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Abstract: In this paper, we are considered with the optimal control of a schrodinger equation. Based on the
formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite
difference method is then developed to solve the constrained optimization problem. Finally, a numerical
example is given and the results show that the method of solution is robust.
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1. Introduction

Optimal control of systems governed by partial differential equations is an application-driven are of
mathematics involving the formulation and solution of minimization problems [1,3]. In this paper, we are
considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the
cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed
to solve the constrained optimization problem. Finally, a numerical example is given and the results show that
the method of solution is robust.

2. Problem Formulation

We consider the functional on the form
T 2 T 2
M Jw=oy [ [y0.0)-fo® dt+ay [ [ydo-fio] dt
0 0

which is to minimized under the conditions

o 2+ iﬁ —uy = k), (0 Q=) x O T)
t OX

(3) y(x,0) =0, x € (0,1)

0y oyl _,
0 x 0 x

over the class

(4)

, te(0,T)

U:{u u(xt) € W (@), ap < u(x ) <o,

ug| <o ,V(x,t)eQ}

where 0k 20,k=02, aj + a2 #0,LT,By >0 gare given numbers
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and fo (1), f1 (V) EW% 0,T),9(x)e W% (0,1) | are given functions.
Definition 1.

0,1
The problem of finding the function y(x,t) € V2 (€2) from condition (2)-(4) at given ue U is called
the reduced problem.

Definition 2.

A function Y(X.,t)€ V2 () s said to be a solution of the problem (2)-(4), if for all
1,1

n=n(x,t) € Wy (Q) the equation

. 0
(5) I[—IY%—Boa—a——u.\/n]dx dt
Q X X

- 1 -
= [f(x,t)ynm dx dt +i[ ¢ n(x,0) dx
Q 0

isvalidand 1 (x,T)= 0, but n isthe adjointof M
Proposition 1

1
Let f(x,t)e WS’I @and )€ Wy (0.1) then the problem (2)-(4) has a unique solution and
satisfies the following estimate

2 2 2 . .
(6) [l || vIoia) < €, [||‘P||W21 (0.1) + |l w0l (0’1)] is vald and
C1 >0 isdosnotdependon @ and f

Proposition 2
2 0,1
Let ©(x,0) € W5 (0.1) | Then the solution of the reduced problem (2)-(4) Y(X,t) € V5,7 (Q)

belongs to the space W22 . (€2) and satisfies the following estimate
2 2 2 2
) |Ivl W2 (Q) + v L,0,)< <> [l ”sz o If w0 (Q)] is valid and

Vte[0,T],C2 >0 is dos not dependon @ and f

Proposition 3
Let all the conditions Proposition 2 be valid. Then the optimal control problem (1)-(4) has at least one solution.

3. Variation of the Cost Functional

3.1 The Adjoint Problem

Results [4] imply that the function ®=®(X,t,1) isasolutionin L2 (£2) of the adjoint problem

2
® 1% BT o -0, (x0e Q=00 x©T)
ot 6)(2
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® (x, T) = 0, x € (0,1)

9 L2OD 250 [y0,0-19 ()] te (0.T)
o x Bo
o0 0(,t) 2 _
Tx - B, LYED-f @M1 te 0T

where ¥(X,t) is the solution of (1)-(4) correspondingto U € U,

Definition 3.
For each ue U | a function ®(x,t;u) is a solution of the adjoint problem (8)-(9) belonging to the control

U i
() ®(x,t;u)e Ly () ,
(1) The integral identity

oni B o 02 ni

(10 ) g{q)[l@t axz—unl]dx dt
T _
=-2o01 [ [y, t)y-="Ffp (t) Inp(l,t) dt
0
T _
+2 a9 | [ y(0,t)y—fp (t) ] mp(0,t) dt
0

2,1
isvalid V 1€ Wy () mp (x,0) =(np)x [x=0 = (n1)x Ix=1 =0
On the basis of the above assumptions and the results [5], we have the following proposition:

Proposition 4.
The adjoint problem (8)-(9)has a unique solution from L2 (£2) and he following estimate

() o |lf (g, sl + Tal. where
n=lyoo-fof* ,  .n=yao-f o |
W2 (0,T) W2 (0,T)

is valid and ¢ is a certain constant.

3.2 The Gradient Formulae of Cost Functional

The sufficient differentiability conditions of the functional (5) and its gradient formulae will be given as follows:

Theorem 1.
Let the above assumptions be satisfied. Then J(u) is Gato differentiable, and its gradient satisfies

12) 8J(u)=-[Re(y®)o dxdt, V¥V oec w2l (.
Q
Proof :
0,1 .
Suppose  that ueU and du €Wy (€) such that u+dueUand denoting

Oy(x,t) =y (X, t,u+du)—y(X,t;u). Then 3y (x,t;3u) is the solution of the boundary value problem:
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2
1y i, g, L

—(u+du) dy = y(x,t) ou, (x,t)e Q,
ot 0 x2

00y(0,t)  0dy(Lt)
0x ox
and the solution of the above boundary value problem satisfies the following estimation

as) [lay Py,

0, te(©T)

(14 dy(x0)=0, x (0D,

2
<calouy Py

70(Q) (Q)

where C4 is a constant and independent of du .
From (15) and using the theorem of imbedding [6], we have

(16) || y(0,1) ||L2 on* |8 y(,t) ||L2 0 =Cs |3u y(x,0) W @

where C5 is a constant and independent of du.

The increment of the functional J(u) can be expressed as:
(17) dJ=J(u+6u) - J(u)
T —
=2a Re | [y(LO)—f1(t)13y(Lt)dt
0

T —
+2ag Re [ [y(0,t)—fp(t)]3y(0,t) dt
0

2 2
+aq ||8y(1,t)||L2(O’T) +2 ag| ay(o,t)||L2(0’T)

If we take complex adjoint for (10),(13), we have

2

a8y joidn, g, 2 ”21 —unq]dx dt

T _ _
=-2a; | [y(t)=-Ff1 (t) Inp(l,t) dt
0
T _ _
+200 | [y(0,t)=fgp (t) 1 n1(0,t) dt
0
_ y—
i68y+B06 dy

[T — (u+du) 8y ndx dt
Q t 6x2
= |

Q

(19)

y(x,t) dun dx dt,

Subtracting (13) from (19), (10) from (18) and in the obtained relation we put ®,dY insteadof M, M1

, then we have
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T —
(20) 2 a1 Re | [y(L,t)—f1(t) ]1dy(l,t) dt
0

T —
+2ag Re | [y(0,t)—fg (t) ]38y (0,t) dt
0

[Su®dy+duy @]dx dt

|
Q
[[8udy @ + du @5y ]dx dt
9

2
=—Re [y®dudxdi—Re |8y ® du dx dt.
Q Q
By substituting the last relation in (17), we have
(21) 8J=-Re [ y®dydudxdt —Re [5y ® du dx dt.
Q Q

2 2
+ o ||esy(o,t)||L2 o+ |3yt ||L2 0T)
Suppose that
(22)  Ry=uag |8y(0,0) ||iz(0’T) + a1 ||8y(L1) ”iz(O,T)

(23) Ry =—Re féyaéu dx dt.
Q
It is clear that,

e IRl < a0 J8¥O0[, 0.3y + a1 [8¥0OIE, 0.7

From the formulae of R > ,itis estimated as

25  [Ro<cC ||6y6u||i2 @ .
Then

(26) |R1|+|R2| =0 (||6u|| ).

wol(@)
By substituting (26) in (21), we obtain
27) J(u+06u)-Ju)= - jRe(ya) (0 w)dxdt+ O (0).
Q

Hence, in light of the variation functional, we have
(28) 8J(u,0) = lim SOOI WTIW _ pe v 3w dxd

0—0 0 Q
and this proves the differentiability of the functional and gradient formulae of the function J(u) . This

completes the proof of the theorem.
Using Tikhinov method [7], we define the following functional

T
(29) T (w) =J(+a™ | Jlu(x, -0 (x,0* dx dt.
00

and (D(X,t) S L2 (Q)
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4. Discrete Problem

We consider the set of node values {Xj ,tk}, Xj=x0+ Jh,j=0M

— 1 T
tk=to+k,k=0N, M= N=—and the following notations [8];

k k k k
I NC -8 e Il L% SRS R B
Yj x h > Yj X = h ’

y1.< - yl.(_1 yl.( - 2y1.(+y1.<_

6y (= o - ) T
]t T j/xx h

After applying the numerical integration formula [8],we have the discertisation of the optimal control problem
(1)-(5) as follows: Letitis required to minimize the functional

6D Im(u)=< 3 o [yE — 597 — o [yky — 6577}
k=0

k ok
“9

2

M-1 2
k k|7 1
2

k=1 j=1
on the control set

y [u]:[u]z(u?),aoﬁug{Sal,jzo, k=0,N,
UN:

<ap,j=0,M,k=2,N

(ulj()t

under the conditions

P k k k k .
)7+ B ) —u.y. =f

] ,j=LM-1,k=1,

(34) y(j) ~0, j=0,M ,

2B .
(35) =L (y§)x= £ ~ilug); —ug v 1k =L
2B .
(36) —TO (YEDx= By ~i[k)T —ugp ypq Lk =LN

Now, the discrete gradient formulae will be given as follows:
Theorem 2

The functional Im(w) is differentiable, and its gradient satisfies

37) (/ ([u])lj‘ ——Re(y <1> )+ 2a™ (ulj‘—mg‘),

_ k
where j=0,M -1,k =1,N and ‘DJ' is the solution of discrete adjoint problem:

(38) i(cbﬁ.‘)ﬁ By (CDﬁ.()_ —uﬂ-( d)ﬁ.( = 0,j=LM—1,k=I,N-1
XX

(39) c1>§.\I =0, j=0,M ,

@0 (@), +2% [yt %[ulg ok =i (o} ) L.k=LN-1
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2 R
4 @ 0 DY %{uﬁ@ﬁ—i (@K i k=LN-T

5. Solution of Control Problem

5.1 The Projection Gradient Method

Here we describe the projection gradient method [9] for the solution of the optimal control problem such as:
construct a sequence  Un-+1 m by setting

(42) [elnsim = Pyy { [lam = va (Th @ulan ) |

. . M . ) o .
where PUI\N/l (u) is the projectonthe set U . Inthe firstwe define (U j )nm  in the form

Y1 ag < ¥y2 <

k
(43) (uj)n+1m =790 Yy < ag
aq Yo > o

where
(44) W2 = [uflum — vy (Il Qulpm )

k
j

(45) ¥ =[wflam + vo (Im @ulm )

and J=0M , k = LN ,n=0,1,... , m=0,1,...
Using the above sequence we construct the project in the form

1 —1
(46 ) (uj)n+1m = (u])n+1m
O 01 < ¥y < 0>
47) (5)nsim =1 0] WHom < 0]
)

(ulj()nm > 02

where

-k
©0 = (Un+im + va (I ((Whm)

—k-1 —k-1
O = -1ta2+ U] Jn+lm > ©2 = T a2+ (U] In+lm
i=0,M , k = 2,N ,n=0,1,.. , m=0,1,..

5.2 Numerical Algorithm

With the gradient obtained, the following gradient type algorithm can then be developed for the optimal value

of U* hased on the projection gradient method (PGM )which described in the above section.
The outlined of the algorithm for solving control problem are as follows:

n
Step 1: Choose an initial control u( ) eU, n=0,

it 7 (u(n))=0, u(™ is the solution of the problem.
Step 2 : At each iteration n do
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Solve the state problem, then find y (., u(m) ).
Solve the adjoint problem for (1)-(3), then find

+1
o(.,u™)y Find optimal control ugn

using PGM.
End do.
o (n+1)
Step 3: Test the optimality of Y
(n+l)
if u is optimum, stop the process.

Otherwise, go to Step 4.

(m+) _ ()

Step4 Set U , n=1+ 1 andgoto Step 2.

6. Numerical Results

Designed algorithm is implemented as a FORTRAN routine [10]. Numerical experiment is carried out to check
its performance. The initial data of the problem (1)-(5) are taken as follows:
apg =0 =0y =1=T=1, &=05E-03

fo=it, fi=i(1+t), ox) =ix, u® =10
00 =1+ XTH £, 1) = =1 =i (x+0) (x2 ++1)

The number of division of the intervals was taken as N=M=20 . The computed control values of

13 . _ o
uj » 3= 0,N'the values of relative error are shown in Tables 1 ,2 and the 3D plots of the optimal control

and initial values are presented in Figures 1,2 . The optimal value of the cost functional is
Je=infycy J(u) = J(ux )= 0.48526E —03 .

The computed control values of u}3 ,J=0,N
0.15592E+01 0.15950E+01 0.16301E+01 0.16641E+01
0.17221E+01 0.17464E+01 0.17714E+01 0.18021E+01
0.18332E+01 0.18602E+01 0.19112E+01 0.19830E+01
0.20679E+01 0.21474E+01 0.22155E+01 0.22837E+01
0.23625E+01 0.24368E+01 0.24078E+01 0.24324E+01
0.24718E+01
. 13 . "
The values of relative error of U j j=0N
0.025528 0.004683 0.012478 0.02563
0.050038 0.030459 0.048194 0.046236
0.041988 0.032024 0.033075 0.042328
0.055069 0.061758 0.060028 0.056052
0.054668 0.049211 0.000924 0.028029
0.049297
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Fig. 2. Initial control UQ(X,t)
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