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DIAGARA: AN INCREMENTAL ALGORITHM  
FOR INFERRING IMPLICATIVE RULES FROM EXAMPLES 

Xenia Naidenova 

Abstract: An approach is proposed for inferring implicative logical rules from examples. The concept of a good 
diagnostic test for a given set of positive examples lies in the basis of this approach. The process of inferring 
good diagnostic tests is considered as a process of inductive common sense reasoning. The incremental 
approach to learning algorithms is implemented in an algorithm DIAGaRa for inferring implicative rules 
from examples. 
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Introduction 
Our approach to machine learning problems is based on the concept of a good diagnostic (classification) test. 
This concept has been advanced firstly in the framework of inferring functional and implicative dependencies from 
relations [Naidenova and Polegaeva, 1986]. But later the fact has been revealed that the task of inferring all good 
diagnostic tests for a given set of positive and negative examples can be formulated as the search of the best 
approximation of a given classification on a given set of examples and that it is this task that all well known 
machine learning problems can be reduced to [Naidenova, 1996].  
We have chosen the lattice theory as a model for inferring good diagnostic tests from examples from the very 
beginning of our work in this direction. We believe that it is the lattice theory that must be the mathematical theory 
of common sense reasoning. One can come to this conclusion by analyzing both the fundamental work in the 
psychological theory of intelligence [Piaget, 1959], and the experience of modeling thinking processes in the 
framework of artificial intelligence. The process of objects’ classification has been considered in [Shreider, 1974] 
as an algebraic idempotent semi group with the unit element. An algebraic model of classification and pattern 
recognition based on the lattice theory has been advanced in [Boldyrev, 1974]. A lot of experience has been 
obtained on the application of algebraic lattices in machine learning: the works of Finn and his disciples [Finn, 
1984], [Kuznetsov, 1993], the model of conceptual knowledge of Wille [1992], the works of the French group 
[Ganascia, 1989]. The following works are devoted to the application of algebraic lattices for extracting 
classifications, functional dependencies and implications from data: [Demetrovics and Vu, 1993], [Mannila and 
Räihä, 1992], [Mannila and Räihä, 1994], [Huntala, et al., 1999], [Cosmadakis, et al., 1986], [Naidenova and 
Polegaeva, 1986], [Megretskaya, 1989], [Naidenova, et al., 1995a], [Naidenova, et al., 1995b], and 
[Naidenova, 1992]. 
An advantage of the algebraic lattices approach is based on the fact that an algebraic lattice can be defined both 
as an algebraic structure that is declarative and as a system of dual operations with the use of which the 
elements of this lattice can be generated. This approach allows us to investigate the processes of inferring good 
classification tests as inductive reasoning processes. In the following part of this chapter, we shall describe our 
decomposition of the inductive inferring process into subtasks and operations that conform to the operations and 
subtasks of the natural human reasoning process. 
This paper is organized as follows. The concept of a good diagnostic test is introduced and the problem of 
inferring all good diagnostic tests for a given classification on a given set of examples is formulated. The next 
section contains the description of a mathematical model underlying algorithms of learning reasoning. We 
propose a decomposition of learning algorithms into operations and subtasks that are in accordance with human 
reasoning operations. In the second part of this paper, the concepts of an essential value and an essential 
example are also introduced and an incremental learning algorithm DIAGaRa is described. The paper ends with a 
brief summary section. 
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The Concept of a Good Classification Test 
Our approach for inferring implicative rules from examples is based on the concept of a good classification test. A 
good classification test can be understood as an approximation of a given classification on a given set of 
examples [Naidenova, 1996]. On the other hand, the process of inferring good tests realizes one of the known 
canons of induction formulated by J. S. Mill, namely, the joint method of similarity-distinction [Mill, 1900]. 
A good diagnostic test for a given set of examples is defined as follows. Let R be a table of examples and S be 
the set of indices of examples belonging to R. Let R(k) and S(k) be the set of examples and the set of indices of 
examples from a given class k, respectively. 
Denote by FM = R/R(k) the examples of the classes different from class k. Let U be the set of attributes and Т be 
the set of attributes values (values, for short) each of which appears at least in one of the examples of R. Let n be 
the number of examples of R. We denote the domain of values for an attribute Atr by dom(Atr), where Atr ∈ U. 
By s(a), a ∈ T, we denote the subset {i ∈ S: ‘a’ appears in ti, ti ∈ R}, where S = {1, 2, .., n}. 
Following [Cosmadakis, et al., 1986], we call s(a) the interpretation of a ∈ T in R. It is possible to say that s(a) is 
the set of indices of all the examples in R which are covered by the value a. 
Since for all a, b ∈ dom(Atr), a ≠ b implies that the intersection s(a) ∩ s(b) is empty, the interpretation of any 
attribute in R is a partition of S into a family of mutually disjoint blocks. By P(Atr), we denote the partition of S 
induced by the values of an attribute Atr. The definition of s(a) can be extended to the definition of s(t) for any 
collection t of values as follows: for t, t ⊆ T, if t = a1 a2 ... am, then s(t) = s(a1) ∩ s(a2) ∩ ... ∩ s(am). 
Definition 1. A collection t ⊆ T (s(t) ≠ ∅) of values, is a diagnostic test for the set R(k) of examples if and only if 
the following condition is satisfied: t ⊄ t*, ∀ t*, t*∈ FM (the equivalent condition is s(t) ⊆ S(k)). 
To say that a collection t of values is a diagnostic test for the set R(k) is equivalent to say that it does not cover 
any example belonging to the classes different from k. At the same time, the condition s(t) ⊆ S(k) implies that the 
following implicative dependency is true: ‘if t, then k. 
It is clear that the set of all diagnostic tests for a given set R(k) of examples (call it ‘DT(k)’) is the set of all the 
collections t of values for which the condition s(t) ⊆ S(k) is true. For any pair of diagnostic tests ti, tj from DT(k), 
only one of the following relations is true: s(ti) ⊆ s(tj), s(ti) ⊇ s(tj), s(ti) ≈ s(tj), where the last relation means that 
s(ti) and s(tj) are incomparable, i.e. s(ti) ⊄ s(tj) and s(tj) ⊄ s(ti). This consideration leads to the concept of a good 
diagnostic test. 
Definition 2. A collection t ⊆ T (s(t) ≠ ∅) of values is a good test for the set R(k) of examples if and only if the 
following condition is satisfied: s(t) ⊆ S(k) and simultaneously the condition s(t) ⊂ s(t*) ⊆ S(k) is not satisfied for 
any t*, t*⊆ T, such that t* ≠ t. 
Good diagnostic tests possess the greatest generalization power and give a possibility to obtain the smallest 
number of implicative rules for describing examples of a given class k. 

The Characterization of Classification Tests 
Any collection of values can be irredundant, redundant or maximally redundant. 
Definition 3. A collection t of values is irredundant if the following condition is satisfied: (∀v), (v ∈ t), s(t) ⊂ s(t/v). 
If a collection t of values is a good test for R(k) and, simultaneously, it is an irredundant collection of values, then 
any proper subset of t is not a test for R(k). 
Definition 4. Let X → v be an implicative dependency which is satisfied in R between a collection X ⊆ T of 
values and the value v, v ∈ T. Suppose that a collection t ⊆ T of values contains X. Then the collection t is said 
to be redundant if it contains also the value v. 
If t contains the left and the right sides of some implicative dependency X → v, then the following condition is 
satisfied: s(t) = s(t/v). In other words, a redundant collection t and the collection t/v of values cover the same set 
of examples. 
If a good test for R(k) is a redundant collection of values, then some values can be deleted from it and thus obtain 
an equivalent good test with a smaller number of values. 
Definition 5. A collection t ⊆ T of values is maximally redundant if for any implicative dependency X → v, 
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which is satisfied in R, the fact that t contains X implies that t also contains v. 
If t is a maximally redundant collection of values, then for any value v ∉ t, v ∈ T the following condition is 
satisfied: s(t) ⊃ s(t ∪ v). In other words, a maximally redundant collection t of values covers the number of 
examples greater than the collection (t ∪ v) of values. 
Any example t in R is a maximally redundant collection of values because for any value v ∉ t, v ∈ T s(t ∪ v) is 
equal to ∅. 
If a diagnostic test for a given set R(k) of examples is a good one and it is a maximally redundant collection of 
values, then by adding to it any value not belonging to it we get a collection of values which is not a good test 
for R(k). 
 

Table - 1. Example 1 of Data Classification. (This example is adopted from [Ganascia, 1989]). 
Index of Example Height Color of Hair Color of Eyes Class 

1 Short Blond Blue 1 
2 Short Brown Blue 2 
3 Tall Brown Embrown 2 
4 Tall Blond Embrown 2 
5 Tall Brown Blue 2 
6 Short Blond Embrown 2 
7 Tall Red Blue 1 
8 Tall Blond Blue 1 

 

For example, in Table 1 the collection ‘Blond Blue’ is a good irredundant test for class 1 and simultaneously it is 
maximally redundant collection of values. The collection ‘Blond Embrown’ is a test for class 2 but it is not good 
test and simultaneously it is maximally redundant collection of values. 
The collection ‘Embrown’ is a good irredundant test for class 2. The collection ‘Red’ is a good irredundant test 
and the collection ‘Tall Red Blue’ is a maximally redundant and good test for class 1. 
It is clear that the best tests for pattern recognition problems must be good irredundant tests. These tests allow 
construction of the shortest implicative rules with the highest degree of generalization. 

An Approach for Constructing Good Irredundant Tests 
Let R, S, S(+), T, s(t), t ⊆ T, s ⊆ S be as defined earlier. We give the following propositions the proof of which 
can be found in [Naidenova, 1999]. 
PROPOSITION 1. 
The intersection of maximally redundant collections of values is a maximally redundant collection. 
PROPOSITION 2. 
Every collection of values is contained in one and only one maximally redundant collection with the same 
interpretation. 
PROPOSITION 3. 
A good maximal redundant test for R(k) either belongs to the set R(k) or it is equal to the intersection of q 
examples from R(k) for some q, 2 ≤ q ≤ nt, where nt is the number of examples in R(k). 
One of the possible ways for searching for good irredundant tests for a given class of examples is the following: 
first, find all good maximally redundant tests; second, for each good maximally redundant test, find all good 
irredundant tests contained in it. This is a convenient strategy as each good irredundant test belongs to one and 
only one good maximally redundant test with the same interpretation. 
It should be more convenient in the following considerations to denote the set R(k) as R(+) (the set of positive 
examples) and the set R/R(k) as R(-) (the set of negative examples). We will also denote the set S(k) as S(+). 
The following Algorithm 1 solves the task of inferring all good maximally redundant tests for a given set of positive 
examples. The idea of this algorithm has been advanced in [Naidenova and Polegaeva, 1991]. 
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By sq = (i1, i2, …, iq), we denote a subset of S, containing q indices from S. Let S(test-q) be the set of elements 
s = {i1, i2, ..., iq}, q = 1,2, ..., nt, satisfying the condition that t(s) is a test for R(+). Here nt denotes the number of 
positive examples.  
We will use an inductive rule for constructing {i1, i2, ..., iq+1} from {i1, i2, ..., iq}, q = 1, 2, ..., nt-1. This rule relies on 
the following consideration: if the set {i1, i2, ..., iq+1} corresponds to a test for R(+), then all its proper subsets must 
correspond to tests too and, consequently, they must be in S(test-q). Thus the set {i1, i2, ..., iq+1} can be 
constructed if and only if S(test-q) contains all its proper subsets. Having constructed the set sq+1 = {i1, i2, ..., iq+1}, 
we have to determine whether it corresponds to the test or not. If t(sq+1) is not a test, then sq+1 is deleted, 
otherwise sq+1 is inserted in S(test-(q+1)). The algorithm is over when it is impossible to construct any element for 
S(test-(q+1)). 
We use in Algorithm 1 the function to_be_test(t): if s(t) ∩ S(+) = s(t) (s(t) ⊆ S(+)) then true else false. 
We introduce the mapping t(s) = {intersection of all ti: ti ⊆ T, i ∈ s}. 
 

Algorithm 1. Inferring all Good Maximally Redundant Tests (GMRTs) for a set R(+) of positive examples. 
1. Input: q = 1, R, S,  R(+), S(+)= {1,2,…, nt}, S(test-q) = {{1}, {2}, ..., {nt}}. 
Output: the set TGOOD of all GMRTs for R(+). 
2. Sq ::= S(test-q); 
3. While ⏐⏐Sq⏐⏐ ≥ q + 1 do 
3.1 Generating S (q + 1) = {s ={i1, ..., i(q + 1)}: (∀ j) (1 ≤ j ≤ q + 1) (i1, ..., i(j-1), i(j + 1), ..., i(q + 1)}∈ Sq}; 
3.2 Generating S(test-(q + 1)) = {s = {i1, ..., i(q + 1)}: (s ∈ S(q + 1)) & (to_be_test(t(s)) = true)}; 
3.3 S(test-q) ::= {s = {i1, ..., iq}: (s ∈ S(test-q)) & ((∀ s’)(s’ ∈ S(test-(q + 1)) s ⊄ s’)}; 
3.4. q ::= q + 1; 
3.5. max ::= q; 
end while 
4. TGOOD::= ∅; 
5. While q ≤ max do TGOOD::= TGOOD ∪ {t(s): s = {i1, ..., is} ∈ S(test-q) }; 
5.1 q::= q + 1; 
end while 
end 

An illustration of inferring GMRTs for the examples of class 2 (see, please, Table 1) is given in Table 2.  
The set Sq, q = 2 consists of 10 elements {{2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}}. But 
t({2,4}), t({2,6}), t({4,5}), and t({5,6}) are not tests for class2, hence we can construct only two elements of the next 
level for q = 3: S3 = S(test-3) = {{2,3,5}, {3,4,6}}. 
As a result, the tests obtained correspond to the following implicative rules: “if COLOR of HAIR = Brown, then 
Class = 2” and “if COLOR of EYES = Embrown, then Class = 2”.  
Algorithm 1 is also used for inferring all good irredundant tests (GIRTs) contained in a good maximally 
redundant test.  
Now let t = {a1, a2,…, am} ⊆ T be a collection of values that is a GMRT for R(+). 
We will use a rule of inductive transition from an element tq = (a1, a2, …, aq) to another element tq+1 = (a1, a2, …, 
aq+1), tq, tq+1 ⊆ T. But now we are interested in obtaining irredundant collections of values. If tq+1 = (a1, a2, …, aq+1) 
is irredundant, then all its proper subsets must be irredundant too. 
 

Table - 2. Example of inferring logical rules for Class 2 (Table 1) with the use of Algorithm 1. 
S(test-1) t(s), s∈ S(test-1) S(test-2) t(s), s∈ S(test-2) S(test-3) t(s), s∈ S(test-3) 
{2} ‘Short Brown Blue’ {2,3} ‘Brown’ {2,3,5} ‘Brown’ 
{3} ‘Tall Brown Embrown’ {2,5} ‘Brown Blue’   
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{4} ‘Tall Blond Embrown’ {3,4} ‘Tall Embrown’ {3,4,6} ‘Embrown’ 
{5} ‘Tall Brown Blue’ {3,5} ‘Tall Brown’   
{6} ‘Short Blond Embrown’ {3,6} ‘Embrown’   
  {4,6} ‘Blond Embrown’   

 

Having constructed the set tq+1 = (a1, a2, …, aq+1), we have to determine whether it is an irredundant collection of 
values or not. If tq+1 is redundant, then it is deleted, if tq+1 is a test, then tq+1 is inserted in the set TGOOD of all 
good irredundant tests contained in t. If tq+1 is irredundant but not a test, then it is a candidate for extension. 
The following Algorithm 2 solves the task of inferring all GIRTs contained in a maximally redundant test for a 
given set of positive examples. 
We use in Algorithm 2 the function to_be_irredundant(t)::= if for (∀ ai) (ai ∈ t) s(t) ≠ s(t/ ai ) then true else false. 
 

Algorithm 2. Inferring all GIRTs contained in a given GMRT for R(+). 
Input: q = 1, R, S, R(+), t = {a1, a2,…, am} – a collection of values – a GMRT, F(irredundant – q) = {{a1}, {a2}, ..., 
{am}} – the family of irredundant subsets of values with q equal to 1. 
Output: the set TGOOD of all the GIRTs for R(+) contained in t. 

1. Fq::= F(irredundant – q ); 
1.1 Generating F(test-q ) ={t = {ai1, ..., aiq}: (t ∈ Fq ) & (to_be_test(t) = true)}; 
1.2 Fq ::= Fq \ F(test-q) ; 
2. While ⏐⏐Fq⏐⏐ ≥ q + 1 do 
2.1. Generating F(q + 1) = 
= {t = {ai1, ..., ai(q + 1)}: (∀ j) (1 ≤ j ≤ q + 1) (ai1, ..., ai(j-1), ai(j + 1), ..., ai(q + 1)}∈ Fq}; 
2.2. Generating F(irredundant – (q +1)) : 
F(irredundant – (q+1)) ::= {t ∈ F(q + 1): to_be_irredundant(t) = true }; 
2.3. q ::= q + 1; 
2.4. max ::= q; 
end while 
3. TGOOD ::= ∅; 
4.While q ≤ max do 
4.1. TGOOD ::= TGOOD ∪  F(test-q); 
4.2. q::= q + 1; 
end while 
end 

The Duality of Good Diagnostic Tests 
In Algorithms 1 and 2, we used (without explicit definition) correspondences of Galois G on S×T and two relations 
S → T, T → S [Ore, 1944], [Riguet, 1948]. Let s ⊆ S, t ⊆ T. We define the relations as follows: 
S → T: t(s) = {intersection of all ti: ti ⊆ T, i ∈ s} and T → S: s(t) = {i: i ∈ S, t ⊆ ti}. 
Extending s by an index j* of some new example leads to receiving a more general feature of examples: 
(s ∪ j*) ⊇ s implies t(s ∪ j*) ⊆ t(s). 
Extending t by a new value ‘a’ leads to decreasing the number of examples possessing the general feature ‘ta’ in 
comparison with the number of examples possessing the general feature ‘t’: 
(t ∪ a) ⊇ t  implies s(t ∪ a) ⊆ s(t). 
We introduce the following generalization operations (functions): 
generalization_of(t) = t′ = t(s(t)); generalization_of(s) = s′ = s(t(s)). 
As a result of the generalization of s, the sequence of operations s → t(s) → s(t(s)) gives that s(t(s)) ⊇ s. This 
generalization operation gives all the examples possessing the feature t(s). 
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As a result of the generalization of t, the sequence of operations t → s(t) → t(s(t)) gives that t(s(t)) ⊇ t. This 
generalization operation gives the maximal general feature for examples the indices of which are in s(t). 
These generalization operations are not artificially constructed operations. One can perform mentally a lot of such 
operations during a short period of time. We give some examples of these operations. Suppose that somebody 
has seen two films (s) with the participation of Gerard Depardieu (t(s)). After that, he tries to know all the films 
with his participation (s(t(s))). One can know that Gerard Depardieu acts with Pierre Richard (t) in several films 
(s(t)). After that, he can discover that these films are the films of the same producer Francis Veber t(s(t)). 
Namely, these generalization operations will be used in the algorithm DIAGaRa. 
 

The Definition of Good Diagnostic Tests as Dual Objects 
We implicitly used two generalization operations in all the considerations of diagnostic tests. Now we define a 
diagnostic test as a dual object, i.e. as a pair (SL, TA), SL ⊆ S, TA ⊆ T, SL = s(TA) and TA = t(SL). 
The task of inferring tests is a dual task. It must be formulated both on the set of all subsets of S, and on the set 
of all subsets of T. 
Definition 6. Let PM = {s1, s2, …, sm} be a family of subsets of some set M. Then PM is a Sperner system 
[Sperner, 1928] if the following condition is satisfied: si ⊄ sj and sj ⊄ si, ∀(i,j), i ≠ j, i, j = 1, …, m. 
Definition 7. To find all Good Maximally Redundant Tests (GMRTs) for a given class R(k) of examples means to 
construct a family PS of subsets s1, s2,…, sj, … , snp of the set S(k) such that: 
1) PS is a Sperner system; 
2) Each sj is a maximal set in the sense that adding to it the index i of example ti such that i ∉ sj, i ∈ S implies 
s(t(sj ∪ i)) ⊄ S(k). Putting it in another way, t(sj ∪ i) is not a test for the class k, so there exists such example t*, t* 
∈ R(-) that t(sj ∪ i) ⊆ t*. 
The set of all GMRTs is determined as follows: {t: t(sj), sj ∈ PS, ∀j, j = 1,..., np}. 
Definition 8. To find all Good Irredundant Tests (GIRTs) for a given class R(k) of examples means to find a 
family PRT of subsets t1, t2,..., tj,…, tnq of the set Т such that: 
1) tj ⊄ t ∀j, j = 1,..., nq, ∀t, t∈R/ R(k) and, simultaneously, ∀tj, j = 1,..., nq, s(tj) ≠ ∅ there does not exist such a 
collection s* ≠ s(tj), s* ⊆ S of indices for which the following condition is satisfied s(tj) ⊂ s* ⊆ S(k); 
2) PRT is a Sperner system; 
3) Each tj – a minimal set in the sense that removing from it any value a ∈ tj  implies s(tj without a) ⊄ S(k). 
 

Decomposition of Good Classification Tests Inferring into Subtasks 
The Algorithms 1 and 2 find all the GMRTs and GIRTs for a given set of positive examples but the number of 
tests can be exponentially large. In this case, these algorithms will be not realistic. Now we consider some 
decompositions of the problem that provide the possibility to restrict the domain of searching, to predict, in some 
degree, the number of tests, and to choose tests with the use of essential values and/or examples. This 
decomposition gives an approach to constructing incremental algorithms of inferring all good classification tests 
for a given set of examples.  
We consider two kinds of subtasks (please, see also [Naidenova, 2001]: 
for a given set of positive examples  
1) Given a positive example t, find all GМRТs contained in t; 
2) Given a non-empty collection of values Х (maybe only one value) such that it is not a test, find all GMRTs 
containing Х.  
Each example contains only some subset of values from T, hence each subtask of the first kind is simpler than 
the initial one. Each subset X of T appears only in a part of all examples; hence each subtask of the second kind 
is simpler than the initial one. 



International Journal "Information Theories & Applications" Vol.12 
 

 

 

177

Forming the Subtasks 
The subtask of the first kind. We introduce the concept of an example’s projection proj(R)[t] of a given positive 
example t on a given set R(+) of positive examples. The proj(R)[t] is the set Z = {z: (z is non-empty intersection of 
t and t') & (t' ∈ R(+)) & (z is a test for a given class of positive examples)}. 
If the proj(R)[t] is not empty and contains more than one element, then it is a subtask for inferring all GMRTs that 
are in t. If the projection contains one and only one element equal to t, then t is a GMRT. 
To make the operation of forming a projection perfectly clear we construct the projection of t2 = ‘Short Brown Blue’ 
on the examples of the second class (Table 1). This projection includes t2 and the intersections of t2 with the other 
positive examples of the second class, i.e. with the examples t3, t4, t5, t6 (Table 3). 
 

Table - 3. The Intersections of Example t2 with the Examples of Class 2. 
Index of Example Height Color of Hair Color of Eyes Test? 

2 Short Brown Blue Yes 
3  Brown  Yes 
4    No 
5  Brown Blue Yes 
6 Short   No 

 

In order to check whether an element of the projection is a test or not we use the function to_be_test(t) in the 
following form: to_be_test(t) = if s(t) ⊆ S(+) then true else false, where S(+) is the set of indices of positive 
examples, s(t) is the set of indices of all positive and negative examples containing t. If S(-) is the set of indices of 
negative examples, then S = S(+) ∪ S(-) and s(t) = {i: t ⊆ ti, i ∈ S}. 
 

Table - 4. The Projection of the Example t2 on the Examples of Class 2. 
Index of Example Height Color of Hair Color of Eyes Test? 

2 Short Brown Blue Yes 
3  Brown  Yes 
5  Brown Blue Yes 

 

The intersection t2 ∩ t4 is the empty set. Hence, the row of the projection with the number 4 is empty. The 
intersection t2 ∩ t6 is not a test for Class 2 because s(Short) = {1,2,6} ⊄ S(+), where S(+) is equal to {2,3,4,5,6}. 
Finally, we have the projection of t2 on the examples of the second class in Table 4. 
The subtask turns out to be very simple because the intersection of all the rows of the projection is a test for the 
second class: t({2,3,5}) = ‘Brown’, s(Brown) = {2,3,5} ⊆ S(+). 
The subtask of the second kind. We introduce the concept of an attributive projection proj(R)[a] of a given 
value ‘a’on a given set R(+) of positive examples. 
The projection proj(R)[a] = {t: (t ∈ R(+)) & (‘a‘ appears in t)}. Another way to define this projection is: proj(R)[a] = 
{ti: i ∈ (s(a) ∩ S(+))}. If the attributive projection is not empty and contains more than one element, then it is a 
subtask of inferring all GМRТs containing a given value ‘a’. If ‘a’ appears in one and only one example, then ‘a’ 
does not belong to any GMRT different from this example. 
Forming the projection of ‘a’ makes sense if ‘a’ is not a test and the intersection of all positive examples in which 
‘a’ appears is not a test too, i.e. s(a) ⊄ S(+) and t′ = t(s(a) ∩ S(+)) is also not a test for a given set of 
positive examples. 
Denote the set {s(a) ∩ S(+)} by splus(a). In Table 1, we have: 
S(+) = {2,3,4,5,6}, splus(Short) → {2,6}, splus(Brown) → {2,3,5}, splus(Blue) → {2,5}, splus(Tall) → {3,4,5}, 
splus(Embrown) → {3,4,6}, and splus(Blond) → {4,6}. 
For the value ‘Brown’ we have: s(Brown) = {2,3,5} and s(Brown) = splus(Brown), i.e. s(Brown) ⊆ S(+). 
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Analogously for the value ‘Embrown’ we have: s(Embrown) = {3,4,6} and s(Embrown) = splus(Embrown), i.e. 
s(Embrown) ⊆ S(+). 
 

Table - 5. The Result of Reducing the Projection after Deleting the Values ‘Brown’ and ‘Embrown’ 
Index of Example Height Color of Hair Color of Eyes Test? 

2 Short  Blue No 
3 Tall   No 
4 Tall Blond  No 
5 Tall  Blue No 
6 Short Blond  No 

 

These values are irredundant and simultaneously maximally redundant tests because t({2,3,5}) = ‘Brown’ and 
t({3,4,6}) = ‘Embrown’. It is clear that these values cannot belong to any test different from them. We delete 
‘Brown’ and ‘Embrown’ from further consideration with the following result as shown in Table 5. 
Now none of the remaining rows of the second class is a test because s(Short, Blue) = {1,2}, s(Tall) = {3,4,5,7,8}, 
s(Tall, Blond) = {4,8}, s(Tall, Blue) ={5,7,8}, s(Short, Blond) = {1,6} ⊄ S(+). The values ‘Brown’ and ‘Embrown’ 
exhaust the set of the GMRTs for this class of positive examples. 
 

Reducing the Subtasks 
The following theorem gives the foundation for reducing projections both of the first and the second kind. The 
proof of this theorem can be found in [Naidenova et al., 1995b]. 
 

THEOREM 1. 
Let A be a value from T, X be a maximally redundant test for a given set R(+) of positive examples and s(A) ⊆ 
s(X). Then A does not belong to any maximally redundant good test for R(+) different from X. 
To illustrate the way of reducing projections, we consider another partition of the rows of Table 1 (see, please 
Part 1 of this paper) into the sets of positive and negative examples as shown in Table 6. 
 

Let S(+) be equal to {4,5,6,7,8}. The value ‘Red’ is a test for positive examples because s(Red) = splus(Red) = 
{7}. Delete ‘Red’ from the projection. The value ‘Tall’ is not a test because s(Tall) = {3,4,5,7,8} and it is not equal 
to splus(Tall) = {4,5,7,8}. Also t(splus(Tall)) = ‘Tall’ is not a test. The attributive projection of the value ‘Tall’ on 
the set of positive examples is in Table 7. 
 

Table - 6. The Example 2 of a Data Classification. 
Index of Example Height Color of Hair Color of Eyes Class 

1 Short Blond Blue 1 
2 Short Brown Blue 1 
3 Tall Brown Embrown 1 
4 Tall Blond Embrown 2 
5 Tall Brown Blue 2 
6 Short Blond Embrown 2 
7 Tall Red Blue 2 
8 Tall Blond Blue 2 

 

Table - 7. The Projection of the Value ‘Tall’ on the Set R(+). 
Index of Example Height Color of Hair Color of Eyes Test? 

4 Tall Blond Embrown Yes 
5 Tall Brown Blue Yes 
7 Tall  Blue Yes 
8 Tall Blond Blue Yes 
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In this projection, splus(Blue) = {5,7,8}, t(splus(Blue)) = ‘Tall Blue’, s(Tall Blue) = {5,7,8} = splus(Tall Blue) hence 
‘Tall Blue’ is a test for the second class. We have also that splus(Brown) = {5}, but {5} ⊆ {5,7,8} and, 
consequently, there does not exist any good test which contains simultaneously the values ‘Tall‘ and ‘Brown’. 
Delete ‘Blue’ and ‘Brown’ from the projection as shown in Table 8. 
However, now the rows t5 and t7 are not tests for the second class and they can be deleted as shown in Table 9. 
The intersection of the remaining rows of the projection is ‘Tall Blond’. We have that s(Tall Blond) = {4,8} ⊆ S(+) 
and this collection of values is a test for the second class. 
 

Table - 8. The Projection of the Value ‘Tall’ on R(+) without the Values ‘Blue’ and ‘Brown’. 
Index of Example Height Color of Hair Color of Eyes Test? 

4 Tall Blond Embrown Yes 
5 Tall   No 
7 Tall   No 
8 Tall Blond  Yes 

 

Table - 9. The Projection of the Value ‘Tall’ on R(+) without the Examples t5 and t7. 
 

Index of Example Height Color of Hair Color of Eyes Test? 
4 Tall Blond Embrown Yes 
8 Tall Blond  Yes 

 

As we have found all the tests for the second class containing ‘Tall’ we can delete ‘Tall’ from the examples of the 
second class as shown in Table 10.  
 

Table - 10. The Result of Deleting the Value ‘Tall’ from the Set R(+). 
Index of Example Height Color of Hair Color of Eyes Test? Class 

1 Short Blond Blue Yes 1 
2 Short Brown Blue Yes 1 
3 Tall Brown Embrown Yes 1 
4  Blond Embrown Yes 2 
5  Brown Blue No 2 
6 Short Blond Embrown Yes 2 
7   Blue No 2 
8  Blond Blue No 2 

 

Next we can delete the rows t5, t7, and t8. The result is in Table 11. 
The intersection of the remaining examples of the second class gives a test ‘Blond Embrown’ because 
s(Blond Embrown) = splus(Blond Embrown) = {4,6} ⊆ S(+). 
 

Table - 11. The Result of Deleting t5, t7, and t8 from the Set R(+). 
Index of Example Height Color of Hair Color of Eyes Class 

1 Short Blond Blue 1 
2 Short Brown Blue 1 
3 Tall Brown Embrown 1 
4  Blond Embrown 2 
6 Short Blond Embrown 2 

 

The choice of values or examples for forming a projection requires special consideration. 
In contrast to incremental learning, where the problem is considered of how to choose relevant knowledge to be 
best modified, here we come across the opposite goal to eliminate irrelevant knowledge not to be processed. 

Choosing Values and Examples for the Formation of Subtasks 
Next, it is shown that it is convenient to choose essential values in an example and essential examples in a 
projection for the decomposition of the problem of inferring GMRTs into the subtasks of the first or second kind. 
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An Approach for Searching for Essential Values 
Let t be a test for positive examples. Construct the set of intersections {t ∩ t’: t’ ∈ R(-)}. It is clear that these 
intersections are not tests for positive examples. Take one of the intersections with the maximal number of values 
in it. The values complementing the maximal intersection in t is the minimal set of essential values in t. 
Next we describe the procedure with the use of which a quasi-maximal subset of t* that does not correspond to a 
test is obtained. 
We begin with the first value a1  t*, then we take the next value a2 of t* and evaluate the function to_be_test ({a1, 
a2}). If the value of the function is false, then we take the next value a3 of t* and evaluate the function to_be_test 
({a1, a2, a3})). If the value of the function to_be_test ({a1, a2}) is true, then the value a2 of t* is skipped and the 
function to_be_test ({a1, a3})) is evaluated. We continue this process until we achieve the last value of t*. 
Return to Table 6. Exclude the value ‘Red’ (we know that ‘Red’ is a test for the second class) and find the 
essential values for the examples t4, t5, t6, t7, and t8. The result is in Table 12. 
Consider the value ‘Embrown’ in t6: splus(Embrown) = {4,6}, t({4,6}) = ‘Blond Embrown’ is a test. 
The value ‘Embrown’ can be deleted. But this value is only one essential value in t6 and, therefore, t6 can be 
deleted too. After that splus(Blond) is modified to the set {4,8}. 
We observe that t({4,8}) = ‘Tall Blond’ is a test. Hence, the value ‘Blond’ can be deleted from further consideration 
together with the row t4. Now the intersection of the rows t5, t7, and t8 produces the test ‘Tall Blue’. 
 

Table - 12. The Essential Values for the Examples t4, t5, t6, t7, and t8. 
Index of Example Height Color of Hair Color of Eyes Essential Values Class 

1 Short Blond Blue  1 
2 Short Brown Blue  1 
3 Tall Brown Embrown  1 
4 Tall Blond Embrown Blond 2 
5 Tall Brown Blue Blue, Tall 2 
6 Short Blond Embrown Embrown 2 
7 Tall  Blue Tall, Blue 2 
8 Tall Blond Blue Tall 2 

 

An Approach for Searching for Essential Examples 
Let STGOOD be the partially ordered set of elements s satisfying the condition that t(s) is a GMRT for R(+). We 
can use the set STGOOD to find indices of essential examples in some subset s* of indices for which t(s*) is not a 
test. Let s* = {i1, i2, … , iq}. Construct the set of intersections {s* ∩ s’: s’∈ STGOOD}. Any obtained intersection 
corresponds to a test for positive examples. Take one of the intersections with the maximal number of indices. 
The subset of s* complementing in s* the maximal intersection is the minimal set of indices of essential examples 
in s*. For instance, s* = {2,3,4,7,8}, s’ = {2,3,4,7}, s’ ∈ STGOOD, hence 8 is the index of essential example t8 
in  s*. 
In the beginning of inferring GMRTs, the set STGOOD is empty. Next we describe the procedure with the use of 
which a quasi-maximal subset of s* that corresponds to a test is obtained. 
We begin with the first index i1 of s*, then we take the next index i2 of s* and evaluate the function to_be_test 
(t({i1, i2})). If the value of the function is true, then we take the next index i3 of s* and evaluate the function 
to_be_test (t({i1, i2, i3})). If the value of the function to_be_test (t({i1, i2})) is false, then the index i2 of s* is skipped 
and the function to_be_test (t({i1, i3})) is evaluated. We continue this process until we achieve the last index of s*. 
For example, in Table 6, S(+) = {4,5,6,7,8}. Find the quasi-minimal subset of indices of essential examples for 
S(+). Using the procedure described above we get that t({4,6}) = ‘Blond Embrown’ is a test for the second class 
and 5,7,8 are the indices of essential examples in S(+). Consider row t5. We know that ‘Blue’ is essential in it 
(see, please, Table 12). We have t(splus({Blue})) = t({5,7,8}) = ‘Tall Blue’, and ‘Tall Blue’ is a test for the second 
class of examples. Delete ‘Blue’ and t5. Now t7 is not a test and we delete it. After that splus({Tall}) is modified to 
be the set {4,8}, and t({4,8}) = ‘Tall Blond’ is a test. Hence, the value ‘Tall’ together with row t8 cannot be 
considered for searching for new tests. Finally S(+) = {4,6} corresponds to the test already known. 
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An Approach for Incremental Algorithms 
The decomposition of the main problem of inferring GMRTs into subtasks of the first or second kind gives the 
possibility to construct incremental algorithms for this problem. The simplest way to do it consists of the following 
steps: choose example (value), form subproblem, solve subproblem (with the use of Algorithm 1 or Algorithm 2), 
delete example (value) after the subproblem is over, reduce R(+) and T and check the condition of ending 
the main task.  
A recursive procedure for using attributive subproblems for inferring GMRTs has been described in [Naidenova et 
al., 1995b]. Some complexity evaluations of this algorithm can be found in [Naidenova and Ermakov, 2001]. In the 
following part of this chapter, we give an algorithm for inferring GMRTs the core of which is the decomposition of 
the main problem into the subtasks of the first kind combined with searching essential examples. 

DIAGaRa: An Algorithm for Inferring All GMRTs with the Decomposition into Subtasks of the 
First Kind 
The algorithm DIAGaRa for inferring all the GMRTs with the decomposition into subproblems of the first kind is 
briefly described in Figure 1. 

The Basic Recursive Algorithm for Solving a Subtask of the First Kind 
The initial information for the algorithm of finding all the GMRTs contained in a positive example is the projection 
of this example on the current set R(+). Essentially the projection is simply a subset of examples defined on a 
certain restricted subset t* of values. Let s* be the subset of indices of examples from R(+) which have produced 
the projection. 
 

s* ←  s(+) ={1,   , nt}; 
t* ←  T ; 

Do 
Begin 

1. to find all the GMRTs for a given set of positive examples with 
the use of the basic algorithm of solving subtask of the first 

kind; 
End  

Figure - 1. The Algorithm DIAGaRa. 
It is useful to introduce the characteristic W(t) of any collection t of values named by the weight of t in the 
projection: W(t) = ||s* ∩ s(t)|| is the number of positive examples of the projection containing t. Let WMIN be the 
minimal permissible value of the weight. 
Let STGOOD be the partially ordered set of elements s satisfying the condition that t(s) is a good test for R(+). 
The basic algorithm consists of applying the sequence of the following steps: 
Step 1. Check whether the intersection of all the elements of projection is a test and if so, then s* is stored in 
STGOOD if s* corresponds to a good test at the current step; in this case the subtask is over. Otherwise the next 
step is performed (we use the function to_be_test(t): if s(t) ∩ S(+) = s(t) (s(t) ⊆ S(+)) then true else false). 
Step 2. For each value A in the projection, the set splus(A) = {s* ∩ s(A)} and the weight W(A) = ||splus(A)|| are 
determined and if the weight is less than the minimum permissible weight WMIN, then the value А is deleted from 
the projection. We can also delete the value A if W(A) is equal to WMIN and t(splus(A)) is not a test – in this case 
A will not appear in a maximally redundant test t with W(t) equal to or greater than WMIN. 
Step 3. The generalization operation is performed: t′ = t(splus(А)), А ∈ t*; if t′ is a test, then the value A is deleted 
from the projection and splus(A) is stored in STGOOD if splus(A) corresponds to a good test at the current step. 
Step 4. The value A can be deleted from the projection if splus(A) ⊆ s’ for some s’ ∈ STGOOD. 
Step 5. If at least one value has been deleted from the projection, then the reduction of the projection is 
necessary. The reduction consists of deleting the elements of projection that are not tests (as a result of previous 
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eliminating values). If, under reduction, at least one element has been deleted from the projection, then Step 2, 
Step 3, Step 4, and Step 5 are repeated. 
Step 6. Check whether the subtask is over or not. The subtask is over when either the projection is empty or the 
intersection of all elements of the projection corresponds to a test (see Step 1). If the subtask is not over, then the 
choice of an essential example in this projection is performed and the new subtask is formed with the use of this 
essential example. The new subsets s* and t* are constructed and the basic algorithm runs recursively. The 
important part of the basic algorithm is how to form the set STGOOD. 
We give in the Appendix an example of the work of the algorithm DIAGaRa.  

An Approach for Forming the Set STGOOD 
Let L(S) be the set of all subsets of the set S. L(S) is the set lattice [Rasiova, 1974]. The ordering determined in 
the set lattice coincides with the set-theoretical inclusion. It will be said that subset s1 is absorbed by subset s2, 
i.e. s1 ≤ s2, if and only if the inclusion relation is hold between them, i.e. s1 ⊆ s2. Under formation of STGOOD, a 
collection s of indices is stored in STGOOD if and only if it is not absorbed by any collection of this set. It is 
necessary also to delete from STGOOD all the collections of indices that are absorbed by s if s is stored in 
STGOOD. Thus, when the algorithm is over, the set STGOOD contains all the collections of indices that 
correspond to GMRTs and only such collections. Essentially the process of forming STGOOD is an incremental 
procedure of finding all maximal elements of a partially ordered set. The set TGOOD of all the GMRTs is obtained 
as follows: TGOOD = {t: t = t(s), (∀s) (s ∈ STGOOD)}. 

The Estimation of the Number of Subtasks to Be Solved 
The number of subtasks at each level of recursion is determined by the number of essential examples in the 
projection associated with this level. The depth of recursion for any subtask is determined by the greatest 
cardinality (call it ‘CAR’) of set-theoretical intersections of elements s ∈ STGOOD corresponding to GMRTs: CAR 
= max (||si ∩ sj||, ∀(si, sj) si, sj ∈ STGOOD). In the worst case, the number of subtasks to be solved is of order 
O(2 CAR). 

CASCADE: Inferring all GMRTs of Maximal Weight 
The algorithm CASCADE serves for inferring all the GMRTs of maximal weight. At the beginning of the algorithm, 
the values are arranged in decreasing order of weight such that W(A1) ≥ W(A2) ≥… ≥ W(Am), where A1, A2, …, Am 
is a permutation of values. The shortest sequence of values A1, A2, …, Aj, j ≤ m is defined such that it is a test for 
positive examples and WMIN is made equal to W(Aj). The procedure DIAGaRa tries to infer all the GMRTs with 
weight equal to WMIN. If such tests are obtained, then the algorithm stops. If such tests are not found, then 
WMIN is decreased, and the procedure DIAGaRa runs again. 

Conclusion 
In this paper, we used a unified model for inferring implicative logical rules from examples. The key concept of our 
approach is the concept of a good diagnostic test. We define a good diagnostic test as the best approximation of 
a given classification on a given set of examples. In the framework of our approach, we show the equivalence 
between implicative rules and diagnostic tests for a given set of examples. The task of inferring good diagnostic 
tests from examples serves as an ideal model of inductive reasoning because this task realizes the canons of 
induction that has been originally formulated by English logician J.-S. Mill. 
We have given the decomposition of inferring all good maximally redundant tests for a given set of examples into 
operations and subtasks that are in accordance with main human common sense reasoning operations. This 
decomposition allows, in principle, to transform the process of inferring good tests (and implicative rules) into a 
“step by step” reasoning process. Incremental algorithms of inferring good classification tests from examples 
demonstrate the possibility of this transformation in the best way. 
We consider two kinds of subtasks: for a given set of positive examples 1) given a positive example t, find all 
GМRТs contained in t; 2) given a non-empty collection of values Х (maybe only one value) such that it is not a 
test, find all GMRTs containing Х. The decomposition of good classification tests inferring into subtasks implies 
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introducing a set of special rules to realize the following operations: choosing examples (values) for subtasks, 
forming subtasks, deleting values or examples from subtasks and some other rules controlling the process of 
good test inferring. The concepts of an essential value and an essential example are introduced in order to 
optimize the choice of subtasks of the first and second kinds. 
We have described an inductive algorithm DIAGaRa for inferring all good maximally redundant tests for a given 
set of positive examples. This algorithm realizes one of the possibilities to transform the searching of diagnostic 
tests (implicative logical rules) into “step by step” learning procedure.  
Our approach is also applicable for inferring functional and associative dependencies from data. 
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Appendix 
The data to be processed are in Table 13 (the set of positive examples) and in Table 14 (the set of negative 
examples).  

An Example of Using the Algorithm DIAGaRa 
We use the algorithm DIAGaRa for inferring all the GMRTs having the weight equal to or greater than WMIN = 4 
for the training set of examples represented in Table 13 (the set of positive examples) and in Table 14 (the set of 
negative examples).  
We begin with s* = S(+) = {{1}, {2}, …, {14}}, t* = T = {A1, A2, ….., A26}, SPLUS = {splus(Ai): Ai ∈ t*} (see SPLUS 
in Table 15). 
In table 15 and 16, A* denotes the collection of values {A8 A9} and A+ denotes the collection of values {A14 A15} 
because splus(A8) = splus(A9) and splus(A14) = splus(A15).  
Please observe that splus(A12) = {2,3,4,7} and t({2,3,4,7}) is a test, therefore, A12 is deleted from t* and splus(A12) 
is inserted into STGOOD. Then W(A*), W(A13), and W(A16) are less than WMIN, hence we can delete A*, A13, and 
A16 from t*. Now t10 is not a test and can be deleted. After modifying splus(A) for A5, A18, A2, A3, A4, A6 A20, A21, 
and A26 we find that W(A5) < WMIN, therefore, A5 is deleted from t* and splus(A5) is inserted into STGOOD. Then 
W(A18) turns out to be less than WMIN and we delete A18, which implies deleting t13. Next we modify splus(A) for 
A1, A19, A23, A4, A26 and find that splus(A4) = {2,3,4,7}. A4 is deleted from t*. Finally, W(A1) turns out to be less than 
WMIN and we delete A1. 
 

Table - 13. The Set of Positive Examples R(+). 
Index of  
example R(+) 

1 A1 A2 A5 A6 A21 A23 A24 A26 
2 A4 A7 A8 A9 A12 A14 A15 A22 A23 A24 A26 
3 A3 A4 A7 A12 A13 A14 A15 A18 A19 A24 A26 
4 A1 A4 A5 A6 A7 A12 A14 A15 A16 A20 A21 A24 A26 
5 A2 A6 A23 A24 
6 A7 A20 A21 A26 
7 A3 A4 A5 A6 A12 A14 A15 A20 A22 A24 A26 
8 A3 A6 A7 A8 A9 A13 A14 A15 A19 A20 A21 A22 
9 A16 A18 A19 A20 A21 A22 A26 
10 A2 A3 A4 A5 A6 A8 A9 A13 A18 A20 A21 A26 
11 A1 A2 A3 A7 A19 A20 A21 A22 A26 
12 A2 A3 A16 A20 A21 A23 A24 A26 
13 A1 A4 A18 A19 A23 A26 
14 A23 A24 A26 
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Table - 14. The Set of Negative Examples R(−). 
Index of 
example R(−) Index of 

example 
R(−) 

15 A3 A8 A16 A23 A24 32 A1 A2 A3 A7 A9 A10 A11 A13 A18 
16 A7 A8 A9 A16 A18 33 A1 A5 A6 A8 A9 A10 A19 A20 A22 
17 A1 A21 A22 A24 A26 34 A2 A8 A9 A18 A20 A21 A22 A23 A26 
18 A1 A7 A8 A9 A13 A16 35 A1 A2 A4 A5 A6 A7 A9 A13 A16 
19 A2 A6 A7 A9 A21 A23 36 A1 A2 A6 A7 A8 A10 A11 A13 A16 A18 
20 A10 A19 A20 A21 A22 A24 37 A1 A2 A3 A4 A5 A6 A7 A12 A14 A15 A16 
21 A1 A10 A20 A21 A22 A23 A24 38 A1 A2 A3 A4 A5 A6 A9 A11 A12 A13 A16 
22 A1 A3 A6 A7 A9 A10 A16 39 A1 A2 A3 A4 A5 A6 A14 A15 A19 A20 A23 A26 
23 A2 A6 A8 A9 A14 A15 A16 40 A2 A3 A4 A5 A6 A7 A11 A12 A13 A14 A15 A16 
24 A1 A4 A5 A6 A7 A8 A11 A16 41 A2 A4 A5 A6 A7 A9 A10 A11 A12 A13 A14 A15 A19 
25 A7 A10 A11 A13 A19 A20 A22 A26 42 A1 A2 A3 A4 A5 A6 A12 A16 A18 A19 A20 A21 A26 
26 A1 A2 A3 A5 A6 A7 A10 A16 43 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 
27 A1 A2 A3 A5 A6 A10 A13 A16 44 A3 A4 A5 A6 A8 A9 A10 A11 A12 A13 A14 A15 A18 A19 
28 A1 A3 A7 A10 A11 A13 A19 A21 45 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 
29 A1 A4 A5 A6 A7 A8 A13 A16 46 A1 A3 A4 A5 A6 A7 A10 A11 A12 A13 A14 A15 A16 A23 A24 
30 A1 A2 A3 A6 A11 A12 A14 A15 A16 47 A1 A2 A3 A4 A5 A6 A8 A9 A10 A11 A12 A14 A16 A18 A22 
31 A1 A2 A5 A6 A11 A14 A15 A16 A26 48 A2 A8 A9 A10 A11 A12 A14 A15 A16 

 
Table - 15. The Set SPLUS of the Collections splus(A) for all A in Tables 13 and 14. 

SPLUS = {splus(Ai): s(Ai) ∩ S(+), Ai ∈ T}: 
splus(A*) → {2,8,10} 
splus(A13) → {3,8,10} 
splus(A16) → {4,9,12} 
splus(A1) → {1,4,11,13} 
splus(A5) → {1,4,7,10} 
splus(A12) → {2,3,4,7} 
splus(A18) → {3,9,10,13} 
splus(A2) → {1,5,10,11,12} 
splus(A+) → {2,3,4,7,8} 
splus(A19) → {3,8,9,11,13} 

splus(A22) → {2,7,8,9,11} 
splus(A23) → {1,2,5,12,13,14} 
splus(A3) → {3,7,8,10,11,12} 
splus(A4) → {2,3,4,7,10,13} 
splus(A6) → {1,4,5,7,8,10} 
splus(A7) → {2,3,4,6,8,11} 
splus(A24) → {1,2,3,4,5,7,12,14} 
splus(A20) → {4,6,7,8,9,10,11,12} 
splus(A21) → {1,4,6,8,9,10,11,12} 
splus(A26) → {1,2,3,4,6,7,9,10,11,12,13,14} 

 
Table - 16. The sets STGOOD and TGOOD for the Examples of Tables 13 and 14. 

№ STGOOD TGOOD 
1 2,3,4,7 A4 A12 A+ A24 A26 
2 1,2,12,14 A23 A24 A26 
3 4,6,8,11 A7 A20 A21 

 

We can delete also the values A2, A19 because W(A2), W(A19) = 4, t(splus(A2)), t(splus(A19)) are not tests and, 
therefore, these values will not appear in a maximally redundant test t with W(t) equal to or greater than 4.  
After deleting these values we can delete the examples t9, t5 because A19 is essential in t9, and A2 is essential in 
t5. Next we can observe that splus(A23) = {1,2,12,14} and t({1,2,12,14}) is a test, thus A23 is deleted from t* and 
splus(A23) is inserted into STGOOD. We can delete the value A22 and A6 because W(A22) and W(A6) are now 
equal to 4, t(splus(A22)) and t(splus(A6)) are not tests and these values will not appear in a maximally redundant 
test with weight equal to or greater than 4. Now t14 and t1 are not tests and can be deleted. 
Now choose t6 as a subtask because this positive example is more difficult to be distinguished from the negative 
examples. By resolving this subtask, we find that t6 produces a new test t with s(t) equal to {4,6,8,11}. Delete t6. 
We can also delete the value A21 because W(A21) is now equal to 4, t(splus(A21)) is not a test and this value will 
not appear in a maximally redundant test with weight equal to or greater than 4. 
Now choose t8 as a subtask because it belongs to the set of essential examples in the current projection with 
respect to the subset {2,3,4,7} that corresponds to one of the GMRTs already obtained. By resolving this subtask, 
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we find that t8 does not produce any new test. Delete t8. After that we can delete the values A+, A7, A3, and A20 
and these deletions imply than all of the remaining rows t2, t3, t4, t7, t11, and t12 are not tests. 
The list of all the GMRTs for the training set of positive examples is given in Table 16. 
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ACTIVE MONITORING AND DECISION MAKING PROBLEM 
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Abstract: Active monitoring and problem of non-stable of sound signal parameters in the regime of piling up 
response signal of environment is under consideration. Math model of testing object by set of weak stationary 
dynamic actions is offered. The response of structures to the set of signals is under processing for getting 
important information about object condition in high frequency band. Making decision procedure by using 
researcher’s heuristic and aprioristic knowledge is discussed as well. As an example the result of numerical 
solution is given. 

Keywords: math model, active monitoring, set of weak stationary dynamic actions. 
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Introduction 
The distinctive feature of seismic monitoring is the particular, seismic frequency range, encompassing infrasonic 
and low range of a sound spectrum. The characteristics of each monitoring object are slowly varied in time, but at 
the same time sometimes processes might be occurred is too rapid. The seismic monitoring deals with the large 
size objects, down to the sizes of a terrestrial Globe. Because of mankind anxiety on possible earthquakes, the 
extremely passive monitoring has a deep history, but at latest time the active monitoring is often used. The active 
monitoring is such an experiment, which one is connected to generation of sounding signal of a different type, 
both on a spectral band, and on duration and power, down to atomic explosions. But in active experiment only 
monitoring approach enables to obtain ecological pure result, i.e. without any of appreciable influencing on an 
environment. Monitoring is a set of regime observations, and condition of observations and the characteristics of 
sounding signal depend on the purposes of given investigation. There are many such purposes, but, from our 
point of view, we select two basic one. It is dynamics of variations happening in investigated object, and it is detail 
of estimations, which characterise this object. Despite of large discrepancy of these two purpose, the approaches 
both to experimentation and to processing receivable data are very close, as well as problems, originating at it.  
To problems, first of all from the ecological point of view, it is necessary to refer necessity to realize active 
monitoring of investigated object by low-power signals, commensurable with a level of a natural background. This 
circumstance results that the estimation of sounding signal parameters, passing the studied object, i.e. signal 
response of an investigated system on a sounding signal, is hampered because of a low signal-noise proportion. 


