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ON STATISTICAL HYPOTHESIS TESTING VIA SIMULATION METHOD 
B. Dimitrov, D. Green, Jr., V.Rykov, P. Stanchev 

Abstract: A procedure for calculating critical level and power of likelihood ratio test, based on a Monte-Carlo 
simulation method is proposed. General principles of software building for its realization are given. Some 
examples of its application are shown. 

1    Introduction 

In this paper we show how the present day fast computer could solve non-standard old statistical problems. In 
most cases statisticians work with approximations of test statistics distributions, and then use statistical tables. 
When approximations do not work the problem is usually tabled. We propose a simulation approach which we 
do believe could be helpful in many cases 
The problem of statistical hypothesis testing is very important for many applications. In the notable but rare 
case, it is possible to find some simple test statistic having a standard distribution. However, in the general 
case the statistics based on the Likelihood Ratio Test (LRT) does not usually have one of the known standard 
distributions. The problem could be overcome with the help of an appropriate simulation method. This method 
was first used in [3] for a specific case of almost lack of memory (ALM) distributions. In this paper we propose 
a general approach for using the method, describe its general principles and algorithms, show how to build up 
an appropriate software, and illustrate with examples its application. 

2    LRT and the Simulation Approach 

It is well known according to Neyman-Pearson theory [7], that the most powerful test for testing a null 
hypothesis 0H : f(x) = 0f (x) versus an alternative 1H : f(x) = 1f (x) is the LRT. For this test, the critical 

region W for a sample 1x ,…, nx  of size n has the form 
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where )x, …,(x n10f  and )x, …,(x n11f are joint probability densities of the distributions of observations 
(the likelihood functions) under hypotheses 0H  and 1H with probability density functions (p.d.f.) (.)0f and 
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is used for test's statistic. For independent observations this statistic can be represented in the form 
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Considering the observations 1x ,…, nx  as independent realizations of random variable (i.i.d. r.v.) X with 
p.d.f. (.)0f the significance level of the test is 
 =α =}W{PH0

 }t)X,,X(w{P nH α10
>… . (1) 

Here an appropriate critical value αt  for any given significance level α is the smallest solution of equation (1). 

On the other hand, considering the same observations 1x ,…, nx  as independent realizations of random 
variable Y with p.d.f. (.)1f ,  the power of the test is 
 =απ =}{

1
WPH }),,({ 11 αtYYwP nH >… . (2) 

Thus, to find the critical value for a given significance level α  and the power of the test )(απ , a statistician 

needs to know the distributions of the test statistic w  under hypotheses 0H  and 1H . 
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For parametric hypothesis testing the problem becomes more complicated because in such cases one has to 
be able to find a free of parameter distribution of this statistic. 
To avoid calculations of these functions we propose to use the simulation method. This means that instead of 
searching for exact statistical distributions, we will calculate appropriate empirical distributions as their 
estimations.  This method gives the desired results due the fact (based on the Strong Law of Large Numbers) 
that the empirical distribution function of the test statistic converges with probability one to the theoretical 
distribution. 
In the following, due to numerical reasons, instead of statistic w we will use its natural logarithm, and for 
simplicity we will denote this statistic with the same letter, w , 
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Due to additional statistical reasons, instead of the cumulative distribution functions (CDF) of the statistic 
w under hypotheses 0H  and 1H , we will use their tails, 

 oF )(t  = }),,({ 10
tXXwP nH >… , (4) 

and 
 1F )(t   = }),,({ 11

tYYwP nH >… . (5) 
For large size samples, n>>1, it is possible to use a simplier approach based on the Central Limit Theorem. It 
is well known that this theorem provides a normal approximation of the distribution for sums of i.i.d. r.v.'s 
under conditions of existence of finite second moments. This would allow one to calculate and use only two 
moments of the test statistic w  and then to calculate the appropriate significance level and power of the test 
making use of the respective normal approximation. 
To show how it works, let us denote by U and V the r.v.'s 

)(ln)(ln 01 XfXfU −= ,       )(ln)(ln 01 YfYfV −= , 
where X and Y are taken from distributions with densities (.)0f and (.)1f  respectively, corresponding to 
hypotheses 0H  and 1H . Denote by Uμ , Vμ  and 2

Uσ , 2
Vσ  their expectations and variances respectively, 

when they exist. Then, for large samples, n>>1, under null hypothesis, the test's statistic w  has 
approximately normal distribution with parameters n Uμ , and n 2

Uσ .  This means that the significant level αt  
for given value of α can be found from the equation 
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Here α−1z  is the (1-α)-quantile of the standard normal distribution. Thus, the critical value αt  for the test 
statistic w  at a given significance level α is 
 αt  ≈ n Uμ  + α−1z  nUσ . (6) 

The power of the test equals 
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From this equality it is possible to see that the power of the test mainly depends on the difference in 
expectations of the r.v.'s U and V. 
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In some cases the parameters Uμ , Vμ  and 2
Uσ , 2

Vσ  can be calculated in a closed (explicit) form. In 
general it is possible to estimate them also with the help of Monte-Carlo techniques and then use the 
respective estimated values instead of the exact ones. Appropriate algorithms for calculating the empirical 
cumulative distribution functions (CDF) of the test's statistic under hypotheses 0H  and 1H for both cases 
are described below. 

3    Algorithms 
In this section two algorithms for calculation of the tails of CDF of LRT's statistic w  under both null and 
alternative hypothesis (the null 0H : f(x) = 0f (x) and the alternative 1H : f(x) = 1f (x)), based on a Monte-
Carlo method are proposed. One algorithm can be applied for any sample size n. The second algorithm 
should be used for large samples, n>>1, mainly when the parameters Uμ , Vμ  and 2

Uσ , 2
Vσ  are finite. 

Algorithm 1.  LRT for any sample size 
Begin. Select the p.d.f.'s (.)0f and (.)1f , and the sample size n. 
Step 1. Generate a sequence of N random samples ),,( )()(

1
j

n
j xx … , j=1,…,N, from a distribution with p.d.f. 

(.)0f , and calculate N values of the test statistics 
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Step 2. Calculate the complementary empirical distribution function 

F {1)(,0 N
tN = number of }' tsw j > ,      t > 0. 

Step 3. Calculate the critical value αt  for the test statistic w  at a given significance level α as the smallest 

solution of the equation  F α=)(,0 tN . 
Step 4. Generate a sequence of N random samples ),,( )()(

1
j

n
j yy … ,j=1,…,N, from a distribution with p.d.f. 

(.)1f , and calculate the values of the test statistics jw , analogous to (8), with )( j
iy ’s instead of 

)( j
ix ’s. 

Step 5. Calculate the complementary empirical distribution function for the new sample  

F {1)(,1 N
tN = number of }' tsw j > ,      t > 0. 

Step 6. Calculate the power of the test statistic w  at the given significance level α from the equation 
F αα π=)(,1 tN . 

Step 7. Enter the application’s data:  For a given user's sample ),,( 1 nxx … , calculate the test  statistic 

ww = ),,( 1 nxx …  = ∑
≤≤

−
ni

ii xfxf
1

01 ))(ln)((ln . 

Calculate the p-value for testing the null hypothesis 0H : f(x) = 0f (x) versus the alternative  

1H : f(x) = 1f (x) by making us of the Likelihood Ratio Test from the equation 

F −= pwN )(,0 value. 

Make a decision by comparing the calculated  p-value and α. Alternatively, reject the hypothesis 0H  
if the inequality 

α
tw > holds. 

Calculate the probability of committing an error of type II (when testing the null hypothesis 0H : f(x) = 

0f (x) versus the alternative 1H : f(x) = 1f (x) by making use of the Likelihood Ratio Test by the 
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simulation method) from the equation 
−1 F −= β)(,1 wN  the probability of type II error. 

Step 8. Print results: 
The chosen  null hypothesis 0H : f(x) = 0f (x) and alternative hypothesis 1H : f(x) = 1f (x), the 
selected significance level α, and the sample size n . 
- The  p-value of the test; 
- The power of the test, βπα −= 1 ; 
- The calculated value of the test statistic w , and the calculated by simulation critical value 

α
t ; 

- The graphs of the tails of the empirical CDFs  F )(,0 tN  and  F )(,1 tN . 
End.  
 
For large size samples when the second moments of the r.v.’s U, and V exist, it is possible to modify and 
simplify the simulation algorithm as shown below. 
 

Algorithm 2.   LRT for large samples. 
Begin. Select the p.d.f.'s (.)0f and (.)1f , and the sample size n. 
Step 1. Generate a sequence of N random variables ),,( 1 Nxx … , from a distribution with p.d.f. (.)0f , and 

calculate N values of the statistics 
uu j = )( jx  = )(ln)(ln 01 jj xfxf − ,    j=1,…,N.                                 (9) 

and its sample mean u , and sample variance 2
us  according to 
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Step 2. Calculate the critical value αt  for the test statistic w  at a given significance level α from the equation 

αt  ≈ n u  + α−1z nsu ⋅⋅ ,                                                        (11) 
where α−1z  is the (1-α)-quantile of the standard normal distribution. 

Step 3. Generate a sequence of N random variables ),,( 1 Nyy … , from a distribution with p.d.f. (.)1f , and 
calculate N values of the statistics 

vv j = )( jy  = )(ln)(ln 01 jj yfyf − ,    j=1,…,N.                                 (12) 

and its sample mean v , and sample variance 2
vs  according to (10) for the data (12). 

Step 4. Calculate the power of the test at the given significance level α from the equation 
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where )(xΦ  is the c.d.f. of the standard normal distribution. 
Step 5. Enter the application’s data:  For a given user's sample ),,( 1 nxx … , calculate the test statistic 
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Calculate the p-value for testing the null hypothesis 0H : f(x) = 0f (x) versus the alternative 1H : 
f(x) = 1f (x) by making us of the Likelihood Ratio Test from the equation 
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where w  is the calculated statistic from the sample. Make a decision by comparing the calculated p-
value and α. Alternatively, reject the hypothesis 0H  if the inequality 

α
tw > holds, where αt  is 

calculated by (11). 
Calculate the probability of committing an error of type II (when testing the null hypothesis 0H : f(x) = 

0f (x) versus the alternative 1H : f(x) = 1f (x) by making use of the LRT by the simulation method) 
from the equation β = απ−1  with the απ  calculated in Step 4.  

Step 6. Print results: 
- The chosen null hypothesis 0H : f(x) = 0f (x) and alternative hypothesis 1H : f(x) = 1f (x), the 

selected significance level α, and the sample size n ; 
- The  p-value of the test; 
- The power of the test, βπα −= 1 ; 
- The calculated test statistic w , and the calculated by simulation critical value 

α
t ; 

- The graphs of the tails of the CDFs  
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End.  
 

4    The Software 

For practical application of the above algorithms an appropriate software should be utilized. The software 
should have a friendly interface, which allows work in two different regimes: individual (customized), and 
automatic. 
In the individual regime only particular observations are tested for any pair of given null and alternative 
hypotheses. Automatic regime allows one to calculate and show the significance level and power functions as 
functions of the test's statistic, and also as functions of some parameters of the model. In this way it would 
allow one to investigate some parametric models. 
The interface includes the main menu, which allows the users to choose: 
• the regime for investigation; 
• the p.d.f. for hull and alternative hypotheses from a given list of distributions, which include almost all 

standard discrete and continuous distributions, or 
• propose an option to the user for selecting probability distribution’s formula or tables of his/her own choice. 
The submenu allows: 
• one to choose the parameter values for hypothesis testing for individual regime; or 
• one to choose the intervals and steps of increment for parameters varying for the problem investigated in 

an automatic regime. 
The software allows also different type of presentation of the results: numerical, graphical, comparison with 
respect to various variables, or with respect to family of functions. These and other appropriate possibilities 
make the content of the design menu. 
The design will be based on the new technologies presented in [8]. 

5    An Example 

Below we consider one example on which the work of algorithms in the previous section will be illustrated.  
Example.  An ALM  distribution versus other ALM distribution with uniform distribution. 
It is known that when in the ALM distribution  
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where a  is a parameter of distribution,  c  is the length of a period, and )(xfY  is an arbitrary distribution on 
the interval [0,c). More details about ALM distributions can be found in [5]. 
Here for the ALM distribution in the null hypothesis 0H  we choose ),(0 xf  presented by (14) with 
parameters chosen in the following way  
 c=1,    0a =.5,    )(0, xfY =1  for  0 ≤  x ≤  1. (15) 

This means that the r.v. X with distribution (14) is based on the uniform distribution of Y 0  on [0,1] (cycle of 
length 1), and probability for jump over a cycle without success is 0a =.5. Any other choice of the parameter 

0a ≠.5 will produce an ALM distribution ),(1 xf different from the chosen )(0 xf .  And this p.d.f.  )(1 xf   will 
appear in our considerations as an alternative hypothesis 1H . 
Thus, we study the likelihood ratio test according to Algorithms 1 and 2 above with the choice for the p.d.f. 

)(0 xf , with 0a =.5, and choosing various other values for parameter 1a ≠.5. In studying the power function 
dependence on significance level α we select 1a =.05,.1,.15,… ,.9,.95; N = 10000, n = 10, c = 1. 
 
F(0)   : 0a =.5  F(1)  ,  1a = .1                      Power f-n πα   
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Fig. 1. Cumulative distribution functions for the test statistic and the power function of the test 
 
The results for the power function in this case of significance level α=.05 are shown on Fig. 1.  

6    Conclusions 

The problem of hypotheses testing arises in many statistical applications. In analytical form its solution can be 
done for a very limited number of cases. The method proposed in this paper gives the solution for practically 
all cases. Nevertheless, for its practical realization special computer tools with friendly interface are needed. 
This work is now in the progress, and we show here some examples of the approach used for some special 
case of distributions, - so called almost lack of memory distributions. 
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A GRADIENT-TYPE OPTIMIZATION TECHNIQUE FOR THE OPTIMAL CONTROL 
FOR SCHRODINGER EQUATIONS  

M. H. FARAG 
Abstract: In this paper, we are considered with the optimal control of a schrodinger equation. Based on the 
formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite 
difference method is then developed to solve the constrained optimization problem. Finally, a numerical 
example is given and the results show that the method of solution is robust. 
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AMS subject classification: 49J20, 49M29, 49M30, 49K20   

1.  Introduction 
Optimal control of systems governed by partial differential equations is an application-driven are of 
mathematics involving the formulation and solution of minimization problems [1,3]. In this paper, we are 
considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the 
cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed 
to solve the constrained optimization problem. Finally, a numerical example is given and the results show that 
the method of solution is robust. 

2.  Problem Formulation 
We consider the functional on the form 
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