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FOR JAMMING CANCELLATION 
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Abstract: Two jamming cancellation algorithms are developed based on a stable solution of least squares 
problem (LSP) provided by regularization. They are based on filtered singular value decomposition (SVD) and 
modifications of the Greville formula. Both algorithms allow an efficient hardware implementation. Testing results 
on artificial data modeling difficult real-world situations are also provided 
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Introduction 
Jamming cancellation problem appears in many application areas such as radio communication, navigation, 
radar, etc. [Shirman, 1998], [Ma, 1997]. Though a number of approaches to its solution were proposed 
[McWhirter, 1989], [Ma et al., 1997], no universal solution exists for all kinds of jamming and types of antenna 
systems, stimulating further active research to advance existing methods, algorithms and implementations. 
Consider an antenna system with a single primary channel and n auxiliary channels. Signal in each channel is, 
generally, a mixture of three components: a valid signal, jamming, and channel’s inherent noise. The problem 
consists in maximal jamming cancellation at the output while maximally preserving valid signal.  
Within the framework of weighting approach [Shirman, 1998], the output is obtained by subtraction of the 
weighted sum of signals provided by the auxiliary channels from the primary channel signal. The possibility of 
determining а weight vector w* that minimizes noise at the output while preserving the valid signal to a maximum 
degree is, in general case, provided by the following. The same jamming components are present both in primary 
and auxiliary channels, however, with different mixing factors. Valid signal has small duration and amplitude and 
is almost absent in auxiliary channels. Characteristics of jamming, channel’s inherent noise, and their mixing 
parameters are stable within the sliding "working window". 
These considerations allow us to formulate the problem of obtaining the proper w* as a linear approximation of 
a real-valued function y=f(x): 

F(x) = w1h1(x) + w2h2(x)+…+ wn hn(x) = ∑i=1, n wi hi (x), (1) 

where h1(x),…,hn(x) is a system of real-valued basis functions; w1,…,wn are the real-valued weighting parameters, 
F(x) is a function approximating f(x). 
In our case, h1(x),…,hn(x) are signals provided by the n auxiliary channels. Information about y=f(x) at the output 
of the primary channel is given at discrete set of (time) points k=1,…,m (m is the width of the working window) by 
the set of pairs (hk,yk). It is necessary to find w* approximating f (x) by F(x) using linear least squares solution: 

w* = argmin w ||Н w–y||2, (2) 

where H is the so-called m×n "design matrix" containing the values provided by the n auxiliary channels for all 
k=1,…,m; and y = [y1,… ,ym]T is the vector of corresponding y values provided by the primary channel. 
After estimating w*, the algorithm's output s is the residual discrepancy:  

s = Н w*  – y. (3) 

Such a system may be represented as a linear neural network with a single layer of modifiable connections, n+1 
input and single output linear neurons connected by a weight vector w (Fig. 1). In the case of successful training 
w* provides an increased signal-jamming ratio at the output s compared to the input of the primary channel y, 
at least, for the training set H. 

... 
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h1 h2 hn 

w1* w2* wn* 
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s = hw*-y 

-1 

+1 

output 

... 

 
Fig 1. A neural network representation  

of a jamming canceller 

A peculiarity of jamming cancellation problem in such a 
formulation consists in contamination of both y and Н by the 
inherent noise of channels. Existing algorithms for jamming 
cancellation in the framework of weighting processing (2)-(3) 
[Shirman, 1998] do not take into account inherent noise 
contamination of y and Н. This results in instability of w 
estimation, leading, in turn, to a deterioration of cancellation 
characteristics, and often even to amplification of noise instead 
of its suppression. Therefore, methods for obtaining w* should 
be stable to inherent noise contamination of y and Н. Other 
necessary requirements are real-time operation and simplicity of 
hardware implementation. 
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Least Squares Solution and Regularization 
Generally, the solution of the least squares problem (LSP) (2) is given by  

w* = Н+ y; (4) 

where Н+ is pseudo-inverse matrix. If Н is non-perturbed (noise is absent), then: 

for m = n, rank (H) =n=m  ⇒ det H ≠ 0. Н+ = Н-1; (5) 

for m > n, rank (H) =n, ⇒ det H ≠ 0: Н+ = (НТН)-1НТ; (6) 

for m = n , m > n, rank(H) < n ⇒ det H = 0, Н+ = limν→0 (НТН +ν2I)-1НТ.  (7) 

Н+ for (7) can be obtained numerically using SVD [Demmel, 1997] or the Greville formula [Greville, 1960]. 
The case when y and elements of matrix Н are known precisely is very rare in practice. Let us consider a case 
that is more typical for jamming cancellation, i.e. when y and Н are measured approximately: y = y + ς; Н = Н + 
Ξ; where ς is noise vector, Ξ is noise matrix. In such a case, solutions (5)-(7) may be unstable, i.e. small changes 
of y and Н cause large changes of w* resulting in instable operation of application systems based on (5)-(7). 
To obtain a stable LSP solution, it is fruitful to use approaches for solution of "discrete ill-posed problems" 
[Hansen, 1998], [Jacobsen et al., 2003], [Reginska, 2002], [Wu, 2003], [Kilmer, 2003]. Such a class of LSPs is 
characterized by Н with singular values gradually decaying to zero and large ratio between the largest and the 
smallest nonzero singular values. This corresponds to approximately known and near rank-deficient H.  
Reducing of an ill-posed LSP to a well-posed one by introduction of the appropriate constraints to the LSP 
formulation is known as regularization [Hansen, 1998]. Let us consider a problem known as standard form of the 
Tikhonov regularization [Tikhonov, 1977]: 

argmin w {||y − Н w||2 + λ ||w||2}. (8) 

Its solution wλ may be obtained in terms of SVD of Н [Hansen, 1998]:  

wλ =  Σi=1, n  fi  uiTy /σi  vi;  (9) 

 fi  = σ2i /(σ2i + λ2), (10) 

where σi are singular values, u1 …un , v1 … vn are left and right singular vectors of Н, fi are filter factors.  
Note that solution of (8) using truncated SVD method [Demmel, 1997] is a special case of (9), (10) with fi ∈ {0,1}. 

Algorithmic Implementation of Solutions of Discrete ill-posed LSPs 
Requirements of an efficient hardware implementation of jamming cancellation pose severe restrictions on the 
allowable spectrum of methods and algorithms. In particular, methods of w* estimation are required to allow for 
parallelization or recursion. Taking this into account, let us consider some algorithmic implementations of (8). 
SVD-based solution. The implementation of SVD as a systolic architecture with paralleled calculations is 
considered in [Brent, 1985]. We have developed a systolic architecture that uses effective calculation of ui, σi, and 
vi for obtaining the regularized solution wλ* (9)-(10). The architecture implements two regularization techniques: 
truncated and filtered SVD [Hansen, 1998].  
Advantages of SVD-based solution are accuracy and parallelism. Drawbacks are connected with the hardware 
expenses for calculation of trigonometric functions for diagonalization of sub-matrices and implementation of 
systolic architecture itself.  
Solution based on the Greville formula and its modifications. Let us consider another stable method for w* 
estimation based on the Greville formula, which can be readily implemented in hardware because of its recursive 
character. A recursive procedure for the LSP solution  [Plackett, 1950] for a full-rank H is as follows:  



International Journal "Information Theories & Applications" Vol.12 
 

 

 

227

wk+1 = wk + bk+1(y k+1 – hTk+1 w k);    k = 0, 1,…, (11) 

bk+1 = Pk hk+1/(1 + hTk+1 Pk hk+1); (12) 

Pk+1  = (Нk+1T Нk+1)-1 = (I - bk+1 hTk+1)Pk; (13) 

where hk is the kth row (sample) of H; P0 = 0; w0 = 0. Note that this provides an iterative version of training 
algorithm for a neural network interpretation of Fig. 1.  
The Greville formula [Greville, 1960] allows bk+1 calculation for (11) without (Нk+1T Нk+1)-1 calculation, thus 
overcoming the problem of rank-deficiency of H: 

bk+1 =(I - H+k Hk) hk+1 / hTk+1(I - H+k Hk) hk+1;  if  hTk+1(I - H+k Hk)hk+1  ≠ 0; (14) 

bk+1 = H+k (H+k) T hk+1 / (1+ hTk+1 H+k (H+k) T hk+1);  if  hTk+1(I - H+k Hk)hk+1  = 0; (15) 

H+k+1 = (H+k – (bk+1 hTk+1 H +k  |  bk+1)). (16) 

w* obtained by (11)-(13) using (14)-(16) is equivalent to w* obtained by (7) for precisely specified H. Presence of 
H+k and Hk in (14)-(16) makes recursion more resource- and computation-expensive than (12)-(13). As a new 
sample arrives, it is necessary to calculate H+kHk or H+k(H+k)T that requires calculation of H+k and storage of H+k 
and Hk. These drawbacks are overcome by an improvement of the Greville formula proposed recently in 
[Zhou, 2002].  
For hTk+1Qk = 0 calculations of bk+1 and Pk+1 are made by (12)-(13). If hTk+1Qk ≠ 0  

bk+1 = Qkhk+1/(hTk+1Qkhk+1);  (17) 

Pk+1 = ( I - bk+1hTk+1)Pk(I - bk+1 hTk+1)T+ bk+1bTk+1; (18) 

Qk+1 = ( I - bk+1hTk+1)Qk. (19) 

Here Pk = Нk+(Нk+)Т is Hermitian n×n matrix;  P0 = 0, Qk= I – Нk+ Нk; Q0 = I. 
We further modified the Greville formula so that wk+1 is equivalent to the regularized solution wλ* (9). This is 
achieved by comparison of vector norm hTk+1Qk not with 0, but with some threshold value 0eff calculated from 
noise matrix Ξ. We name such an algorithm "pseudo-regularized modification of the Greville formula" (PRMGF). 
The algorithm (11)-(13), (17)-(19) calculates w* using all previous samples. However, for a non-stationary case it 
is necessary to process only a part of the incoming samples inside a sliding working window. Full recalculation of 
Hk+1+ for estimation of wk+1 as each new sample arrives can be avoided by using inverse recurrent representation 
of [Kirichenko, 1997]. For the purpose of removing the row hT1 from Н k+1, Hk+ is represented through  
Н+k+1 = (b1|Bk+1) as follows.  
For a linear independent row:  

(H + heT)+ = H+ - H+hhTQ/(hTQh) - QeeTH+/eTQe + Q ehT Q(HT) (1+eTH+h)/ hT Q(HT)h eTQe; (20) 

and for a linear dependent row: 
(H + heT)+ = (I – zzT/ ||z ||2) H+; z = H+h – e/||e||2. (21) 

Thus, we propose to use PRMGF with a sliding window for the case, when it is required to obtain w* not for the 
whole training set, but for its subset of a fixed size. For initial k < m samples hk, w*k is recursively calculated by 
PRMGF. For k > m, (20)-(21) are used for updating Н+ by removing the sample that has left a working window, 
and the incoming sample s is taken into account using PRMGF as earlier. 
Advantages of PRMGF with a sliding window include:  
- natural embedding into recursive algorithm for w*; 
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- increase of calculation speed due to using hTk+1 instead of Нk, also resulting in reduction of required memory;  
- additional memory reduction since Pk, Kk and Qk have fixed n×n dimension for any k;  
- further increase of calculation speed when sliding window is used due to the Greville formula inversion;  
- considerably smaller hardware expenses in comparison with SVD;  
- w* close to the Tikhonov regularized solution for noisy, near rank-deficient H (at least, for small matrices);  
- natural interpretation as an incrementally trained neural network.  
 

Example of Modeling a Jamming Cancellation System 
Let's compare the following jamming cancellation algorithms: ordinary LS-based (6); non-truncated SVD-based 
[Demmel, 1997]; truncated SVD-based (9) with fi = {0,1}; PRMGF-based (section 3.2). We use near rank-deficient 
H, which is critical for traditional jamming cancellation algorithms – e.g., for ordinary LS-based ones. 
Testing scheme and cancellation quality characteristics. In a real situation, all antenna channels receive 
jamming signals weighted by the gain factor that is determined by the antenna directivity diagram in the direction 
of particular jamming. We simulated signals in antenna channels as follows: 

Х = S М +  Ξ; (22) 

where X is L×(n+1) matrix of signals in antenna channels (Н is sub-matrix of X); L is the number of samples; n is 
the number of auxiliary channels; S is jamming signals' matrix; Ξ is channel inherent noise matrix;  
М is mixing matrix.  
Jamming signals and channels' inherent noise are modeled by normalized centered random variables with normal 
and uniform distribution correspondingly. M is constructed manually, values of its elements are about units, rank 
deficiency was achieved by entering identical or linearly dependent rows. For ideal channels without inherent 
noise, rank deficiency of M gives rise to strict rank deficiency of Н. Inherent noise results in near rank-deficient Н. 
Tests were carried out for n=8 auxiliary channels.  
The main characteristics of jamming cancellers are: jamming cancellation ratio (Kc) and jamming cancellation 
ratio vs inherent noise level in auxiliary channels Кnaux: Kc = f(Кnaux) [Bondarenko, 1987] at fixed inherent noise at 
the primary channel Кn0. 

Kc = Рin/Рout, (23) 

where Рin and Рout is power of jamming in the primary channel and in the output of jamming canceller, 
respectively. In all tests, the valid signal with amplitude not exceeding amplitude of primary channel jamming was 
present at the input for 5 nearby samples. L=1000; m=16; Кn0 = {0.1, 0.2, 0.3}, Кn0 >> Knaux to complicate the 
algorithm's operation. 
Testing results. A family of jamming cancellation characteristics Kc= f(Кnaux) for rank-deficient M and near rank-
deficient Н is shown in Fig.2. Кnaux varied from 1.6 10-9 up to 6.4 10-6. Kc for the ordinary LS did not exceed 1 at 
Кnaux < 2.5 10-8. For truncated SVD and PRMGF Kc ≈ 10 (Кn0 = 0.1) are nearly constant over the whole range of 
Кnaux and close to each other. Note that for a full-rank matrix H, Кn for all algorithms was approximately the same 
and large in the considered range of Кnaux. 
It may seem from the analysis of the shown results that one may use the ordinary LS algorithm at increased level 
of Кnaux. However, roll-of of cancellation characteristic is also observed when jamming intensity in auxiliary 
channels is much more than the inherent noise level. To show that, let us consider Kc(Pin) for near rank-deficient 
H (Fig.3). Jamming power Pin changed from 9·103 to 1.2·107 by step 2·102, Кnaux = 0.1. For Pin > 104, Kc for 
ordinary LS and non-truncated SVD decreases. For truncated SVD and PRMGF, Kc ≈ 9 (Кn0 = 0.1) are constant 
and close to each other. In this case, we cannot artificially increase inherent noise level because it will completely 
mask the valid signal. 
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Fig. 2. Kc= f(Кnaux) for near rank-deficient Н
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Conclusions 
In the framework of this work, two new jamming cancellation algorithms have been developed based on the so-
called weighting approach. Special requirements to the problem have resulted in its classification as a discrete ill-
posed problem. That has allowed us to apply an arsenal of the regularization-based methods for its stable 
solution - estimation of weight vector w*. 
The standard form of Tikhonov regularization based on SVD has been transformed to efficient hardware systolic 
architecture. Besides, pseudo-regularized modification of the Greville formula allowed us to get weight vector 
estimations very close to estimations for a truncated SVD based regularization - at least for H of about tens of 
columns. Testing on near rank-deficient H has shown that distinctions in w* obtained by both algorithms are 
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of the order 10-5. A combined processing technique based on a regularized modification of the Greville formula 
and inverse recurrent representation of Kirichenko permits a more efficient processing of data for a sliding 
working window. 
Testing on artificial data that model real-world jamming cancellation problem has shown an efficient cancellation 
for near rank-deficient H. For the developed PRMGF-based algorithm the jamming cancellation ratio is near 
constant and considerably higher than 1 in the whole range of variation of auxiliary channels' inherent noise and 
jamming amplitude. On the contrary, for the non-regularized LS method the ratio roll-offs to less than 1, meaning 
jamming amplification. 
A straightforward neural network interpretation of such a system is provided. The developed algorithms and 
computer architectures for their implementation can be applied to solution of other discrete ill-posed LS problems 
and systems of linear algebraic equations. 
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