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PRACTICAL, COMPUTATION EFFICIENT HIGH-ORDER NEURAL NETWORK FOR 
ROTATION AND SHIFT INVARIANT PATTERN RECOGNITION 

Evgeny Artyomov and Orly Yadid-Pecht 

Abstract: In this paper, a modification for the high-order neural network (HONN) is presented. Third order 
networks are considered for achieving translation, rotation and scale invariant pattern recognition. They require 
however much storage and computation power for the task. The proposed modified HONN takes into account a 
priori knowledge of the binary patterns that have to be learned, achieving significant gain in computation time and 
memory requirements. This modification enables the efficient computation of HONNs for image fields of greater 
that 100 × 100 pixels without any loss of pattern information. 
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1. Introduction 
Invariant pattern recognition using neural networks was found to be attractive due to its similarity to biological 
systems. There are three different classes that use neural networks for invariant pattern recognition [1], that differ 
in the way invariance is achieved, i.e. Invariance by Training [2], Invariant Feature Spaces, or invariance by 
Structure, good examples are: the Neocognitron and HONN [3]. 
 

In third-order networks, which are a special case of the HONN, invariance is built into the network structure, 
which enables fast network learning with only one view of each pattern presented at the learning stage. However, 
an exponentially growing amount of interconnections in the network does not enable its usage for image fields 
larger than 18 x 18 pixels [3]. A few different solutions were proposed to minimize the number of the HONN 
interconnections. Weight sharing, by similar triangles [3]. Weight sharing by “approximately similar triangles” [4]-
[5]. Coarse coding [6]. Non-fully interconnected HONN [7]. All these methods partially solve the problem of the 
HONN interconnections but do not help with larger images. Consequently, the research community in the field of 
invariant pattern recognition largely abandoned the HONN method.  
 

In this paper, a modification for the third-order network is described. The proposed modification takes into 
account a priori knowledge of the binary patterns that must be learned. By eliminating idle loops, the network 
achieves significant reductions in computation time as well as in memory requirements for network configuration 
and weight storage. Better recognition rates (compared to conventionally constructed networks with the same 
input image field) are attained by the introduction of a new “approximately equal triangles” scheme for weight 
sharing. The modified configuration enables efficient computation of image fields larger than 100 × 100 pixels 
without any loss of image information — an impossible task with any previously proposed algorithm. 
 

2. HONN Architecture 
Following equation describes the output of a third-order network: 
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j k l

lkjijkli xxxwfy ,  (1) 

where w is the weight associated with a particular triangle, y is the output and x is a binary input, j, k, and l are the 
indices of the inputs. 
A schematic description of this network is shown in Fig. 1. 
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Fig.1. Schematic description of a third-order network 
 
In the training phase, the perceptron-like rule is used: 

lkjiiijkl xxxytw )( −=Δ η  ,  (2) 

where t is the expected training output, y is the actual output, η is the learning rate and x is a binary input. 
The number of triangles (NoT) can be calculated with the following equation: 
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where IN is the number of input nodes. 
For image fields 100 x 100 and 256 x 256 the number of triangles will be 1.6662 × 1011 and 4.6910 × 1013 
accordingly. As can be seen, the number of triangles grows very fast off the limits of any current hardware. A few 
techniques to reduce the number of weights have been proposed in the literature (as described in section 1), but 
they do not reduce computation time. 
The problem of large computational demands arises since the network is constructed in the pre-processing stage 
before the learning phase. At this stage, all possible triangles are computed and pointers to the weights are saved 
[8]. In addition to the pointers, the weight array is also stored. At least two memory bytes are required for each 
pointer. If, for example, an input field of 100 x 100 pixels is given, the total number of bytes required to store the 
entire vector of pointers is 3.3324 × 1011 bytes. The memory and computation requirements are enormous. To 
work with large input patterns, significant network modifications are required. 
 

3. The Proposed Modified HONN Method 
As noted before, the input pattern is binary: edge or contour pixel has the value “1” and all other pixels have the 
value “0”. As can be seen from equation (1), each product with pixel value “0” will give “0” as a result. This means 
that only active triangles (in which all pixels belong to an object contour) will influence the result. In addition, the 
weights that belong to the inactive triangles will not be updated and will keep “zero” value during the learning 
process.  
Following this observation, the network can be modified and all inactive triangles can be disregarded during the 
construction phase, which eliminates the idle loops from the computation. With this modification, the network 
configuration strictly depends on the input patterns that have to be learned.  
In addition, to improve network performance regarding rotation, distortion and a number of learned classes we 
introduce an “approximately equal triangles” scheme for network construction. This scheme, in addition to the 
“approximately similar triangles” scheme presented in [4] for weights sharing, adds triangle area equality. This 
means that “approximately similar triangles” with “approximately equal” areas will share the same weight. 
 
3.1 The Proposed Network Construction 
The modified algorithm for network construction can be described as follows: 1. Load all patterns that must be 
learned. 2. Run through each image and save the coordinates of the contour (boundary) pattern pixels to the 
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different arrays. A set of such arrays is shown in Fig. 2. 3. Compute angles of all presented triangles and classify 
them in order to associate with a particular weight.  
Indices Xim ,Yim and nij correspond to pattern number (n), pixel number (m), weight index (j) and puttern number 
(i). The variable nij is the number of triangles from the particular pattern that correspond to the particular triangle 
weight index (class).  
 

  
Fig.2. Arrays of the pixel coordinates of the object 

contours 
Fig.3. General array for classifying triangles 

by weight index. 
 
The presented method of classification is based on “approximately equal triangles”. For the association of a 
triangle with a particular weight, the sets of possible values of the two smallest triangle angles (α, β) and the 
triangle area (S) are partitioned into bins defined by: 

(k – 1) w ≤ α < kw,  (l – 1) w ≤ β < lw,  (m – 1) s ≤ S < ms,   (4) 

where w is an angular tolerance, α and β are the smallest angles of the triangle so that α < β, s is an triangle area 
tolerance, S is an area of the computed triangle, k, l and m are the bin indices associated with two angles and 
triangle area, respectively.  
During the classification step, each triangle class is associated with a corresponding weight and is represented by 
three variables k, l, and m. The array of triangle classes is constructed as shown in Fig.3. After construction, only 
the array of triangle classes presented in Fig.3 must be stored in memory. 
 

3.2 Network Training 
The previously constructed array of triangle classes (Fig. 3) is used as the basis for learning in the training phase. 
In addition, a zero matrix of weights (W) with the size of NoP  x  NoW is constructed. Where NoW is the number 
of individual weights, NoP is the number of training patterns. 
Output computation takes into account only information presented in the weights array (W) and in the triangle 
array (N) (Fig. 3). It follows the next equation for a particular input image: 

)(∑=
j

kjiji nwfy ,  (5) 

where i is the output index, j is the weight index, k is the pattern index, w is the weight, and n is the number of 
triangles that correspond to the particular triangle class (i.e., the particular weight). 
All weights are updated only once after each iteration, according to the next equation: 

)( iiil ytw −=Δ η  , if Nkl >0 ; 0=Δ ilw , if Nkl =0,  (6) 

where t is the expected training output, y is the actual output, η is the learning rate. 
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After the training phase is complete, only the array of learned weights and the corresponding coefficients k, l, and 
m that represent the equivalence class (from the upper three rows of the array in Fig. 3) must be saved. 
 

3.3 Recognition 
The algorithm for recognition can be described as follows: 1. Load pattern intended for recognition. 2. Construct 
an array of coordinates of contour pixels (as in the construction stage). 3. Construct a zero matrix (N) with the 
size equal to 1 x NoW. This is a counter for triangles in the image, which correspond to the particular weight. 4. 
Run through the coordinate array and compute coefficients k, l and m for all possible triangles as was described 
in 3.1. After each computation, compare the newly found k, l and m with the ones previously saved (upper part of 
the array from Fig.3). If a matching class for the triangle is found, the counter corresponding to that triangle class 
position is increased by one (n1j = n1j  +1) Thus, during classification the nonzero one-dimensional matrix of 
counters (N) is built. 4. Compute outputs according to equation (5), using the weights array (W) built during 
construction phase and the triangle counters (N) built in the beginning of recognition phase. 
 

4. Experimental Results 
To study the performance of the modified network and compare computational resources with the conventional 
network, seven different object classes with 60 x 60 and 170 x 170 pixels were prepared. One object from each 
class was used in the training phase and 14 rotated patterns of each class were used in the recognition phase. 
Pattern examples are shown in Fig.4.  
 

 
 

Fig.4. Pattern examples 
 

The comparison for computational resource demands for 60 x 60 and 170 x 170 input fields are presented  
in Table 1.  
As can be seen from the table, the gain achieved with the modified network in computational steps amount is four 
orders of magnitude for an input field 60 x 60 and five orders of magnitude for an input field of 170 x 170. This 
gain will be more significant with image size increase. In addition, the memory resources are minimized also. 
 

Table 1: Comparison of the computational resources demands  
(“approximately similar triangles” scheme is used alone, the network was trained for first five pattern classes,  

w = π/180, m - not used). 
 

Input field size 60 x 60 170 x 170 
Network type Conventional Modified  Conventional Modified  
Computational steps (number) 7.8×109 13.8×105 4.02×1012 4.5×107 
Total memory requirements (bytes) 15.5×109 81340 8.04×1012 81340 

 

Table 2: Recognition rate for a varying number of trained classes, angular and area similarities. 
Input pattern: 60 x 60 pixels. 

 

Tolerance Number of trained classes 
Angular (w) Area (S) 2 3 4 5 6 7 

Weight 
number 

π/60 10 100 95 94 84 80 80 17286 
π/60 20 100 95 95 85 80 80 8935 
π/20 10 100 95 91 87 82 80 2502 
π/20 20 100 95 88 80 - - 1217 
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Table 3: Recognition rates of the net with the “approximately similar triangles” scheme alone.  
Input pattern: 60 x 60 pixels. 

 

Number of trained classes Angular (w) 
tolerance 2 3 4 5 

Weight 
number 

π/225 100 80 75 60 8533 
 

For comparison with the “approximately similar triangles” scheme, a few results are provided in Table 3. Results 
for the best configuration are shown only, but even this shows much worse recognition rates. The cause for this is 
that similar triangles with very large difference in size are associated with the same triangle class, as a result, 
some object classes will be associated with the same triangle class, preventing from the objects to have an 
individual triangle set associated with it. 
From the experimental data provided, it can be seen that our method enables the possibility of large input field 
computation without significant resource demands. Translation invariance is built into the network, thus 100% 
translation invariance is achieved. All experimental data are provided for this particular data set. For other data 
sets, where object classes differ significantly in size and in form, much better recognition results can be achieved. 
 

5. Conclusions 
A modified High-Order Neural Network for efficient invariant object recognition has been presented. The 
proposed modification achieves significant gain in computation time and memory requirements. The gain in 
computation time is achieved by eliminating the idle loops, by taking a priori knowledge of training patterns. With 
the proposed modified HONN, large input patterns can be processed without large computation demands. 
Performance of the network is improved also significantly, by using the “approximately equal triangles” scheme. 
 

References 
[1] Barnard E., D. Casasent. 1991. Invariance and neural nets. IEEE Transactions on Neural Networks, vol. 2, no. 5, pp. 498-

507. 
[2] Wood J. 1996. Invariant pattern recognition: a review. Pattern Recognition, vol. 29, no.1, pp.1-17. 
[3] Spirkovska L., M.B. Reid. 1992. Robust position, scale, and rotation invariant object recognition using higher-order neural 

networks. Pattern Recognition, Vol.25, No. 9, pp. 975-985. 
[4] Perantonis S.J., P.J.G. Lisboa. 1992. Translation, Rotation, and Scale Invariant Pattern Recognition by Higher-Order 

Neural Networks and Moment Classifiers. IEEE Transactions on Neural Networks, Vol.3, No. 2, pp. 241-251. 
[5] He Z., M.Y. Siyal. 1999. Improvement on Higher-Order Neural Networks for Invariant Object Recognition. Neural 

Processing Letters, Vol. 10, pp 49-55. 
[6] Spirkovska L., M.B. Reid. 1993. Coarse-Coded Higher–Order Neural Networks for PSRI Object Recognition.  

IEEE Transactions on Neural Networks, Vol. 4, No. 2, pp. 276-283. 
[7] Spirkovska L., M.B. Reid. 1990. Connectivity Strategies for Higher-order Neural Networks applied to Pattern Recognition. 

Proceedings of IJCNN, Vol. 1, San Diego, pp. 21 - 26. 
[8] He Z. 1999. Invariant Pattern Recognition with Higher-Order Neural Networks. Master Thesis, School of Electrical and 

Computer Engineering, Nanyang Technological University, Singapore.  
 

Authors' Information 
Evgeny Artyomov – The VLSI Systems Center, Ben-Gurion University, Beer Sheva, Israel.  
e-mail: artemov@bgumail.bgu.ac.il 
Orly Yadid-Pecht – Dept of Electrical and Computer Engineering, University of Calgary, Alberta, Canada  
or The VLSI Systems Center, Ben-Gurion University, Beer Sheva, Israel. e-mail: oyp@ee.bgu.ac.il 
 


