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TOWARDS ACTIVE VISION IN THE DUAL COGNITIVE ARCHITECTURE 

Adrian Nestor and Boicho Kokinov 

Abstract: The paper describes an extension of the cognitive architecture DUAL with a model of visual attention 
and perception. The goal of this attempt is to account for the construction and the categorization of object and 
scene representations derived from visual stimuli in the TextWorld microdomain. Low-level parallel computations 
are combined with an active serial deployment of visual attention enabling the construction of abstract symbolic 
representations. A limited-capacity short-term visual store holding information across attention shifts forms the 
core of the model interfacing between the low-level representation of the stimulus and DUAL’s semantic memory. 
The model is validated by comparing the results of a simulation with real data from an eye movement experiment 
with human subjects.  
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Introduction 
Traditional cognitive models typically isolate a small piece of a seemingly cognitive process and simulate it. 
However, in all domains of cognitive modeling as well as in the field of applied cognitive systems research there 
is a new trend towards integrating various pieces of cognitive processes and even whole processes. The current 
paper presents an attempt to integrate visual perception with higher-level cognitive processes like thinking and 
memory. The traditional goal of computer vision was to infer the structure of a three-dimensional world out of two-
dimensional images with an emphasis on the lower levels of visual processing [Marr, 1982]. Automating object 
and scene recognition would be the next step towards an integrated visual system and, more generally, towards 
an integrated cognitive system. 
If one gives proper credit to the claim that high-level perception, delivers the representations which form the raw 
material for thinking, reasoning or decision-making, then it seems critical to understand the process of 
constructing and making available such representations. The need to justify the format and the availability of input 
representations was one of the most powerful criticisms directed against traditional AI [Chalmers, French and 
Hofstadter, 1992]. On the other hand, integrating high-level vision with cognition in total disregard of lower-level 
visual processing is not necessarily a step forward. Going all the way from the visual input to high-level cognition 
may be the right approach but one which may be still hardly within the researchers’ grasp today. 
One of the most obvious difficulties with this approach may be the need to use expertise from very different fields 
of research. The design of cognitive architectures drawing on the joint efforts of many experts from different fields 
is an enterprise particularly suitable for dealing with such a difficulty. Recent attempts in this direction may be 
noticed. The cognitive architecture ACT-R [Anderson and Lebiere, 1998] has been lately enriched with a model of 
eye movements [Salvucci, 2001]. Another cognitive architecture, EPIC [Meyer and Kieras, 1997], was designed 
and centered on the perceptual processing of stimuli in different modalities. A similar attempt is presented below 
towards integrating the cognitive architecture DUAL [Kokinov, 1994, 1997; Petrov and Kokinov, 1999] with a 
model of visual attention and perception. Beyond DUAL’s need to justify its input and to construct its own 
perceptual representations, this attempt is also motivated by the search for a more principled approach to 
modeling visual perception, an approach more faithful to the sequencing of stages and the organization of the 
human visual system. 
Another difficulty familiar to any vision researcher is the complexity of the visual information available at the front 
end of the system. One way to cope with this complexity is to confine the range of possible stimuli to a predefined 
type. The use of microdomains with simple predefined stimuli and rules is the modeling counterpart of this 
experimental practice. The TextWorld microdomain, a microworld made up of blocks of text, is our candidate for 
this role.  
However, the use of microdomains might not be enough to deal with this complexity. Active vision, a concept 
proposed by computer vision theorists in order to surpass the limitations of the image-based approach advocated 
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by Marr [Marr, 1982] could be a realistic answer to this problem. Allowing vision to selectively attend and process 
parts or aspects of the available information instead of massively storing and processing all information present 
on the retina is not only a way to ignore irrelevant stimuli but also a necessity for a limited-capacity processing 
and memory system. Thus, rather than making and working on an internal copy of the outer world, an active 
vision system will tend to use the ‘world as its own memory’ [O’Regan, 1992] accessed according to the needs 
and the goals of the system. The serial deployment of attention and its visible counterpart, eye movements, is the 
way humans instantiate this principle. The model described below embodies the idea of active vision by modeling 
attention shifts and conditioning high-level processing of a stimulus by the availability of attention. Additionally, 
this offers the possibility to compare directly the performance of the model against eye movement data obtained 
from human subjects. 

DUAL and Visual Processing 

DUAL is a general cognitive architecture designed to provide a basis for modeling high-level context-sensitive 
cognitive processes. Although accounting for perceptual processes did not form a part of the initial motivation for 
its construction, a series of features characteristic to this architecture make it suitable and challenging as a 
framework in which to cast a model of visual perception and attention. 
Hybridity in the form of a mixture of symbolic and neural network mechanisms and computations is perhaps 
DUAL’s most significant feature. At the lowest level DUAL may be described as a large collection of units, called 
DUAL agents, reminiscent of Minsky’s [Minsky, 1986] ‘society of mind’. Each of these agents can be described by 
the symbol it stands for and by its level of activation. Agents communicate with each other both by sending 
symbolic messages and by spreading activation via weighted links. Coalitions of agents representing events, 
situations or objects tend to form themselves dynamically based on the level of activation and the links 
connecting a given set of agents. Finally, the set of all active units at a time may be described as the working 
memory of the system while the set of all units forms DUAL’s long-term memory. 
While hybridity has been successfully used in modeling high level-cognitive processes like analogical reasoning 
[Kokinov and Petrov, 1997] one can hardly imagine a domain which is more in need of such hybrid resources 
than visual processing. On the one hand, most of the image-based processes, e.g. the computation of a salience 
map [Itti and Koch, 2000], seem to be most appropriately described as the result of massively parallel numerical 
computations. On the other hand, perceptual primitives [Marr, 1982] and the classical structural description 
approach to object recognition [Biederman, 1987; Marr and Nishihara, 1978] encourage the appeal to symbolic 
representations and computations. In an attempt to connect a raw visual input with DUAL’s semantic memory we 
take advantage of this hybridity by combining massively parallel activation-based computations with a serial 
attention-based symbolic processing mechanism instantiating the principle of active vision. 
Another related point regards the way the relationship between symbolic and numerical processing is conceived 
of. Embracing the idea of a symbolic processor as an engine running on connectionist energy, DUAL conditions 
the possibility and the speed of symbolic computations on the activation level of its agents [Petrov and Kokinov, 
1999]. Thus, a critical aspect in the functioning of the system is the identification of an initial source of energy or 
activation which enables the system to start and keep running. The current model elaborates on this topic by 
generalizing the concept of visual attention as a resource to be allocated [6]. Visual attention in our account is a 
limited and carefully managed source of energy selectively allocated to some part of the available information 
enabling its detailed symbolic processing. Moreover, attention spreads activation in the entire system playing the 
role of DUAL’s energy source.  
A feature which distinguishes DUAL from other architectures, typically production-rule architectures like ACT-R 
[Anderson and Lebiere, 1998] or EPIC [Meyer and Kieras, 1997], is the lack of a central mechanism controlling 
the functioning of the entire system. In DUAL each agent runs independently and in parallel with other agents 
using only local information obtained from its immediate neighbors. Elaborating a visual processing mechanism in 
the frame of a decentralized system like DUAL is surely a challenging task and a new manner of approaching 
vision in a cognitive architecture. 
Finally, one of the most important principles underlying DUAL’s development is the search for a less modular 
account of cognitive processes typically studied independently as part of different fields of research. Integrating 
memory and analogical reasoning in DUAL [Kokinov and Petrov, 1997] is one notable achievement in this 
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direction. In the current model of visual processing we take a step forward in the same direction by describing 
perception as an interactive process, driven both by a low-level raw visual stimulus and by the current state and 
contents of DUAL’s memory. Moreover, we explain and implement the categorization-based stage in object and 
scene recognition as a form of automatic analogy-making adding further grounds for the claim that high-level 
vision and analogy are at their core one and the same process [Chalmers et al., 1992]. 

The Model 
The structure of the model is sketchily depicted in Fig 1. The visual input corresponding to a TextWorld stimulus 
is presented on a two-dimensional visual array representing the front end of the system. Perceptual primitives like 
blobs and terminations  are  immediately  generated  by  cheap  parallel  computations. Attention is con trolled at 
a time by an object which allocates it selectively to some area of the stimulus. A detailed symbolic representation 
is constructed for this area which tends to fade away as attention is withdrawn from it and allocated to another 
one. Categorization takes place for the visual memory contents by retrieving and mapping object and scene 
categories from DUAL’s semantic memory onto current visual memory representations. Each of these processes 
will be briefly described below. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The three main components of the model: the retinotopic visual array (RVA), the visual working memory 
(VWM) and DUAL’s semantic memory. Attention is allocated to an area of the visual array by the object in VWM 
controlling attention while scene and object categories corresponding to the contents of VWM are retrieved from 
the semantic memory 
 

TextWorld and the Retinotopic Visual Array. Stimuli are presented to the model as matrices containing filled or 
empty cells. Filled cells tend to group together in blocks giving the stimulus the outer appearance of a familiar 
configuration of typewritten text typical of TextWorld stimuli (see Fig. 2). In tests with human subjects the matrix is 
invisible and filled cells contain unreadable scrambled letters encouraging the subjects even more to think of the 
stimulus as a text format. TextWorld objects in a stimulus may also be manipulated according to specific rules 
giving the subjects the possibility to perform formatting tasks. 
 

 
 
 
 
 
 

Fig. 2. A typical TextWorld stimulus with experimental (left) and simulated (right) eye movements data. Fixations 
are represented by points and saccades by lines connecting consecutive fixations 
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The type of input the model may receive for the time being is severely restricted. TextWorld stimuli are static, two-
dimensional, black-and-white blocks of a roughly regular shape. The simplicity of our stimuli is the price for 
attempting to model vision and attention as a whole rather than focusing on a particular stage or subprocess as 
most models in the field do. Consequently, the types of representations and processes the models appeals to are 
designed to fit the specificity of our microdomain. 
The first component of the model is the Retinotopic Visual Array (RVA) which in our account is a set of DUAL 
agents “sitting” in the cells of an imaginary matrix. Presenting a stimulus to the RVA comes down to clamping the 
state of each agent in RVA to filled or empty given the state of the corresponding cell in the stimulus. Each agent 
communicates in the array only with its immediate neighbors – at most 8 other agents – and it is unaware of its 
absolute coordinates in the array. By not deploying absolute coordinates the model faces a more challenging task 
and at the same time a more psychologically plausible one. Indeed, object representations held in VWM do not 
seem to be encoded in terms of absolute position but rather as configurations of stimuli in the world outside 
[Jiang, Olson and Chun, 2000]. Thus, we attempt to capture at least some aspects of the transition from the low-
level retinotopically encoded information to the high-level spatiotopically encoded one, a transition without which 
visual information would be of very limited use. 
Cheap parallel image-based processes take place at this level running on residual activation originating from 
previous or concurrent attentional processes. One such process determines whether an agent is a termination 
(end of row or column). For this purpose each active agent runs a local procedure checking the status of its 
neighbors: filled or empty. The procedure is complicated by the fact that empty cells are interspersed among filled 
ones just as blanks separate words in a written text. For this reason, termination detection is not always perfect 
although it should be reliable enough for approximating contours and edges. 
 A second process in the same category is blob detection. As each agent contains only local information, the 
perception of a cloud of filled cells as a single entity is not a trivial task. The model implements blob detection as 
a stepwise procedure in which neighboring cells gather initially into small groups, then intersecting groups fuse 
into larger ones and the process repeats itself until a whole block of cells is recognized as a single unit leading to 
its storing in VWM as a preattentive object [Wolfe and Bennett, 1997].  
However, although cheap, the detection of perceptual primitives requires agents running symbolic procedures 
and is, therefore, dependent on the activation level. For this purpose, the activation spread in the system has to 
be a very efficient and reliable mechanism. Each DUAL agent in the system computes its activation level based 
primarily on the net input from its neighbors. A continuous version of the Grossberg activation function 
[Grossberg, 1978] governs the activation level of the agents as described below: 
 

a(t0) = a0  
da/dt= -d.a(t) + E.n(t).[M-a(t)]  (1) 

 

where a is the activation level as a function of time, n is the net input to the node, M is the maximal activation 
value, and d and E are parameters that control the rate of decay and excitation. Activation values range between 
0 and M and at the beginning of each run the activation of an agent is set to a small random value. The net input 
is a weighted sum of the activation of neighboring agents with normalized incoming link weights. In addition, all 
activation levels falling below a threshold θ are set to 0. Thus, some agents in the system will be unable to run 
their symbolic procedures at a time at least until they recover from their shortage of energy with the aid of their 
neighbors. 
Visual Working Memory. An impressive amount of recent data document the existence and the properties of a 
specialized short-term memory store holding visual information. It has been argued, for instance, that this store is 
different from conceptual working memory and its functioning does not interfere with the functioning of the latter 
[Luck and Vogel, 1997], that its organization is based on the configuration of the visual stimuli and not on their 
absolute locations [Jiang et al., 2000], that detailed object representation it hosts tend to fade away as attention is 
withdrawn from them [O’Regan, 1992] and that its capacity is of about 3-4 items [Luck and Vogel, 1997]. More 
importantly, it seems to encode information not in a sensorial form, i.e. complete, metrical and noncategorical, but 
rather in a sparse abstract code [Carlson-Radvansky and Irwin, 1995] which may recommend the use of 
structural descriptions as a visual representational format. 
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Our proposal for a Visual Working Memory (VWM) system is in line with such evidence although adapted to the 
peculiarities of our TextWorld stimuli. VWM is the key component in the model by its ability to construct and to 
hold symbolic representations of scenes and objects. A scene layout is represented in VWM as a set of objects 
together with their spatial relations. Similarly, an object is represented as a set of lines or bars and their spatial 
relations. However, the mechanisms responsible for constructing scene layouts and object representations are 
very different.  
Object agents are generated in VWM as a result of the blob detection process. They connect with all cells which 
enter their composition at the RVA level as well as with other object agents via links encoding their spatial 
relations. Thus, a scene layout will be represented in VWM as a coalition of DUAL agents each representing an 
object or a relation. The detection of object relations is a preattentional process in the sense that two objects do 
not need to be attended in order to get connected. However, layout detection is generated at the attended area 
and it uses energy originating in the deployment of attention like any other symbolic process in DUAL. Markers 
are launched from the attention spot in different directions and each time a marker reaches RVA agents 
belonging to different objects these objects are connected by a link carrying the signature of the marker. For 
instance, if a right-propagating marker is launched by an RVA agent belonging to object A and this marker 
reaches an agent belonging to object B by propagating on a straight line from A to B, then the two corresponding 
objects are connected in VWM by a “right-of” relationship indicating that B is to the right of A. However, this 
mechanism is not bound to find all relations in the input as markers may get stuck on their way in inactive agents. 
Thus, an object in VWM may be left out of the scene coalition if it is not very active at that moment. This could 
account for the fact that without giving attention to an object, in addition to missing a detailed representation of 
that object, one may not even notice the presence of the object, a phenomenon called inattentional blindness or 
inattentional amnesia [Wolfe, 1999]. 
A mixed object and location-based account of attention control is proposed for simulating attentional shifts and for 
generating energy in the system. At the level of VWM, objects compete for the control of attention on the basis of 
their activation level – more active agents are more likely to seize attention. Once an object wins, its activation 
level is set to M (see equation 1) and the object starts functioning as an energy generator in the system. A 
second type of selection takes place at the RVA level. An object in control of attention allocates it to some 
fragment of itself on the RVA in the form of a limited fixed-size circular area – the ‘spotlight of attention’ [Posner, 
1980]. The selection here is also based on the activation level of RVA agents competing for the role of spotlight 
center. As termination agents are given higher E excitation rates they tend to be more powerful competitors and 
to capture attention more often than other agents. RVA agents in the spotlight receive temporarily high E 
excitation values so that activation builds up shortly in the area. This activation is spread in turn to the RVA 
agents around leading to a halo of activation around the spotlight. A series of shifts on the surface of the same 
object is sooner or later terminated as the VWM object loses attention and another one seizes it.  
Most importantly, activation enables RVA agents to support the cost of building symbolic representations. Thus, 
agents sufficiently active tend to group themselves in lines or bars and to generate line agents in VWM which 
subordinate them. Line agents form a coalition by connecting in turn the object they belong to and by connecting 
with each other via links encoding their spatial relations similar to the way objects connect with each other. 
However, unlike scene coalitions, object coalitions have only an ephemeral existence and the agents they are 
made up of disappear as attention is withdrawn from the object fragment they represent and their activation drops 
below the threshold. In this manner the model instantiates the so-called principle of visual transience [8]: detailed 
object representations fade away as attention shifts away from them.  
DUAL’s semantic memory and categorization as analogy-making. The representational format utilized by 
DUAL’s memory and the process of analogy –making in the AMBR model have been explained and detailed 
elsewhere [Kokinov and Petrov, 1997] so they will not be detailed here. Our view of categorization as a form of 
analogy-making is based on the fact that both types of processes require the retrieval of a base from memory and 
its mapping with a given target. In the case of categorization the base should be a category retrieved from the 
semantic memory of the system and the target an instance of this category constructed on the spot.  
Scene layouts in VWM are mapped onto scene categories in DUAL’s semantic memory and object 
representations in VWM are mapped onto object categories in the semantic memory. As category representations 
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similarly to scene layouts and object representations in VWM are represented by DUAL coalitions, categorization 
is modeled by the process of mapping of different symbolic structures. Scene-context effects on object 
recognition can easily be explained in this framework as scene categories activate object categories which enter 
their composition and, therefore, facilitate the recognition of objects belonging to these categories. The top-down 
control of attention also falls naturally out of this schema: categories for objects  which are deemed important for 
the current goals of the system will be represented by active agents in the semantic memory; these categories 
will activate their instances in VWM; finally, more active objects in VWM will seize more easily attention and will 
use it longer. 
However, unlike analogy-making studied as a reasoning process, object and scene recognition are fast, reliable 
and automatic. Therefore, we view categorization as an automatic form of analogy-making or, complementarily, 
we explain analogy-making as an extension of categorization in the area of thinking and reasoning. 
Eye movements simulation. The model has been tested by comparing its performance with the performance of 
human subjects in order to check its adequacy as a cognitive model. One such test is the simulation of eye 
movement data in an observation task with TextWorld stimuli. 
Eye movements data were collected from a group of 12 subjects asked to look at a series of TextWorld stimuli 
including the one in Fig 2. Each stimulus was presented for 5 seconds and the resulting sequences of fixations 
were used for computing a transition frequency matrix for each stimulus apart. Such a matrix records the 
frequency of consecutive fixations in two areas of a stimulus. For instance, a cell in row A and column B 
represents the frequency of transitions from A to B.  
The experimental data were simulated by the model as stimulus-driven overt attention shifts. For this purpose, 
only the performance of RVA and VWM coupled together was considered. The stimulus in Fig 2 was presented 
on RVA and the model was run 12 times on this stimulus while initializing RVA agents to small random values at 
the beginning of each run. Different sequences of attention shifts were recorded on each run mainly because of 
the stochastic capture of attention by objects in VWM and by object areas in RVA. A simulation run ended when 
the number of shifts equaled the average number of saccades for a stimulus in the experiment.  
The experimental and the simulation transition frequency matrices for the stimulus in Fig 2 were not different from 
each other as estimated by a chi-square test (χ2(24) = 23.6, p< 0.5). In order to ensure this is the result of 
meaningful shared structure rather than the result of a lack of structure, the simulation and the experimental 
matrices were compared with transition frequency matrices generated from vectors recording independent 
fixation frequencies for each object in the stimulus [Stark and Ellis, 1981]. Both the experimental and the 
simulation data proved significantly different from the latter ones (χ2(24) = 81.2, p< 0.01; χ2(24) = 76.3, p< 0.01) 
certifying the presence of structure in the fixation sequences. However, a larger range of stimuli should certainly 
be tested before being able to claim that model performance and human performance are indistinguishable as far 
as fixation sequences are concerned.  
 

Conclusions 

The construction of a model of visual perception and attention in the framework of the cognitive architecture 
DUAL is advantageous both for the existing architecture and for the new model we presented above. DUAL 
becomes capable of processing its visual input – at least as far as TextWorld stimuli are concerned – instead of 
running on ready-made symbolic representations. The model, on the other hand, draws on DUAL’s knowledge 
representation and processing mechanisms and, furthermore, it earns the ability to interface higher-level 
cognition. No doubt, the model should be evaluated in its own right as an artificial system whose construction is 
inspired by the structure and the functioning of the human visual system. For this purpose, eye movements 
experimental data have been compared with simulation data produced by the model alone without plugging it into 
DUAL’s memory and resources. However, the main thrust of the model is to allow the exploration of processes 
emerging out of the interaction of perception with high-level cognition, e.g. the interaction of stimulus-driven and 
goal-directed attention control or scene context effects on object recognition. The integration of perception and 
cognition is a major goal for any cognitive architecture. The results above represent DUAL’s first steps towards 
reaching this goal. 
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