∧∧i∀ξi((∧j=1,mi(<κ>βij))→([p]χi))) 
Since p does not occur in ξi, the KU45 modal laws of [p] allow it to be pulled out giving: 
∃p(p∧([p] (Γ∧∧i∀ξ((∧j=1,mi(<κ>βij))→χi)))) which is:  Γ∧∧i∀ξi((∧j=1,mi(<κ>βij))→χi) 
which may be rewritten as:  Γ∧∧i∀ξi((([κ]#t)∧(∧j=1,mi(<κ>βij)))→χi) which is: (QRL κ Γ #t:βij/χi). QED. 

6. Conclusion 

Theorem RD11 shows that the solutions to Quantified Default Logic (i.e., QDL) are precisely the strongly 
grounded solutions to Quantified Reflective Logic (i.e., QRL).  These results apply where variables cross 
modal scopes in any combination of the following two cases: 
(1) where variables are universally quantified precisely over the scope of a default (or equivalently across 

the scope of all defaults and the initial theory Γ since they are connected by conjunction and since the 
universal quantifier commutes with conjunction), 

(2) where variables are not quantified within the scope of the reflective equivalence in which case they are 
free within the scope of the theorem schemata proven herein  and those schemata lie within the scope 
of any universal or existential quantification of such variables. 

This paper does not address the important case where existential quantification occurs precisely over the 
scope of one or more defaults nor more complicated systems whereby quantifiers and modal symbols are 

                                                                                                                                                                                
(strongly-grounded k) =d ¬∃p((k⊇p)∧(¬(p⊇k))∧(p⊇(folth p))∧(p⊇Γ)∧∧i((∧j=1,mi 
((¬βij)∉k))→(((αiεp)∧∧j=1,mi((¬βij)∉p))→(χiεp)))). . 
9[Konolige 1987a 1987b] previously attempted to prove a theorem relating the kernels of the "strongly grounded" fixed-points of Autoepistemic logic to 
the fixed-points of Default Logic (i.e. dl).   A correct version of that attempt is described in [Antoniou 1997].  Since the fixed-points of Reflective Logic 
(i.e. rl) are the kernels of the fixed-points of Autoepistemic Logic that result is related to the result given herein.  However, that result is not as general 
as the result given herein because it does not explain the relationship between Quantified Default Logic (i.e. QDL) and Quantified Reflective Logic (i.e. 
QRL) where variables may occur free in the 'α, 'βij, and 'χi sentences or in the sentences in Γ thereby being quantified across the modal scopes of the 
defaults (which is the subject of this paper). 
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nested in complex ways.  (It is noted, however, that [Brown 1978] showed how an additional modal axiom 
allows modal scopes to be reduced to a depth of one even in the presence of quantifiers.) 
This paper has not addressed automatic deduction systems for QDL and QRL, but there is the obvious point 
that theorems RD11 and RD12 suggest that a good deduction system for one logic may form the basis for a 
deduction system for the other logic.  In particular, a deduction system that produced the QRL solutions could 
be used to produce the QDL solutions by checking which of those solutions satisfied a supporting condition 
(e.g. being strongly grounded) in RD11.  The cost of checking a solution once it is produced would seem to be 
less than the cost of mechanically computing it. 
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