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KNOWLEDGE PRESENTATION AND REASONING WITH LOGLINEAR MODELS  
Veska Noncheva, Nuno Marques 

Abstract: Our approach for knowledge presentation is based on the idea of expert system shell. At first we 
will build a graph shell of both possible dependencies and possible actions. Then, reasoning by means of 
Loglinear models, we will activate some nodes and some directed links. In this way a Bayesian network and 
networks presenting loglinear models are generated.  
Keywords: computer oriented statistics, knowledge discovery, learning Bayesian networks, automatic 
analysis of multivariate categorical data sets. 

Introduction 

Our main aim is to link statistical theory to some networks in order to enrich computer’s reasoning capability. 
In this paper we will define a new data structure called LLN and offer an algorithm for learning a Bayesian 
network by using knowledge obtained from categorical data set. This algorithm finds out the loglinear model, 
describing data, a presentation of this model by a LLN and a Bayesian network describing the relationship 
among the variables of interest.  
Categorical data is most often modelled using loglinear models. In this paper we provide a principled 
foundation for reasoning with Loglinear models. We will discuss loglinear models that describe association 
patterns among two and three categorical variables. 
Graphs are natural data structures for digital computers. We will provide a framework presentable by a direct 
graph for modelling categorical data and interpreting the results. Different directed graphs can represent the 
same dependence structure for the set of associated variables. Consequently, if the links have no causal 
interpretations, we will obtain a set of equivalent graphical structures. 

Basic concepts and definitions 

Suppose we have a set of n, n>1 possibly related categorical variables V={X1, X2 ,…, Xn}. This set can be 
represented pictorially by a set of nodes – one node for each variable of V. These nodes can be connected by 
arcs. The dependency structure could be presented by a Bayesian network. The language of Bayesian 
networks is described in [Castillo,Gutierrez,Hadi,1997]. 
Suppose also that we have a set of k actions A={A1, A2 ,…, Ak}, that could be applied on some of these n 
nodes. The objective of an action is building a loglinear model describing categorical data available. These 
actions can be applied to some variables from X. The application of an action to objects is visualised by 
directed arcs.  
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Figure 1. Graph shell. 
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Let V={X,Y,Z}. Actions and nodes are placed on different levels in the graph shell (see Figure 1). On level 0 
the nodes, presenting the associated categorical variables X, Y, and Z are placed. On level 1 – nodes, 
presenting new variables XY, YZ, and XZ. The variable XZ could be composed of the IK combinations of 
levels of X and Z or it could present partial association only. On level 2 – nodes, presenting a new variable 
XYZ. The variable XYZ could be composed of the IJK combinations of levels of X, Y and Z or it could present 
three-factor interaction only. On level -l – actions applicable to nodes from level 0 and giving results in nodes 
from level l, l=1,2. On a sub-network in the level interval [-1, 1] we can reason about the relationship between 
two variables. On a sub-network in the level interval [-2, 2] we can reason about the relationship between 
three variables. In the general case on a sub-network in the level interval [-l, l] we could reason about the 
relationship between I+1, I=1,2,… variables. 

Loglinear models and their interpretations 
In two dimensions only two distinct loglinear models can occur, in general. Either the two variables are 
independent, or they are associated. The loglinear models, presented bellow, present these two cases. 
Given a two-dimensional contingency table the models assume a sample of size n distributed over IJ cells. 
Under multinomial sampling, the probability that an observation will fall into cell ij is ijπ  for all i=1, … , I, j=1, 
…, J. The expected value ijm  is ijnπ . The expected value for the observed counts in a contingency table 

could be estimated by independence loglinear model Y
j

X
iijm λλμ ++=)log( , where the parameters 
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These two mathematical models are graphically presented in Figure 2 and Figure 3. The case of 
independence is shown in Figure 2. This properly indicates the presence of mutual independence. The case 
of interaction is depicted in Figure 3.  
Given a three-dimensional contingency table the model assumes a sample of size n distributed over IJK=N 
cells. Under multinomial sampling, the probability that an observation will fall into cell ijk is ijkπ  for all i=1,… 
,I, j=1,…,J, k=1,…,K. The expected value ijkm  is ijknπ . The model of mutual independence for a three-

dimensional contingency table is Z
k
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Interactions between two or all three variables can be modelled by including the additional terms }{ XY

ijλ , 

}{ YZ
jkλ , }{ YZ

jkλ  and }{ XYZ
ijkλ  with zero sums over the parameters. The interaction structures are following: 

Y
j

X
iijm λλμ ++=)log(  

)()(),( ypxpyxp =

Figure 2. Graphical presentation of the independence loglinear model 
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mutual independence, partial independence, conditional independence, no three-way interaction, and three-
way interaction. 
Mutual independence of the three variables is equivalent to kjiijk ++++++= ππππ . The loglinear model of 

mutual independence is Z
k

Y
j

X
iijkm λλλμ +++=)log( . All variables are pair-wise (mutually) independent. 

Thus, only the main effects X
iλ , Y

jλ  , and Z
kλ  appear in the model. Each pair of variables is also 

conditionally independent and marginally independent.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Partial independence means presence of X

iλ , Y
jλ , Z

kλ , and additional presence of one 

BAZYXBAAB ≠∈ },,,{,,λ . Suppose that the variable X is partially independent of Y and Z. In accordance with 
the definition the variable X is partially independent of Y and Z, if jkiijk +++= πππ  for all i,j,k. The composite 
variable YZ, which has JK different levels combinations of Y and Z, is mutually independent of X. The 
corresponding loglinear model is YZ

jk
Z
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Y
j

X
iijkm λλλλμ ++++=)log( . The variable X is jointly 

independent of Y and Z.  The variables X and Y are conditionally independent given Z, and X and Z are 
conditionally independent given Y. The variables Y and Z are conditionally dependent. The variable X is also 
independent of Y and Z in the X-Y and X-Z marginal tables.There are three models of partial independence. 
Conditional independence of X and Y given Z means kjkikij ||| ++= πππ  for all i,j,k. The loglinear model is 

YZ
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iijkm λλλλλμ +++++=)log( . The variable Z is conditionally dependent with both X and Y. 

The variables X and Y may be marginally dependent, even though they are conditionally independent. There 
are three models of conditional independence. 
The loglinear model of no three-way interaction is YZ

jk
XZ
ik

XY
ij

Z
k

Y
j

X
iijkm λλλλλλμ ++++++=)log( . All 

three pairs of variables are conditionally dependent. Although every variable interacts with each other 
variable, there is no interaction between all three variables. No pair of variables is conditionally independent. 
When there is an absence of three-factor interaction, the association between two variables is identical at 
each level of the third variable. The cell probabilities have form ikjkijijk ϕφψπ = . 
All parameters are included in the three-way interactions model. The loglinear model of three-way interaction 
is XYZ

ijk
YZ
jk

XZ
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X
iijkm λλλλλλλμ +++++++=)log( . This is the model where every possible 

interaction is included. The only interpretation of this model is the fact that apparently all other models failed to 
represent the data in a suitable way. 
The most common problem in loglinear modelling is to find the most suitable model. The better model 
describing data includes as few interaction terms as possible and declares as much of the deviation from 

Figure 3.  Graphical presentation of dependency loglinear model for two-dimensional contingency table 
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mutual independence as possible. We usually use 
2χ and 2G  statistics to judge the adequacy of a loglinear 

model. Roy and Mitra gave Person-type statistics for large-sample tests. 
We have illustrated ideas using the two and three-variable case. Loglinear models for four-way tables are 
more complex than for three-way tables, because of the variety of potential partial association, three-factor 
interaction patterns and four-factor interaction pattern.  
We can readily extend the framework to arbitrary multi-way tables. 
When the number of dimensions increases, both the number of possible interaction patterns and the number 
of cells dramatically increase. Frameworks for multy-way tables will be much more complex. 
The question whether this interaction is statistically significant or not remains unrevealed, as long as the 
number of underlying observations is unknown. A way for presenting our belief in a loglinear model is 
presented in [Noncheva,Marques,2002].  
Each of these models are visualised below. The topological shape of each model-type is not invariant against 
a permutation of the variables. 
A visual method based on mosaic plots for interpreting and modelling categorical data is considered in 
[Theus,Lauer,1999]. Paik suggested circle diagrams for presenting results from three-way tables [Paik,1985]. 

Types of independence in a three-way cross-classification of X, Y, and Z 
A relationship is defined by the join distribution of the associated random variables. The joint distribution 
determines the marginal and conditional distributions. Simplification occurs in a joint distribution when the 
component random variables are statistically independent. We will discuss four types of independence for 
categorical variables.   
The three variables are mutually independent when kjiijk ++++++= ππππ  for all i, j, and k. On a log scale, 

mutual independence is the loglinear model Z
k

Y
j

X
iijkm λλλμ +++=)log( . 

Variable Y is jointly independent of X and Z when +++= jkiijk πππ  for all i, j, and k. This is ordinary two-
way independence for X and the new variable YZ composed on the JK combinations of levels of Y and Z. The 
loglinear model is YZ

jk
Z
k

Y
j

X
iijkm λλλλμ ++++=)log( . Mutual independence implies joint independence 

of any one variable from the others. 
If X and Y are independent in the partial table for the kth category of Z, then X and Y are said to be 
conditionally independent at level k of Z. If },...,1,,...,1,/{ | JjIikijkkij === ++πππ  denotes the joint 
distribution of X and Y at level k of Z, then conditional independence at level k of Z is kjkikij ||| ++= πππ  for all 
i and j. X and Y are conditionally independent given Z when they are conditionally independent at every level 
of Z, or equivalently, when kjkkiijk ++++= ππππ /  for all i, j, and k. Conditional independence of X and Y is 

the loglinear model YZ
jk
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Y
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X
iijkm λλλλλμ +++++=)log( . If Y is jointly independent of X and Z, 

then X and Y are conditional independent. 
We say that X and Y exhibit marginal independence if +++++ = jiij πππ . Joint independence of Y from X 
and Z (or of X from Y and Z) implies X and Y are marginally independent. 
The relationships among the four types of independence are summarized in Figure 5. The basic question is 
how these types of independence could be presented graphically within the framework we are building. A 
solution of this task is given in Figure 6 and Figure 7. 
 
 
 
 
 
 
 
 
 

Mutual independence of X, Y, and Z 

Y jointly independent of X and Z 

X and Y conditionally independent X and Y marginally independent 

Figure 5. Relationships among types of X-Y independence. 
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Decision network for reasoning with Loglinear Models 
Decision networks are graphic structures, that represent probability relations and information flows 
([Shachter,86], [Shachter,88]). We introduce a kind of decision network for reasoning with loglinear models 
called loglinear network (LLN). A variable from the loglinear model is presented as a node in the graph of the 
loglinear network. 
Definition: A loglinear network (LLN) comprises of the following set of items: (X,(A,I), (X’,P), A*, u, δ ). It is 
within this particular set where they are shown as below: 
X is the directed graph of the (in)dependency among all variables Xi, i=1,…,n, in the model. It is called LLN 
graph. 
(A,I) is recognized as a directed graph of basic operations, where A={Ai, i=1,…,k} is the set of these basic 
operations, I={(Ai,X’m), i=1,…,k; m=1,…,n} is the set of directed information arcs and X’ ⊂ X is the set of the 
associate variables that we are interested in. The objective of a basic operation is building a loglinear model 
describing categorical data available. 
(X’,P), is a Bayesian network, built for. X’ ⊂ X is the set of the associate variables that we are interested in.  
P is the set of conditional probabilities. 
A* is the decision set. A* is the set of adequate loglinear models. 
u: X’ R→  is the utility function, where R represents the real numbers set. Usually 

2χ and 2G statistics are 
used as utility functions. 

:δ  A→  A* is the decision rule. Usually the decision rule is based on 
2χ and 2G statistics. 

We distinguish between explanatory and independent variables. Independent variables are classified as 
explanatory if they are involved in the model under study otherwise they remain independent variables that 
could be involved in a model. Both the explanatory variables and the response variable from the loglinear 
model are presented as nodes in the LLP graph. The alphabet of the LLP graph language is as follows: 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Z Z is the response variable  

Y Y is an explanatory variable. 

X is an independent variable. It is equivalent to setting the model parameter equal to zero in the 
general model.  

X 

For example, 

  XYZ Response variable of the three-way interaction model 
XYZ
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  XYZ Response variable of the no three-way interaction model 
YZ
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ik

XY
ij

Z
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X
iijkm λλλλλλμ ++++++=)log(  

A Y The action A is applied to the variable Y. 

A Y The action A could be applied to the variable Y. 

X   XY The variable X is included in the loglinear model with response XY or X is an 
explanatory variable in the loglinear model with response XY. 

  X Y Variable Y depends on variable X. 

  
  X Z Variables X and Y are independent given variable Z. Y 
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Inference Algorithm 
Once the initial knowledge has been presented, one of the most important tasks of a system is to draw 
conclusions when new information is observed. An algorithm of drawing conclusions about both dependency 
and probabilistic structure of a Bayessian network is roughed out below. 
Inference algorithm 
Input: A set of n random variables and its graph shell and an n-way contingency table (n=2,3,…). 
Output: A Bayesian network over the set of variables.  
Steps: Generate different tasks for building loglinear models starting with most restricted ones (from mutual 
independence model to saturated model). 
1. Build a restricted loglinear model. Go to step 2. 
2. Check for adequacy. If the loglinear model is adequate then activate the appropriate arcs in the graph shell 
and update the probability distributions of the variables of interests according to the newly available 
information. Go to step 3. If the loglinear model is not adequate then go to step 1. 
3.End. 
For example, possible results could be the graphs of Bayesian networks presented in Figure 6 and Figure 7. 
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LLN graph: 

Assertions: I (X,{Y,Z} | φ ), I ({X,Y},Z | φ ), I (Y,{X, Z} | φ ) 

Model 1: Mutual Independence          Z
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Interpretation: All variables in the model are independent of all other variables in the model. 

BN: X Y Z p(x,y,z)=p(x)p(y)p(z) 

 p(x,y)=p(x)p(y) LLN graph: 

Model 1: Y
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Assertion: I (X,Y| φ ) 

BN: X X Y Y 

X Y  p(x,y)=p(x)p(y|x) BN: 

Assertions: D (X,Y| φ ) 
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LLN graph: 
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Figure 6. LLN frameworks for two-way contingency tables. 
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 p(x,y,z)=p(x)p(y,z)=p(x)p(y)p(z|y) 

Model 2: Partial Independence            YZ
jk

Z
k

Y
j

X
iijkm λλλλμ ++++=)log(  

Interpretation: One factor is independent of the other factors. 

Assertions:  D (Y,Z| φ ), I (X,{Y,Z}| φ ) 

BN: 
X 

Y Z 
YZ

LLN graph: 
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Assertions: D (X,Z| φ ), D (Y,Z| φ ), I (X, Y | Z) 
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Interpretation: We make decision for independence of two factors and there is a relationship between 
both of those factors and the third factor. 

  p(x,y,z)=p(y)p(z|y)p(x|z) 

 p(x,y,z)=p(z)p(y|x,z)p(x|z) 

YZ 

Y Z 

X XZ XY 
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BN: LLN graph: 

Assertions: D (X,Z| Y), D (X,Y| Z), D (Y,Z| X) 

Model 4: No Three-Way Interaction YZ
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Interpretation: There is an association between X and Y that is the same for each level of Z; Y 
and Z have an association that is the same for each level of X, and X and Z have a relationship 
that is the same for each level of Y. 
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Conclusion 
We have introduced a new graphical representation of loglinear models. We have presented a framework for 
reasoning with loglinear models. In our framework both dependences between nodes and actions on nodes 
enjoy a graphical representation. Loglinear networks are graphs with three types of nodes and two types of 
arcs, representing dependencies and actions. Using this framework we construct a Bayesian network of 
associate random variables. 
 

Bibliography 
[Castillo,Gutierrez,Hadi,1997] Castillo E., Gutierrez J.M., and A.S. Hadi, Expert Systems and Probabilistic Network 
models, Springer, 1997. 
[Noncheva, Marques,2002] Noncheva V., N. Marques. Agent’s Belief: A Stochastic Approach, Proc. of the 14th Belgian-
Dutch Conference on Artificial Intelligence BNAIC 2002, pp.227-234. 
[Paik,1985] Paik, M. A graphic representation of a three-way contingency table: Simpson’s paradox and correlation. 
Amer. Statist., 1985,  39: 53-54. 
[Shachter,86] Shachter R.D. (1986). Evaluating influence diagrams, Operations Research, No.34, pp. 871-882. 
[Shachter,88] Shachter R.D. (1988). Probabilistic Inference and Influence Diagrams, Operations Research, 36, 591-604. 
[Theus, Lauer,1999] Theus Martin, Stephan R. W. Lauer Visualizing Loglinear Models, Journal of Computational and 
Graphical Statistics, 1999, Volume 8, Number 3, pp. 396-412. 
 

Author information 

Veska Noncheva – Faculty of Mathematics and Informatics, University of Plovdiv, 24 Tzar Assen St. 4000 
Plovdiv, Bulgaria; e-mail: wesnon@pu.acad.bg 
Nuno Marques Departamento de Informática, FCT, Universidade Nova De Lisboa, Quinta da Torre, 2829 -
516 Caparica, Portugal, e-mail: nmm@di.fct.unl.pt  
  

Y Z 

X 

XYZ 

YZ 

Y Z 

X XZ XZ LLN graph: BN: 
 p(x,y,z)=p(x)p(y|x,z)p(z|x) 

Assertions: D (X,Z| φ ), D (X,Y| φ ), D (Y,Z| φ ), D (X,{Y,Z}| φ ), D (Y, {X,Z}| φ ),  

D ({X,Y},Z | φ ) 

Model 5: Three-Way Interaction
XYZ
ijk

YZ
jk

XZ
ik

XY
ij

Z
k

Y
j

X
iijkm λλλλλλλμ +++++++=)log(  
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