[7] R.A.Johnson (1994) Miller \& Freund's Probability and Statistics for Engineers,5th edition, Prentice Hall, New Jersey 07632.
[8] J.Carroll (2002) Human - Computer Interaction in the New Millennium, ACM Press, NY.
[9] A,M.Law and W.D.Kelton (2000) Simulation Modeling and Analysis, 3d edition, McGraw-Hill, N.Y.

Author Information

B. Dimitrov - bdimitro@kettering.edu
D. Green, Jr. - dgreen@kettering.edu
V.Rykov - vrykov@kettering.edu
P. Stanchev - pstanche@kettering.edu

Department of Science \& Mathematics, Kettering University, Flint, Michigan, USA
1700 West Third Avenue, Flint, Michigan 48504-4898, USA

A GRADIENT-TYPE OPTIMIZATION TECHNIQUE FOR THE OPTIMAL CONTROL FOR SCHRODINGER EQUATIONS

M. H. FARAG

Abstract: In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.
Keywords: Optimal control, schrodinger equation, Existence and uniqueness theory, Gradient method. AMS subject classification: 49J20, 49M29, 49M30, 49K20

1. Introduction

Optimal control of systems governed by partial differential equations is an application-driven are of mathematics involving the formulation and solution of minimization problems $[1,3]$. In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.

2. Problem Formulation

We consider the functional on the form
(1) $\quad J(u)=\alpha_{0} \int_{0}^{T}\left|y(0, \mathrm{t})-f_{0}(\mathrm{t})\right|^{2} \mathrm{dt}+\alpha_{1} \int_{0}^{T}\left|\mathrm{y}(1, \mathrm{t})-\mathrm{f}_{1}(\mathrm{t})\right|^{2} \mathrm{dt}$
which is to minimized under the conditions
(2) $\mathrm{i} \frac{\partial \mathrm{y}}{\partial \mathrm{t}}+\mathrm{B}_{0} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}-\mathrm{uy}=\mathrm{f}(\mathrm{x}, \mathrm{t}),(\mathrm{x}, \mathrm{t}) \in \Omega=(0,1) \mathrm{x}(0,1)$
(3) $y(x, 0)=0, x \in(0,1)$
(4) $\frac{\partial y(0, t)}{\partial x}=\frac{\partial y(1, t)}{\partial x}=0, t \in(0, T)$
over the class

$$
\mathrm{U}=\left\{\mathrm{u}: \mathrm{u}(\mathrm{x}, \mathrm{t}) \in \mathrm{W}_{2}^{0,1}(\Omega), \alpha_{0} \leq \mathrm{u}(\mathrm{x}, \mathrm{t}) \leq \alpha_{1},\left|\mathrm{u}_{\mathrm{t}}\right| \leq \alpha_{2}, \forall(\mathrm{x}, \mathrm{t}) \in \Omega\right\}
$$

where $\alpha_{\mathrm{k}} \geq 0, \mathrm{k}=\overline{0,2}, \alpha_{1}+\alpha_{2} \neq 0,1, \mathrm{~T}, \mathrm{~B}_{0}>0$ are given numbers
and $\mathrm{f}_{0}(\mathrm{t}), \mathrm{f}_{1}(\mathrm{t}) \in \mathrm{W}_{2}^{1}(0, \mathrm{~T}), \varphi(\mathrm{x}) \in \mathrm{W}_{2}^{1}(0, \mathrm{l})$, are given functions.

Definition 1.

The problem of finding the function $\mathrm{y}(\mathrm{x}, \mathrm{t}) \in \mathrm{V}_{2}^{0,1}(\Omega)$ from condition (2)-(4) at given $\mathrm{u} \in \mathrm{U}$ is called the reduced problem.

Definition 2.

A function $\mathrm{y}(\mathrm{x}, \mathrm{t}) \in \mathrm{V}_{2}^{0,1}(\Omega)$ is said to be a solution of the problem (2)-(4), if for all $\eta=\eta(x, t) \in W_{2}^{1,1}(\Omega)$ the equation
(5) $\int_{\Omega}\left[-i y \frac{\partial \eta}{\partial t}-B_{0} \frac{\partial y}{\partial x} \frac{\partial \eta}{\partial x}-u y \bar{\eta}\right] d x d t$
$=\int_{\Omega} f(x, t) \bar{\eta} d x d t+i \int_{0}^{1} \varphi \bar{\eta}(x, 0) d x$
is valid and $\eta(x, T)=0$, but $\bar{\eta}$ is the adjoint of η.
Proposition 1
Let $\mathrm{f}(\mathrm{x}, \mathrm{t}) \in \mathrm{W}_{2}^{0,1}(\Omega)$ and $\varphi(\mathrm{x}, \mathrm{t}) \in \mathrm{W}_{2}^{1}(0,1)$. Then the problem (2)-(4) has a unique solution and satisfies the following estimate
(6) $\|\mathrm{y}\|_{\mathrm{V}_{2}^{1,0}(\Omega)}^{2} \leq \mathrm{C}_{1}\left[\|\varphi\|_{\mathrm{W}}^{2}{ }_{2}^{1}(0,1)+\|\mathrm{f}\|_{\mathrm{W}_{2}^{0,1}(0,1)}^{2}\right]$ is valid and $\mathrm{C}_{1}>0$ is dos not depend on φ and f .

Proposition 2

Let $\varphi(x, t) \in W_{2}^{2}(0,1)$. Then the solution of the reduced problem (2)-(4) $y(x, t) \in V_{2}^{0,1}(\Omega)$ belongs to the space $\mathrm{W}_{2}^{2,1}(\Omega)$ and satisfies the following estimate
(7) $\|\mathrm{y}\|_{\mathrm{W}_{2}^{2}(\Omega)}^{2}+\left\|\mathrm{y}_{\mathrm{t}}\right\|_{\mathrm{L}_{2}(0,1)}^{2} \leq \mathrm{C}_{2}\left[\|\varphi\|_{\mathrm{W}_{2}^{2}(0,1)}^{2}+\|\mathrm{f}\|_{\mathrm{W}_{2}^{0,1}(\Omega)}^{2}\right]$ is valid and $\forall \mathrm{t} \in[0, \mathrm{~T}], \mathrm{C}_{2}>0$ is dos not depend on φ and f .
Proposition 3
Let all the conditions Proposition 2 be valid. Then the optimal control problem (1)-(4) has at least one solution.

3. Variation of the Cost Functional

3.1 The Adjoint Problem

Results [4] imply that the function $\Phi=\Phi(\mathrm{x}, \mathrm{t}, \mathrm{u})$ is a solution in $\mathrm{L}_{2}(\Omega)$ of the adjoint problem
(8) $\mathrm{i} \frac{\partial \Phi}{\partial \mathrm{t}}+\mathrm{B}_{0} \frac{\partial^{2} \Phi}{\partial \mathrm{x}^{2}}-\mathrm{u} \Phi=0,(\mathrm{x}, \mathrm{t}) \in \Omega=(0,1) \mathrm{x}(0, \mathrm{~T})$

$$
\begin{gather*}
\Phi(\mathrm{x}, \mathrm{~T})=0, \quad \mathrm{x} \in(0,1) \\
\frac{\partial \Phi(0, \mathrm{t})}{\partial \mathrm{x}}=-\frac{2 \alpha_{0}}{\mathrm{~B}_{0}}\left[\mathrm{y}(0, \mathrm{t})-\mathrm{f}_{0}(\mathrm{t})\right], \mathrm{t} \in(0, \mathrm{~T}) \tag{9}\\
\frac{\partial \Phi(1, \mathrm{t})}{\partial \mathrm{x}}=\frac{2 \alpha_{1}}{\mathrm{~B}_{0}}\left[\mathrm{y}(1, \mathrm{t})-\mathrm{f}_{1}(\mathrm{t})\right], \mathrm{t} \in(0, \mathrm{~T})
\end{gather*}
$$

where $y(x, t)$ is the solution of (1)-(4) corresponding to $u \in U$.
Definition 3.
For each $u \in U$, a function $\Phi(x, t ; u)$ is a solution of the adjoint problem (8)-(9) belonging to the control
U iff
(I) $\Phi(\mathrm{x}, \mathrm{t} ; \mathrm{u}) \in \mathrm{L}_{2}(\Omega)$,
(II) The integral identity
(10) $\int_{\Omega} \Phi\left[i \frac{\partial \overline{\eta_{1}}}{\partial \mathrm{t}}+\mathrm{B}_{0} \frac{\partial^{2} \overline{\eta_{1}}}{\partial \mathrm{x}^{2}}-\mathrm{u} \overline{\eta_{1}}\right] \mathrm{dx} \mathrm{dt}$

$$
\begin{aligned}
& =-2 \alpha_{1} \int_{0}^{T}\left[y(1, t)-f_{1}(t)\right] \overline{\eta_{1}}(1, t) d t \\
& +2 \alpha_{0} \int_{0}^{T}\left[y(0, t)-f_{0}(t)\right] \overline{\eta_{1}}(0, t) d t
\end{aligned}
$$

is valid $\forall \eta_{1} \in W_{2}^{2,1}(\Omega), \eta_{1}(x, 0)=\left.\left(\eta_{1}\right)_{x}\right|_{x=0}=\left.\left(\eta_{1}\right)_{x}\right|_{x=1}=0$.
On the basis of the above assumptions and the results [5], we have the following proposition:
Proposition 4.
The adjoint problem (8)-(9)has a unique solution from $\mathrm{L}_{2}(\Omega)$ and he following estimate

$$
\begin{aligned}
& \text { (11) }\|\Phi\|_{L_{2}(\Omega)}^{2} \leq \mathrm{C}_{3}\left[\Gamma_{1}+\Gamma_{2}\right], \\
& \Gamma_{1}=\left\|\mathrm{y}(0, \mathrm{t})-\mathrm{f}_{0}(\mathrm{t})\right\|^{2} \mathrm{~W}_{2}^{\frac{1}{2}}(0, \mathrm{~T}) \quad, \Gamma_{1}=\left\|\mathrm{y}(1, \mathrm{t})-\mathrm{f}_{1}(\mathrm{t})\right\|^{2} \\
& \mathrm{~W}_{2}^{\frac{1}{2}}(0, \mathrm{~T})
\end{aligned}
$$

is valid and C_{3} is a certain constant.

3.2 The Gradient Formulae of Cost Functional

The sufficient differentiability conditions of the functional (5) and its gradient formulae will be given as follows:
Theorem 1.
Let the above assumptions be satisfied. Then $\mathrm{J}(\mathrm{u})$ is Gato differentiable, and its gradient satisfies
(12) $\delta \mathrm{J}(\mathrm{u})=-\int_{\Omega} \operatorname{Re}(\mathrm{y} \Phi) \omega \mathrm{dx} \mathrm{dt}, \quad \forall \omega \in \mathrm{W}_{\infty}^{0,1}(\Omega)$.

Proof:
Suppose that $u \in U$ and $\delta u \in W_{\infty}^{0,1}(\Omega)$ such that $u+\delta u \in U$ and denoting $\delta y(x, t)=y(x, t ; u+\delta u)-y(x, t ; u)$. Then $\delta y(x, t ; \delta u)$ is the solution of the boundary value problem:
(13) $\quad i \frac{\partial \delta y}{\partial t}+B_{0} \frac{\partial^{2} \delta y}{\partial x^{2}}-(u+\delta u) \delta y=y(x, t) \delta u,(x, t) \in \Omega$,
(14) $\delta y(x, 0)=0, x \in(0,1), \frac{\partial \delta y(0, t)}{\partial x}=\frac{\partial \delta y(1, t)}{\partial x}=0, t \in(0, T)$
and the solution of the above boundary value problem satisfies the following estimation
(15) $\|\delta \mathrm{y}\|_{\mathrm{W}_{2}^{2,0}(\Omega)}^{2} \leq \mathrm{C}_{4} \| \delta \mathrm{u}$ y $\|_{\mathrm{W}_{2}^{0,1}(\Omega)}^{2}$
where C_{4} is a constant and independent of $\delta \mathrm{u}$.
From (15) and using the theorem of imbedding [6], we have
(16) $\|\delta \mathrm{y}(0, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}+\|\delta \mathrm{y}(1, \mathrm{t})\|_{\mathrm{L}_{2}(0, T)} \leq \mathrm{C}_{5}\|\delta \mathrm{u} y(\mathrm{x}, \mathrm{t})\|_{\mathrm{W}_{2}^{0,1}}$
where C_{5} is a constant and independent of $\delta \mathrm{u}$.
The increment of the functional $J(u)$ can be expressed as:
(17) $\delta J=J(u+\theta u)-J(u)$

$$
\begin{aligned}
= & 2 \alpha_{1} \operatorname{Re} \int_{0}^{\mathrm{T}}\left[\mathrm{y}(1, \mathrm{t})-\mathrm{f}_{1}(\mathrm{t})\right] \overline{\delta \mathrm{y}}(1, \mathrm{t}) \mathrm{dt} \\
& +2 \alpha_{0} \operatorname{Re} \int_{0}^{\mathrm{T}}\left[\mathrm{y}(0, \mathrm{t})-\mathrm{f}_{0}(\mathrm{t})\right] \overline{\delta \mathrm{y}}(0, \mathrm{t}) \mathrm{dt} \\
& +\alpha_{1}\|\delta \mathrm{y}(1, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2}+2 \alpha_{0}\|\delta \mathrm{y}(0, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2}
\end{aligned}
$$

If we take complex adjoint for (10),(13), we have
(18) $\int_{\Omega} \bar{\Phi}\left[i \frac{\partial \eta_{1}}{\partial t}+B_{0} \frac{\partial^{2} \eta_{1}}{\partial x^{2}}-u \eta_{1}\right] d x d t$

$$
=-2 \alpha_{1} \int_{0}^{\mathrm{T}}\left[\overline{\mathrm{y}}(1, \mathrm{t})-\overline{\mathrm{f}}_{1}(\mathrm{t})\right] \eta_{1}(1, \mathrm{t}) \mathrm{dt}
$$

$$
+2 \alpha_{0} \int_{0}^{\mathrm{T}}\left[\overline{\mathrm{y}}(0, \mathrm{t})-\overline{\mathrm{f}_{0}}(\mathrm{t})\right] \eta_{1}(0, \mathrm{t}) \mathrm{dt}
$$

(19) $\int_{\Omega}\left[i \frac{\partial \overline{\delta y}}{\partial \mathrm{t}}+\mathrm{B}_{0} \frac{\partial^{2} \overline{\delta \mathrm{y}}}{\partial \mathrm{x}^{2}}-(\mathrm{u}+\delta \mathrm{u}) \overline{\delta \mathrm{y}}\right] \eta \mathrm{dx} \mathrm{dt}$

$$
=\int_{\Omega} \overline{\mathrm{y}}(\mathrm{x}, \mathrm{t}) \delta \mathrm{u} \eta \mathrm{dx} \mathrm{dt},
$$

Subtracting (13) from (19), (10) from (18) and in the obtained relation we put Φ, δ y instead of η, η_{1} , then we have
(20) $2 \alpha_{1} \operatorname{Re} \int_{0}^{T}\left[y(1, t)-f_{1}(t)\right] \overline{\delta y}(1, t) d t$

$$
\begin{aligned}
& +2 \alpha_{0} \operatorname{Re} \int_{0}^{\mathrm{T}}\left[\mathrm{y}(0, \mathrm{t})-\mathrm{f}_{0}(\mathrm{t})\right] \overline{\delta \mathrm{y}}(0, \mathrm{t}) \mathrm{dt} \\
& =-\frac{1}{2} \int_{\Omega}[\delta \mathrm{u} \Phi \overline{\mathrm{y}}+\delta \mathrm{uy} \bar{\Phi}] \mathrm{dxdt} \\
& -\frac{1}{2} \int_{\Omega}[\delta \mathrm{u} \delta \mathrm{y} \bar{\Phi}+\delta \mathrm{u} \Phi \overline{\delta \mathrm{y}}] \mathrm{dx} \mathrm{dt} \\
& =-\operatorname{Re} \int_{\Omega}^{\mathrm{y}} \bar{\Phi} \delta \mathrm{u} d \mathrm{dxdt}-\operatorname{Re} \int_{\Omega} \delta \mathrm{y} \bar{\Phi} \delta \mathrm{udxdt} .
\end{aligned}
$$

By substituting the last relation in (17), we have
(21) $\delta \mathrm{J}=-\operatorname{Re} \int_{\Omega} \mathrm{y} \bar{\Phi} \delta \mathrm{y} \delta \mathrm{udx} \mathrm{dt}-\operatorname{Re} \int_{\Omega} \delta \mathrm{y} \bar{\Phi} \delta \mathrm{udx} \mathrm{dt}$.

$$
+\alpha_{0}\|\delta \mathrm{y}(0, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2}+\alpha_{1}\|\delta \mathrm{y}(1, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2}
$$

Suppose that
(22) $\quad \mathrm{R}_{1}=\alpha_{0}\|\delta \mathrm{y}(0, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2}+\alpha_{1}\|\delta \mathrm{y}(1, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2}$
(23) $\mathrm{R}_{2}=-\operatorname{Re} \int \delta \mathrm{y} \bar{\Phi} \delta u d x d t$.

$$
\Omega
$$

It is clear that,

$$
\begin{equation*}
\left|\mathrm{R}_{1}\right| \leq \alpha_{0}\|\delta \mathrm{y}(0, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2}+\alpha_{1}\|\delta \mathrm{y}(1, \mathrm{t})\|_{\mathrm{L}_{2}(0, \mathrm{~T})}^{2} . \tag{24}
\end{equation*}
$$

From the formulae of R_{2}, it is estimated as

$$
\begin{equation*}
\left|\mathrm{R}_{2}\right| \leq \mathrm{C}\|\delta \mathrm{y} \delta \mathrm{u}\|_{\mathrm{L}_{2}(\Omega)}^{2} \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\mathrm{R}_{1}\right|+\left|\mathrm{R}_{2}\right|=\mathrm{o}\left(\|\delta \mathrm{u}\|_{\mathrm{W}_{\infty}^{0,1}(\Omega)}\right) . \tag{26}
\end{equation*}
$$

By substituting (26) in (21), we obtain
(27) $\mathrm{J}(\mathrm{u}+\theta \delta \mathrm{u})-\mathrm{J}(\mathrm{u})=-\int_{\Omega} \operatorname{Re}(\mathrm{y} \bar{\Phi})(\theta \omega) \mathrm{dxdt}+\mathrm{O}(\theta)$.

Hence, in light of the variation functional, we have
(28) $\delta \mathrm{J}(\mathrm{u}, \omega)=\lim _{\theta \rightarrow 0} \frac{\mathrm{~J}(\mathrm{u}+\theta \mathrm{u})-\mathrm{J}(\mathrm{u})}{\theta}=-\int_{\Omega} \operatorname{Re}(\mathrm{y} \bar{\Phi}) \omega \mathrm{dxd}$
and this proves the differentiability of the functional and gradient formulae of the function $\mathrm{J}(\mathrm{u})$. This completes the proof of the theorem.
Using Tikhinov method [7], we define the following functional
(29) $J_{m}(u)=J(u)+\alpha^{m} \int_{0}^{1} \int_{0}^{T}|u(x, t)-\omega(x, t)|^{2} d x d t$.
and $\omega(\mathrm{x}, \mathrm{t}) \in \mathrm{L}_{2}(\Omega)$.

4. Discrete Problem

We consider the set of node values $\left\{\mathrm{x}_{\mathrm{j}}, \mathrm{t}_{\mathrm{k}}\right\}, \mathrm{x}_{\mathrm{j}}=\mathrm{x}_{0}+\mathrm{Jh}, \mathrm{j}=\overline{0, \mathrm{M}}$
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}_{0}+\mathrm{k} \tau, \mathrm{k}=\overline{0}, \mathrm{~N}, \mathrm{M}=\frac{1}{\mathrm{~h}}, \mathrm{~N}=\frac{\mathrm{T}}{\tau}$ and the following notations [8]:

$$
\begin{align*}
& \left(y_{j}^{k}\right)_{x}^{-}=\frac{y_{j}^{k}-y_{j-1}^{k}}{h},\left(y_{j}^{k}\right)_{x}=\frac{y_{j+1}^{k}-y_{j}^{k}}{h}, \tag{30}\\
& \left(y_{j}^{k}\right)_{t}^{-}=\frac{y_{j}^{k}-y_{j}^{k-1}}{\tau},\left(y_{j}^{k}\right)_{x}^{-}=\frac{y_{j+1}^{k}-2 y_{j}^{k}+y_{j-1}^{k}}{h} \tag{31}
\end{align*}
$$

After applying the numerical integration formula [8],we have the discertisation of the optimal control problem (1)-(5) as follows: Let it is required to minimize the functional
(32) $\quad \mathrm{I}_{\mathrm{m}}([\mathrm{u}])=\tau \sum_{\mathrm{k}=0}^{\mathrm{N}}\left\{\alpha_{0}\left[\mathrm{y}_{0}^{\mathrm{k}}-\mathrm{f}_{0}^{\mathrm{k}}\right]^{2}-\alpha_{1}\left[\mathrm{y}_{\mathrm{M}}^{\mathrm{k}}-\mathrm{f}_{1}^{\mathrm{k}}\right]^{2}\right\}$
$+v^{\mathrm{m}} \tau \sum_{\mathrm{k}=1}^{\mathrm{N}}\left\{\mathrm{h} \sum_{\mathrm{j}=1}^{\mathrm{M}-1}\left|\mathrm{u}_{0}^{\mathrm{k}}-\omega_{0}^{\mathrm{k}}\right|^{2}+\frac{1}{2}\left|\mathrm{u}_{\mathrm{M}}^{\mathrm{k}}-\omega_{\mathrm{M}}^{\mathrm{k}}\right|^{2}+\frac{1}{2}\left|\mathrm{u}_{\mathrm{j}}^{\mathrm{k}}-\omega_{\mathrm{j}}^{\mathrm{k}}\right|^{2}\right\}$
on the control set
$U_{N}^{M}=\left\{\begin{array}{l}{[u]:[u]=\left(u_{j}^{k}\right), \alpha_{0} \leq u_{j}^{k} \leq \alpha_{1}, j=\overline{0, M}, k=\overline{0, N},} \\ \left|\left(u_{j}^{k}\right)_{t}\right| \leq \alpha_{2}, j=\overline{0, M,} k=\overline{2, N}\end{array}\right\}$
under the conditions
(33) $i\left(y_{j}^{k}\right)_{\bar{t}}^{-}+B_{0}\left(y_{j}^{k}\right)_{\bar{x} x}-u_{j}^{k} y_{j}^{k}=f_{j}^{k}, j=\overline{1, M-1}, k=\overline{1, N}$
(34) $y_{j}^{0}=0, j=\overline{0, M}$,
(35) $\frac{2 \mathrm{~B}_{0}}{\mathrm{~h}}\left(\mathrm{y}_{0}^{\mathrm{k}}\right)_{\mathrm{x}}=\mathrm{f}_{0}^{\mathrm{k}}-\mathrm{i}\left[\left(\mathrm{u}_{0}^{\mathrm{k}}\right)_{\mathrm{t}}^{-}-\mathrm{u}_{0}^{\mathrm{k}} \mathrm{y}_{0}^{\mathrm{k}}\right], \mathrm{k}=\overline{1, \mathrm{~N}}$
(36) $-\frac{2 \mathrm{~B}_{0}}{\mathrm{~h}}\left(\mathrm{y}_{\mathrm{M}}^{\mathrm{k}}\right)_{\mathrm{x}}=\mathrm{f}_{\mathrm{M}}^{\mathrm{k}}-\mathrm{i}\left[\left(\mathrm{u}_{\mathrm{M}}^{\mathrm{k}}\right)_{\mathrm{t}}^{-}-\mathrm{u}_{\mathrm{M}}^{\mathrm{k}} \mathrm{y}_{\mathrm{M}}^{\mathrm{k}}\right], \mathrm{k}=\overline{1, \mathrm{~N}}$

Now, the discrete gradient formulae will be given as follows:

Theorem 2

The functional $\mathrm{J}_{\mathrm{m}}(\mathrm{u})$ is differentiable, and its gradient satisfies
(37) $\left(I^{\prime}{ }_{m}([u])\right)_{j}^{k}=-\operatorname{Re}\left(y_{j}^{k} \Phi_{j}^{k}\right)+2 \alpha^{m}\left(u_{j}^{k}-\omega_{j}^{k}\right)$,
where $\mathrm{j}=\overline{0, \mathrm{M}-1}, \mathrm{k}=\overline{1, \mathrm{~N}}$ and $\Phi_{\mathrm{j}}^{\mathrm{k}}$ is the solution of discrete adjoint problem:
(38) $\mathrm{i}\left(\Phi_{\mathrm{j}}^{\mathrm{k}}\right)_{\bar{t}}^{-}+\mathrm{B}_{0}\left(\Phi_{\mathrm{j}}^{\mathrm{k}}\right)_{\bar{x} \mathrm{x}}-\mathrm{u}_{\mathrm{j}}^{\mathrm{k}} \Phi_{\mathrm{j}}^{\mathrm{k}}=0, \mathrm{j}=\overline{1, \mathrm{M}-1}, \mathrm{k}=\overline{1, \mathrm{~N}-1}$

$$
\begin{equation*}
\Phi{ }_{\mathrm{j}}^{\mathrm{N}}=0, \quad \mathrm{j}=\overline{0, \mathrm{M}}, \tag{39}
\end{equation*}
$$

(40) $\left(\Phi_{\mathrm{j}}^{\mathrm{k}}\right)_{\mathrm{X}}+\frac{2 \alpha_{0}}{\mathrm{~B}_{0}}\left[\mathrm{y}_{0}^{\mathrm{k}}-\mathrm{f}_{0}^{\mathrm{k}}\right]=\frac{\mathrm{h}}{\mathrm{B}_{0}}\left[\mathrm{u}_{0}^{\mathrm{k}} \Phi_{0}^{\mathrm{k}}-\mathrm{i}\left(\Phi_{0}^{\mathrm{k}}\right)_{\mathrm{t}}\right], \mathrm{k}=\overline{1, \mathrm{~N}-1}$
(41) $\left(\Phi_{j}^{k}\right)_{\mathrm{x}}^{-}+\frac{2 \alpha_{0}}{\mathrm{~B}_{0}}\left[\mathrm{y}_{\mathrm{M}}^{\mathrm{k}} \mathrm{f}_{1}^{\mathrm{k}}\right]=\frac{\mathrm{h}}{\mathrm{B}_{0}}\left[\mathrm{u}_{\mathrm{M}}^{\mathrm{k}} \Phi_{\mathrm{M}}^{\mathrm{k}}-\mathrm{i}\left(\Phi_{\mathrm{M}}^{\mathrm{k}}\right)_{\mathrm{t}}\right], \mathrm{k}=\overline{1, \mathrm{~N}-1}$

5. Solution of Control Problem

5.1 The Projection Gradient Method

Here we describe the projection gradient method [9] for the solution of the optimal control problem such as: construct a sequence $u_{n+1} m$ by setting
(42) $[\mathrm{u}]_{\mathrm{n}}+1 \mathrm{~m}=\mathrm{P}_{\mathrm{U}}^{\mathrm{N}} \mathrm{M}_{\mathrm{N}}\left\{[\mathrm{u}]_{\mathrm{nm}}-v_{\mathrm{n}} \quad\left(\mathrm{I}_{\mathrm{m}}^{1} \quad\left([\mathrm{u}]_{\mathrm{nm}}\right)\right)\right\}$ where $P^{U_{N}^{M}}(u)$ is the project on the set $U \underset{N}{M}$. In the first we define $(\bar{u} k)_{n m}$ in the form
(43) $\left(u_{j}^{k}\right)_{n+1 m}=\left\{\begin{array}{cc}\Psi_{1} & \alpha_{0} \leq \Psi_{2} \leq \alpha_{1} \\ \alpha_{0} & \Psi_{2} \\ \alpha_{1} & \Psi_{2}\end{array}\right.$
where
(44) $\quad \Psi_{2}=\left[u_{j}^{k}\right]_{n m}-v_{n}\left(I_{m}^{l} \quad\left([\mathrm{u}]_{n m}\right)\right) \underset{j}{k}$
(45) $\quad \Psi_{1}=[\mathrm{u} \underset{\mathrm{j}}{\mathrm{k}}]_{\mathrm{nm}}+v_{\mathrm{n}} \quad\left(\mathrm{I}_{\mathrm{m}}^{\mathrm{l}} \quad\left([\mathrm{u}]_{\mathrm{nm}}\right)\right) \underset{\mathrm{j}}{\mathrm{k}}$
and $\mathrm{j}=\overline{0, \mathrm{M}}, \mathrm{k}=\overline{1, \mathrm{~N}}, \mathrm{n}=0,1, \ldots, \mathrm{~m}=0,1, \ldots$
Using the above sequence we construct the project in the form
(46) ($\left.\mathrm{u}^{1}{ }_{\mathrm{j}}\right)_{\mathrm{n}}+1 \mathrm{~m}=\left(\overline{\mathrm{u}} \mathrm{j}_{\mathrm{j}}\right) \mathrm{n}+1 \mathrm{~m}$
(47) $\left(u_{j}^{k}\right)_{n+1 m}= \begin{cases}\Theta_{0} & \Theta_{1} \leq \Psi_{2} \leq \Theta_{2} \\ \Theta_{1} & \left(u_{j}^{k}\right)_{n m}<\Theta_{1} \\ \Theta_{2} & \left(u_{j}^{k}\right)_{n m}>\Theta_{2}\end{cases}$
where

$$
\begin{aligned}
& \Theta_{0}=\left(-\mathrm{u} \mathrm{u}_{\mathrm{n}+1 \mathrm{~m}}+v_{\mathrm{n}} \quad\left(\mathrm{I} \mathrm{~m}_{\mathrm{m}}^{1}\left([\mathrm{u}]_{\mathrm{nm}}\right)\right)_{\mathrm{j}}^{\mathrm{k}}\right. \\
& \Theta_{1}=-\tau \alpha_{2}+\left(\mathrm{u}_{\mathrm{j}}^{\mathrm{k}-1}\right)_{\mathrm{n}+1 \mathrm{~m}}, \Theta_{2}=\tau \alpha_{2}+\left(\mathrm{u}_{\mathrm{j}}^{-\mathrm{k}-1}\right)_{\mathrm{n}+1 \mathrm{~m}}
\end{aligned}
$$

$$
\mathrm{j}=\overline{0, \mathrm{M}}, \quad \mathrm{k}=\overline{2, \mathrm{~N}}, \mathrm{n}=0,1, \ldots, \mathrm{~m}=0,1, \ldots
$$

5.2 Numerical Algorithm

With the gradient obtained, the following gradient type algorithm can then be developed for the optimal value of U^{*} based on the projection gradient method (PGM)which described in the above section. The outlined of the algorithm for solving control problem are as follows:
Step 1: Choose an initial control $u^{(n)} \in U, n=0$.
If $I^{\prime}\left(u^{(n)}\right)=0, u^{(n)}$ is the solution of the problem.
Step 2 : At each iteration n do

Solve the state problem, then find $\quad \mathrm{y}\left(., \mathrm{u}^{(\mathrm{n})}\right)$.
Solve the adjoint problem for (1)-(3), then find
$\Phi\left(., \mathrm{u}^{(\mathrm{n})}\right)$. Find optimal control $\mathrm{u}_{*}^{(\mathrm{n}+1)}$ using PGM.
End do.
Step 3: Test the optimality of $\mathrm{u}^{(\mathrm{n}+1)}$
If $u^{(n+1)}$
is optimum, stop the process.
Otherwise, go to Step 4.
Step 4 Set $\mathrm{u}^{(\mathrm{n}+1)}=\mathrm{u}^{(\mathrm{n})}, \mathrm{n}=\mathrm{n}+1$ and go to Step 2.

6. Numerical Results

Designed algorithm is implemented as a FORTRAN routine [10]. Numerical experiment is carried out to check its performance. The initial data of the problem (1)-(5) are taken as follows:

$$
\begin{gathered}
\alpha_{0}=\alpha_{1}=\alpha_{2}=1=\mathrm{T}=1, \varepsilon=0.5 \mathrm{E}-03 \\
\mathrm{f}_{0}=\mathrm{it}, \mathrm{f}_{1}=\mathrm{i}(1+\mathrm{t}), \varphi(\mathrm{x})=\mathrm{ix}, \mathrm{u}^{(0)}=1.0 \\
\omega(\mathrm{x}, \mathrm{t})=1+\frac{\mathrm{x}+\mathrm{t}}{2}, \mathrm{f}(\mathrm{x}, \mathrm{t})=-1-\mathrm{i}(\mathrm{x}+\mathrm{t})\left(\mathrm{x}^{2}+\mathrm{t}+1\right)
\end{gathered}
$$

The number of division of the intervals was taken as $\mathrm{N}=\mathrm{M}=20$. The computed control values of $\mathrm{u}_{\mathrm{j}}^{13}, \mathrm{j}=\overline{0, \mathrm{~N}}$ the values of relative error are shown in Tables 1,2 and the 3D plots of the optimal control and initial values are presented in Figures 1,2 . The optimal value of the cost functional is $\mathrm{J} *=\inf _{\mathrm{u} \in \mathrm{U}} \mathrm{J}(\mathrm{u})=\mathrm{J}(\mathrm{u} *)=0.48526 \mathrm{E}-03$.

The computed control values of $u_{j}^{13}, j=\overline{0, N}$			
$0.15592 \mathrm{E}+01$	$0.15950 \mathrm{E}+01$	$0.16301 \mathrm{E}+01$	$0.16641 \mathrm{E}+01$
$0.17221 \mathrm{E}+01$	$0.17464 \mathrm{E}+01$	$0.17714 \mathrm{E}+01$	$0.18021 \mathrm{E}+01$
$0.18332 \mathrm{E}+01$	$0.18602 \mathrm{E}+01$	$0.19112 \mathrm{E}+01$	$0.19830 \mathrm{E}+01$
$0.20679 \mathrm{E}+01$	$0.21474 \mathrm{E}+01$	$0.22155 \mathrm{E}+01$	$0.22837 \mathrm{E}+01$
$0.23625 \mathrm{E}+01$	$0.24368 \mathrm{E}+01$	$0.24078 \mathrm{E}+01$	$0.24324 \mathrm{E}+01$
$0.24718 \mathrm{E}+01$			

The values of relative error of $\mathrm{u}_{\mathrm{j}}^{13}, \mathrm{j}=\overline{0, \mathrm{~N}}$			
0.025528	0.004683	0.012478	0.02563
0.050038	0.030459	0.048194	0.046236
0.041988	0.032024	0.033075	0.042328
0.055069	0.061758	0.060028	0.056052
0.054668	0.049211	0.000924	0.028029
0.049297			

Fig. 1. Optimal control $u_{*}(x, t)$

Fig. 2. Initial control $u_{0}(x, t)$

REFERENCES

[1] A. J. Kearsley, The use of optimization techniques in the solution of partial differential equations from science and engineering, PhD, Housten, Texas,1996.
[2] K. Kime, Finite difference approximation of control via the potential in a 1-D Schrodinger equation, Journal of Differential equations, 2000(26),1-10(2000).
[3] N. U. Ahmed and K. L. Teo, Optimal control of distributed parameter systems, North Holland New York, Oxford(1981).
[4] S. H. Farag and M. H. Farag, Necessary optimality conditions in control problems for hyperbolic equations, Journal Egypt. Math. Soc., 8(2),1--10(2000).
[5] O. A. Ladyzhenskaya, Boundary value problems of mathematical physics ,Nauka, Moscow, Russian(1973).
[6] V. P. Mikhailov, Partial differential equations,Nauka, Moscow, Russian(1983).
[7] A. N. Tikhonov and N. Ya. Arsenin, Methods for the solution of incorrectly posed problems, Nauka, Moscow, Russian(1974).
[8] A. H. Khater, A. B. Shamardan, M. H. Farag and A. H. Abel-Hamid, Analytical and numerical solutions of a quasilinear parabolic optimal control problem, Journal Comput. and Appl. Math., 95,29--43(1998).
[9] J. T. Betts, Survey of numerical methods for trajectory optimization, Journal of Guidance control and dynamics, 21(2),193--207(1998).
[10] D. Kraft, Algorithm 773:TOMP-Fortran modules for optimal control calculations, ACM Transactions of mathematical software, 20(2),262--281(1994).

Author Information

M. H. FARAG : Department of Mathematics and Computer Science; Faculty of Education, Ibri, Sultanate of Oman. or: Faculty of Science ,El-Minia University, Egypt. E-mail: farag5358@yahoo.com

