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EVALUATING MISCLASSIFICATION PROBABILITY USING EMPIRICAL RISK!?
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Abstract: The goal of the paper is to estimate misclassification probability for decision function by training
sample. Here are presented results of investigation an empirical risk bias for nearest neighbours, linear and
decision tree classifier in comparison with exact bias estimations for a discrete (multinomial) case. This allows to
find out how far Vapnik—Chervonenkis risk estimations are off for considered decision function classes and to
choose optimal complexity parameters for constructed decision functions. Comparison of linear classifier and
decision trees capacities is also performed.
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Introduction

One of the most important problems in classification is estimating a quality of decision built. As a quality measure,
a misclassification probability is usually used. The last value is also known as a risk. There are many methods for
estimating a risk: validation set, leave-one-out method etc. But these methods have some disadvantages, for
example, the first one decreases a volume of sample available for building a decision function, the second one
takes extra computational resources and is unable to estimate risk deviation. So, the most attractive way is to
evaluate a decision function quality by the training sample immediately.

But an empirical risk or a rate of misclassified objects from the training sample appears to be a biased risk
estimate, because a decision function quality being evaluated by the training sample usually appears much better
than its real quality. This fact is known as an overtraining problem.

To solve this problem in [Vapnik, Chervonenkis, 1974] there was introduced a concept of capacity (complexity
measure) of a decision rules set. The authors obtained universal decision quality estimations, but these VC-
estimations are not accurate and suggest pessimistic risk expectations.

For a case of discrete feature in [Nedel'ko, 2003] there were obtained exact estimations of empirical risk bias.
This allows finding out how far VC—estimations are off.

The goal of this paper is to extrapolate the result on continuous case including linear and decision tree classifiers.
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Formal Problem Definition

A classification task consists in constructing a deciding function that is a correspondence f : X —Y , where X —

a features values space and Y = {1, k} - a forecasting values space. For simplicity let's assume a number of
classes k = 2.

For the determination of deciding functions quality one need to assign a loss function: L:Y? — [0,x0) that for

0, y=Yy

Ly=y"’

By a risk we shall understand an average loss:
R(c. f)=JL(y. f (x))dr;[D],

where C is a set of probabilistic measures on D= X xY and c e C is a measure P,[D]. The set C contains all

the measures for those a conditional measure P;[Y/x] exists vx e X .

Hereinafter we shall use square parentheses to indicate that the measure is defined on some oc-algebra of

subsets of the set held, i. e. P;[D]: A — [0,1], where A < 2P —a s-algebra.

For building a deciding function there is a random independent sample v, :{(Xi,yi)eD ‘i:l,_N} from
distribution P;[D] used.

classification task will be L(y,y’)= { where yeY, y' eY.

- N o[
An empirical risk will be sample risk estimation: R(v, f)= -3 L(y', f (x' ))
i-1

For the all practically used classification algorithms an empirical risk appears biased risk estimation, being always
lowered, as far as the algorithms minimize an empirical risk. So, estimating this bias is actual.

Let F(e.Q)=ER(c foy), F(c.Q)=ER(, o).

Here Q:{v}j— {f} is an algorithm building deciding functions, and fq, — a deciding function built on the

sample v by the algorithm Q.
An expectation is calculated over the all samples of volume N.
Introduce an extreme bias function:

SqlFo)= FolFo)-Fo. 0
where ﬁQ(ﬁo): _sup F(c,Q).

c:F(c,Q)=F
We use a supremum because a distribution ¢ is unknown and we assume the “worst” case.

Multinomial Case

In [Nedel'ko, 2003] there is reported the dependency Sq (IEO) for the multinomial case when X is discrete, i. e.
X={1,...,n}, and Q minimizes an empirical risk in each x e X .

For the further comparison let's remember a dependency SQ(ﬁO) in asymptotic case: % =M =const, N - o,
n — oo . Though this is an asymptotic case, the results are applicable to real tasks because the asymptotic bias
dependency is close to one for finite samples.

This asymptotic approximation is wholly acceptable already by n=10, herewith it has only one input
parameter M.

e M2 Mm<i

1 >1°
2Me ° M =21

In general case of F, >0 there is no simple analytical formula for SQ(IEO) and this dependence is given by plot.

First, consider “deterministic” case when F, = 0. In this case So (0)= {
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Estimates by Vapnik and Chervonenkis

Now we can calculate an accuracy of Vapnik—Chervonenkis evaluations for the considered case of discrete X, as
far as we know an exact dependency of average risk on the empirical risk for the "worst" probabilistic measure.

For S(ﬁo) in [Vapnik, Chervonenkis, 1974] there is reported an estimate S, (ﬁo)z 7, as well as an improved

estimate: Sy, (ﬁo)z 72[1+ /1+@] , Where T asymptotically tends to 1/;“?2 , M’ = M/(l—e‘M )
T

By substitution F, = 0 there is resulted Sy, (0):1,\1;—2

Let's perform a simple inference of the last formula.
Consider a difference between risk and empirical risk:

P(‘R - F?‘ > g)z P(F? - 0/R= g): (1-)N.
Since the algorithm minimizes an empirical risk, it maximizes the distance between risks:

F{sup‘R - ﬁ‘ > gJ < |(I)|(l—€)N :
fed

—exact ----VC
where @ is a set of all decision functions. This step implies %7 1s(M)
a replacement of a probability of a sum by the sum of ¢ b
probabilities that makes the main contribution to VC- U
estimates inaccuracy. Assume right term to be equal t0 1 0.5 =z
(all probabilistic levels are asymptotically equivalent) and o
take logarithms: ’
1n|(I)| +N ln(l —5) =Inl. 0,3
-M -
Since |®| = 270-") ang In(1-¢)~ —¢ obtain: R TS D T I I - N B
In2 P J NSNS N T R N N S |
Sy (0)=6=—. , | | |
0(0)=e=-73 | 1 M
. . 0 i i i f !
Factor 1-e™™ is a non-zero numbers probability from g g 2 § 9 - ~ « « 2 § 3 8 8 2§
Poisson distribution and it appears because only “non- < % % ° =
empty” values x contribute to capacity. Fig. 1. Risk bias and VC-estimation. Multinomial case, ER = 0,5.

Sy (0) 2Mein2
S (0) M’ M -0
shows how far VC-estimates are off.

It is known that VC-estimates may be improved by using entropy as a complexity measure. Then the estimate
inaccuracy will be:

S "

S0) =2(e-1)In2~2,38.
Sq(0)
But in real tasks, entropy can't be evaluated and the last improvement has no use in practice.

On figure 1 there are drawn the dependency S(M )= mNaxS(IEO )M and its estimation
Fo

A rate: 2eln2 = 3,77

~ In2
Sy M )= Sy \F = L |—.
v(M) Héix V(O)M VK
Plots demonstrate significant greatness of the last. Note that the accuracy of Vapnik-Chervonenkis estimation
falls since F, decreases.

By M <1 the “worst" distribution (that provides maximal bias) is uniform on X and the results obtained is
consistent with results for multinomial case reported in [Raudys, 2001]. By M > 1 and restricted F, the “worst”
distribution is not uniform on X.
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Nearest Neighbors Method

This method assigns to each x a class that the most of nearest sample neighbours belongs to.
The number of neighbour objects taken into account is a parameter m that affects a statistical robustness.
Assume a measure on D to be uniform. Then misclassification probability for any decision function is 0,5 and
= 1 1
empirical risk is:  F(m ): —— C[ ]
2
Here square parentheses denote an integer part of a value.

Figure 2 shows S(M") for multinomial case (solid line) and S(m) =0,5—- IE(m) for nearest neighbours classifier,
wherem =M.

Note that though there is no capacity concept defined s S(M) . A
for nearest neighbours method the number of | 1 T Dueerete ¢ Nebors
neighbours m plays a role of M . ' :

So the case m = 1 corresponds to unbounded capacity o4
(when a sample can be split via decision functions by

all the ways). If capacity is unbounded, we can say | N .

nothing about expected risk using empirical risk only. . -

But it does not mean that unbounded capacity methods T
can not be used, it means that they must use other risk  ** 1 2 - ' - ' "
estimators. ; M

The fact that a risk bias for multinomial case is close to e 1+ 2z 3 4 5 6 7 8 5 M0 0
bias for neares,t nelghboqrs CIaSSIer!‘ Is not accidental, Fig. 2. Risk biases for multinomial and nearest neighbours
because anglytlc expression for the flrst one appears to classifiers.

be some kind of averaging the bias for the second

case.

Linear Decision Functions

Let us compare risk bias values for discrete case

with bias for linear decision functions. %6 1S(M)
For simplifying, there was considered uniform o5 . - -
distribution on features for both classes. For such ¢ X

misclassification probability equals to 0.5 for every o471 e e
decision function, but empirical risk appears to be 03 \ P o

much lower. \
0,2 4o :

To find a dependence S(M) for linear deciding [ g :
functions in X =[0,1]" a statistical modelling was 01 R"*““*-Hﬁ—,
used. By the modelling there was for each M
combination of parameters a hundred of samples ° . ; 4 : B o 1;2 M

drawn from uniform distribution on D, for each
sample the best linear ClaS_Siﬁer bl{”t .by ?XhaUStive Fig. 3. Risk biases for multinomial and linear classifiers.
search. Note that the uniform distribution on D
provides maximum of empirical risk bias since we

put no restrictions on R .

A table 1 shows the result of modelling. Here d — features space X dimensionality, N — sample size,
d
M'= 1 N c - sample size divided by VC-capacity of linear functions class (C =2 > CY_, is a total number of
08> m=0
possible decision assignments to sample points by using linear decision functions), S — risk bias.
The same results are shown (by markers) on fig. 3 in comparison with S(M”) for discrete case (solid line).
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Obtained results show that bias dependence on M’ for linear functions is close to dependence for discrete
(multinomial) case.

If an algorithm does not perform exhaustive search then a risk bias appears to be lower. This fact is illustrated in
table 1 by value Sg that is a risk bias for the Fisher’s discriminator.

Decision Tree Classifier

The goal now is to evaluate a risk bias for decision functions in form of binary decision trees [Lbov, Startseva,
1999].

Tab. 1. Risk bias for linear decision functions S(M) . Trees  Discrete
d[N|M|S S| d|[N|[M]|S ‘ R

1 |3 | 116/ 04|04 |1 |10 |231] 027

1 |20 375/ 02 (021 |50 |753 013

1 |100/131| 01|01 ]2 |4 |105 047

2 |10 |153| 036|027 2 |20 | 2.33] 0.27

2 |50 |444|018] 013] 2 | 100 | 7.53| 0.13

3 |5 |102]048/ 0353 |10 | 1.25) 041 A

3 |20 |179]032( 023 |50 |328] 022 . M
3 | 100| 546 0.16 0.09] 4 |10 | 1.11| 045 o 1 2 3 4 5 6 7 8 9 10
4 |20 | 15036 0.19) 4 50 (266 0.25 Fig. 4. Risk biases for multinomial and tree classifiers.

5 |10 | 1.04| 048] 027| 5 |50 | 2.27| 0.28

Decision tree is a binary tree with terminal nodes marked by goal class (certain value y) and non-terminal nodes
marked by predicates in form: X; <a, where o is a value. Two arcs starting from each non-terminal node
correspond to true and false predicate values.

Each decision tree forms certain sequential partitioning in X.
There was the exhaustive search algorithm Tab. 2. Risk bias for tree decision functions

implemented. The search is performed over the all

- . . d{N[L[M [S |d[N|L M |S
decision trees with L terminal nodes and the best tree 15T ;VI o T 15 13 'lVI G
mln'lmlzmg ar? empirical r|s.k is founded. 1ls 12 115t loss 11 15 |3 |1 |om
While searching, the algorithm counts C —the number |1 |10 |2 | 231 |027 |1 |10 |3 | 153 | 034
of different assignments y to sample objects. 11202 {376 [019 |1 |20 [3 |233 |026
Since C essentially differs on different samples one ; go 2 igg 82‘9" ; io g igg 8;8
need to evaluate entropy H =E log, C. > 11013 1128 logo 12 120 12 |319 |02

h , N 2 |20 |3 |19 |031 |2 |20 |4 |146 |037
Then M= 3|5 |2|117 |042 |3 |20 |2 |292 | 024
- . 3 /203|177 |034 |3 |20 |5 |L112 |045

Table 2 shows statistical robustness of decisiontrees | 4 | 20 2 [ 276 |o025 |5 |10 |2 |157 | 035

by different parameters while uniform distribution on D
assumed. The same result is shown on figure 4 in comparison with multinomial case.

One can see again that risk bias is caused and determined by M’ (sample size per complexity) rather than any
other factor.

Let's compare complexities (capacities) of decision trees and linear classifier.

Table 3 shows linear classifier dimensionality d’ that provides the same entropy (average number of different
assignments y to sample objects) like decision trees with L terminal nodes in d-dimensional space.

Though decision trees seem to be simple, they have essential capacity. For example if L =d decision trees
capacity exceeds capacity of linear classifier.
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But, the most of algorithms do not perform exhaustive search in

whole class of decisions and their capacities are expected to be Tab. 3. Correspondent dimensionality for tree and
lower. linear decision functions. Non-integer
Note that if an algorithm implements good heuristic search and values of d appears because of

always founds the best decision function, then its capacity will Interpolation performed.

be nevertheless equal to the capacity of exhaustive search dINlLI a ldlINTLI o
algorithm. So, there is no use to count a number of decisions ECEERE > TE > T 1o
being really tested by an algorithm, because this number is '
) ) 2|10 2 |14 | 2|2 2|13
irrelevant to actual capacity. 312 | 211 315 | 2| 183
Hence, calculation of effective capacity requires different s 110l 2 16a 13 l2]2 1' A7
approgch. Effective algorithm capacity may be estimated by the 4 s |2 2:09 4ol 1:59
following way. o o 5 102|193 10|10 | 2 | 245
First one need to perform statistical modelling using uniform 115 |32 215 | 3|20
distribution on D. In this case misclassification probability (risk) 2> 11003 1285121200 3266
equals to 0,5 for any decision function. Expectation of empirical 305 3137613 |10l 3|32
risk is estimated by modelling, so risk bias is estimated too. 3120313071245 | 3]399
Then via comparing the bias obtained by modelling with the 4110033041215 | 4]399
bias for exhaustive search algorithm, the effective capacity of 2121 4 las | 315 | 4ala
the algorithm under investigation is easily revealed. 31101 4|58 |3 |21 41|51
. 4 |10 4 |677 | 1 |10]| 5 |4
Conclusion 2 |10 |5 |645 | 3 |15| 5 |777

Risk estimates by Vapnik and Chervonenkis are known to be
excessively pessimistic. But the approach based on complexity measure is very attractive because of universality.
The work presented shows that the reason for such pessimistic estimates is an inaccurate inference technigue,
but not the worst case orientation. So, it is possible to obtain estimates assuming the “worst” distribution and the
‘worst” sample but these estimates will be appropriate in practice.

For the multinomial case (a discrete feature) there was found how far Vapnik—Chervonenkis risk estimations are
off. For continuous features the dependence of risk bias on complexity in considered cases is close to multinomial
one that ensures a possibility to apply obtained scaling of VC-estimates to real tasks, e.g. linear decision
functions and decision trees. The results obtained for multinomial case may be propagated on continuous one by
using VC-capacity of decision function class instead of n.

Comparison of linear classifier and decision trees capacities is also performed.

There was also described a method for estimation an effective capacity of an algorithm that does not perform
exhaustive search in the class of decision functions.
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