
International Journal "Information Theories & Applications" Vol.14 / 2007

324

 HW IMPLEMENTATION OF A OPTIMIZED ALGORITHM FOR THE APPLICATION
OF ACTIVE RULES IN A TRANSITION P-SYSTEM

Victor Martinez, Luis Fernandez, Fernando Arroyo, Abraham Gutierrez

Abstract: P systems or Membrane Computing are a type of a distributed, massively parallel and non
deterministic system based on biological membranes. They are inspired in the way cells process chemical
compounds, energy and information. These systems perform a computation through transition between two
consecutive configurations. As it is well known in membrane computing, a configuration consists in a m-tuple of
multisets present at any moment in the existing m regions of the system at that moment time. Transitions
between two configurations are performed by using evolution rules which are in each region of the system in a
non-deterministic maximally parallel manner.

This work is part of an exhaustive investigation line. The final objective is to implement a HW system that evolves
as it makes a transition P-system. To achieve this objective, it has been carried out a division of this generic
system in several stages, each of them with concrete matters.

In this paper the stage is developed by obtaining the part of the system that is in charge of the application of the
active rules. To count the number of times that the active rules is applied exist different algorithms. Here, it is
presents an algorithm with improved aspects: the number of necessary iterations to reach the final values is
smaller than the case of applying step to step each rule. Hence, the whole process requires a minor number of
steps and, therefore, the end of the process will be reached in a shorter length of time.

Keywords: Membrane Computing, Evolution Rules, Circuit design, Digital systems, Transition P System.

ACM Classification Keywords: D.1.m Miscellaneous – Natural Computing

Introduction
The new proposed models of bio-molecular (with DNA, RNA, proteins, or with membranes) and quantum
computing maybe, in the future, will be probably very powerful technologies for advanced parallel super-
computation. These new unconventional models are not simple improvements of the previous ones. Moreover,
their potential advantage come from the inherent parallelism of the biological or physical processes they are
inspired.
The Membrane Computing or P Systems (created by [Paun, 1998]) are computation systems based on the
biomolecular processes of living cells. According to this, the investigations are based on the idea that the imitation
of the procedures that take place in Nature and their application to machines, can lead to discover and to develop
new computation models that will give place to a new generation of intelligent computers.
These systems perform a computation through transition between two consecutive configurations. Transitions
between two configurations are performed by using evolution rules present in each region. If the system reaches
a configuration in which there are no applicable rules at any membrane, it is said that the system reaches a
halting configuration and, hence, the computation is successful.
There are many papers about software tools implementing different P-system variants [Arroyo 2003], [Arroyo
2004b] and [Fernandez, 2005a]. However, they are very interesting in order to define hardware implementation of
these kinds of systems. Moreover, evolution of transition P- systems is very complicate to translate into hardware
devices due mainly to the membrane dissolving or membrane division capabilities of rules. Besides that, the non-
deterministic maximally parallel manner in which rules are applied inside membranes is much appropriated to be
implemented in digital hardware devices. In the case of P-systems hardware implementations only can find a few
of papers: a Hardware Circuit for Selecting Active Rules [Fernandez 2005b], connectivity arrays for membrane
processors [Arroyo 2004a], a multisets and evolution rules representation in membrane processors [Arroyo
2004b] or even a hardware membrane system description using VHDL [Petreska 2003] .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62658587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal "Information Theories & Applications" Vol.14 / 2007

325

This work is a part of a very ambitious project: to find and carry out a Hardware System able to simulate P
systems evolution. This generic system has been divided into several stages. The first stage one develops a
circuit able to determine active rules in a determined configuration for the membrane [Fernandez 2005b]. In this
document, the second stage is developed: a circuit for the application of the active rules obtained in the
first stage.
In order to proceed in an appropriate way, it is needed to define a data structure containing information about the
initial membrane state, that is, the initial multiset of objects, the set of evolution rules and the corresponding
priority relation among them. The circuit takes these data inputs and produce, as output, a set of evolution rules,
active rules, which are able to produce the needed changes into the system in order to make evolve it to into the
next configuration. Obviously, there are some needed constrains for the hardware design, and they are the
following:

a. The cardinality O = {a,b,c,d,e,f,g,h,i,j} of the alphabet is limited to 10.

b. The multiset of objects associated to the membrane i, iω . It is represented in a hardware register of 4-
bits words of length 10.

c. The finite set of evolution rules Ri associated to the membrane I (10 per membrane).
d. The priority relation ρi among the rules Ri.
e. Extra information to determine applicability of rules: existence register, for determining whether or not

there exist children membranes for the next evolution step.
Therefore, the previous Circuit for Selecting Active Rules determine which of the evolution rules present inside a

membrane are active (in binary positive logic) accordingly to the multiset of objects present in the membrane.

Fig. 1: General structure of the circuit for Application of Active Rules.

The objective of the work that now shows up will consist in obtaining a HW circuit that indicates the rules to be
applied to a Transition P System. The inputs are the following registers: multiset of objects associated to the
membrane i; Evolution Rules antecedents and Initial Active Rules. The output will be a register that contains the
number of times that each rule (See Fig.1) should be applied. These values associated to each rule will serve to
carry out, in a later process, the communication of elements among regions.

International Journal "Information Theories & Applications" Vol.14 / 2007

326

Application of the Active Rules
The application of the active evolution rules is a repetitive process that can be carried out in different ways. The
paper [Fernandez, 2006] allows us to obtain circuits or systems optimized as for level of complexity and
resources utilization.
 A first option to apply the rules could consist on the step-by-step application of the group of active rules. In each
iteration step, one of the active rules is randomly chosen. If the elected rule is applicable, it is applied. Every time
a rule is applied, a particular accountant is increased. These accountants, associated to each rule, will represent,
at the end of the process, the number of times that rule has been applied. If the elected rule is not applicable, this
rule is eliminated of the active rules group. The process concludes when there is not any more applicable rule,
that is to say, the group is empty.
To improve the previous algorithm, we can apply the rules certain number of times bigger than the unit in a single
evolution step. The maximum number of times a rule can be applied into a multiset iω of state of the cell in an
evolution step will be called " MAX value." This value is obtained considering that you apply only this rule, that is
to say, without keeping in mind the other rules. In other words, the MAX value represents the biggest number of
times that a rule can be applied supposing that only this rule is applied
The following example illustrates the concept of MAX value: If we have a multiset of objects ωi=a10b5c7 and the
following active rules R1=a1, R2=b2c and R3=bc2;el value MAX of R1 is 10, the value MAX of R2 is 2 and the value
MAX of R3 is 3.
The fact of applying a rule a value bigger than one implies that it consumes, in an evolution step, a bigger number
of elements from the multiset ω . Hence, the whole process requires a minor number of steps and, therefore, the
end of the process will be reached in a shorter length of time. The following pseudo-code sequence illustrates the
necessary process to obtain the number of times that each active rule should be applied in a region:

Explanation of the algorithm:
• (1)The process uses the group of active

available rules initially R .
• (4)At each iteration, one of the rules ir of

this group will be applied. Such rule will be
randomly obtained.

• (5)On the selected rule, the value of
applicability MAX is obtained and it is
applied with an aleatory multiplicity N
between 1 and the value MAX(6)

• (7)The application of selected rule ir will
consist in subtracting from the starting
multiset ω , the values of the antecedent
elements multiplied by the value N of rule
application. In turn, we will increase N times
the particular accountant that counts the

number of times that rule has been applied (8).
• (9)On the new obtained multiset ω it has been proved again the applicability of the available rules.
• (10)Every time the group of applicable rules is upgraded, the end of the process has been controlled.

The stop condition is obtained when the number of applicable rules is zero. While R is bigger or the
same as the unit, it executes, once more, a new iteration of the process.

(1) iveRulesInitialActR ←
(2) BEGIN
(3) DO

(4))(RAleatoryri ←

(5)),(ωirityApplicabilMAX ←

(6)),1(MAXAleatoryN ←

(7) ()()()irAntecedentN ∗−← ωω

(8)),(irNcounts

(9) sActiveRuleR ←

(10) WHILE 1|| ≥R

(11) END

International Journal "Information Theories & Applications" Vol.14 / 2007

327

Basic Functional Units (F.U.)

This section defines the previous step to design the complete circuit of active rules application to the evolution of
a transition P system. It will consist on obtaining certain basic operative functional units. These functional units
will solve each one of the simple tasks needed to obtain the complete application. The design of the final circuit
will be based on the assembling of these modules together with the corresponding combinational and sequential
logic which allows their integrated operation.
Applicability MAX F.U.:
In this case, we will obtain the design of the circuit that obtains the MAX applicability of a rule. This value
supposes the largest number of times that a rule can be applied independently of the other ones. To do so, we
will only keep in mind the multiplicities of their elements and the multiplicities of the elements of the multiset ω .
Therefore, the inputs into this circuit will be two registers: one with the content of the values of the multiset ω of
state of the membrane and another with the antecedent of the rule we want to get their value MAX. The output
will be the value MAX of this rule. To obtain this value we should carry out the division among each couple of
elements similar of the multiset iω with ir . From each division, we will participated the maximum that will
represent the largest number of times that mentioned element could be consumed in an evolution step without
bearing in mind the other elements. We will take the smallest value out of all the partial results of these divisions.

Fig. 2: Part of applicability MAX of a rule circuit..

When ri is equal to zero, the result is forced to 1´s all. In the following comparison process, the minor value is
obtained. The all 1´s result is not chosen and, therefore, does not have any incidence in the final result. The
figure 2 shows the part to are carried obtain the dividing minimum between the first two elements of the circuit. To
obtain the total circuit it will be necessary to add other dividers until the total elements are covered and the
opportune comparisons to obtain the smallest value carry out.
1 Aleatory Active Rule F.U.
This circuit will randomly select a rule from the ActiveRules register to be applied. The ActiveRules register
contains binary values indicating, with positive logic, the active rules from existing rules of the system. The output

International Journal "Information Theories & Applications" Vol.14 / 2007

328

of this circuit will be a register in which only one rule will be randomly selected. One input Enable “E” will activate
the starting of the clock that attacks the random generator.
This generator will select decimal numbers aleatory in a serial way until getting some one that corresponds with
the number of the active rule. When this value is obtained, the aleatory number generation should stop.
The main part of the circuit will be a 1 bit Decimal Multiplexer. The selection inputs of the Multiplexer correspond
with the outputs from the Decimal aleatory generator. This generator will stop when some of the outputs of the
Multiplexer are set to 1. The position that indicates this output corresponds with the randomly selected active rule.
When only one position of the ActiveRules register is present, it means that only one active rule exists. In this
case it is not necessary to carry out the process of aleatory selection. To avoid a loss of efficiency that could
happen in this case, the circuit has been endowed with a special operation condition. The solution consists in
detecting this condition previously and to provide the Multiplexer with a specific input “ALL” that allows to get the
content of all the multiplex inputs (See Fig.3).

Fig. 3: Internal structure of the circuit for 1 Aleatory Active Rule.

Application ri Aleatory 1-MAX F.U.
This circuit obtains an output register associated to the application of the rule ri. This register contains the
multiplicity of those elements that they should be subtracted from the multiset associated to the membrane
region.
This result is reached in the case the rule ri is applied between a value 1 and its MAX value, elected in an aleatory
way. To count the number of times each rule is being applied, we should also extract this aleatory value of
application N.
The inputs are, therefore, the register that contains the multiset of objects associated to the region ω and the
antecedent ri. Also, we will endow the circuit with an input Enable “E” that allows to select witch rules will act in
each evolution step. The output will be stored in another registerω . Later on, these values will be subtracted
from the state multiset in order to obtain the resulting new values.
Internally, the circuit is formed by an “F.U. Applicability MAX of a rule” (to obtain the value MAX) and an “F.U.
Product multiset by N”. Also, a generating circuit of aleatory numbers will select one random value between 1 and
MAX. This number will be the value for which we will multiply by the antecedent of the rule. Finally, a series of
AND gates allows to enable or to disable the output in function of the sign Enable (E) :

International Journal "Information Theories & Applications" Vol.14 / 2007

329

General Structure of the circuit
The general circuit is the result of the assembling of the different Functional Units, together with the sequential
logic of control. The sequential logic determines the evolution of the internal steps the circuit should travel though
until reaching the stop condition. This condition will be given when the register R of active rules is empty.
The sequence of events that the sequential controller should activate is based on the use of a 2 bits counter that
allows reaching 4 states. Each state determines an evolution event. The counting continues in a recurrent way
until the stop condition is reached, and then the accountant will be stopped. Fig. 4 shows the circuit to determine
the times the active rules should be applied.

Fig. 4: Internal structure of the circuit to determine the times that the active rules should be applied.

The general structure of the circuit is based on the following sequence of states:

a. Initialization (Reset) phase: The sign R = 1 load the register ω with the values of the initial multiset of
objects. On the other hand, the Initial Active Rules Register has been obtained according to the paper
[Fernandez, 2005b].

International Journal "Information Theories & Applications" Vol.14 / 2007

330

b. State 0: It proceeds to load the register ω and to calculate active rules. The Active Rules Register is
obtained by checking in each evolution step the condition of applicability for the rules active initials and
for the new multisets of objects. Applicable rules are those rules accomplishing that their antecedent is
included in the multiset of objects found inside the membrane.

c. State 1: The Active Rules Register is loaded and begins the process to obtain 1 Aleatory Active Rule.
d. State 2: The 1 Aleatory Active Rule register is loaded. The application of the selected rule begins in

order to obtain the new multiset of objects ω and the calculation of the number of times that such rule
will be applied.

e. State 3: The Multiset of Objects Register ω and the Application Rules Register are loaded. The
Application Rules Register will store the number of times each rule has been applied to. This register will
be the output result we want to obtain.

f. Turn to the state 0: to load the register ω and starting a new calculation cycle with the new values.

Conclusions
This paper presents a direct way to design a circuit able to obtain the number of active rules application inside the
membrane in a non deterministic and massively parallel application. The final objective is implementing a
hardware circuit accomplishing the outlined initial requirement. That is, given an initial multiset of objectsω , a
finite set of evolution rules and an initial Active Rules, the circuit provides the number set of application of rules to
a membrane.
The more interesting aspects of this design are:

• The used algorithm allows a process with a minor number of steps and, therefore, we will reach the end
of the computation in a shorter length of time.

• The hardware implementation is founded on basic components like registers, logical gates, multiplexer
and sequential elements.

• The development of the digital system can be carried out using hardware-software architectures like
Handel C or VHDL.

• The physical implementation can be accomplished on hardware programmable devices like FPGA’s.
The next step in the process for the developing of a membrane processor is to design a circuit able to
communicate elements from one region to another.

Bibliography
 [Arroyo 2003] F. Arroyo, C. Luengo, A.V. Baranda, L.F. de Mingo, A software simulation of transition P systems in Haskell,

Pre-Proceedings of Second Workshop on Membrane Computing, Curtea de Arges, Romania, August 2002 and Proc. of
WMC02, Curtea de Arges, Romania, (Gheorghe Paun, Grzegorz Rozenberg, Arto Saloma, Claudio Zandron Eds.)
Lecture Notes in Computer Science 2597, Springer-Verlag, 2003, 19-32.

[Arroyo 2004a] F. Arroyo, C. Luengo, J. Castellanos, L.F. de Mingo: A binary data structure for membrane processors:
Connectivity arrays, Artiom Alhazov, Carlos Marín-Vide and Gheorghe Paun (eds.): Preproceedings of the Workshop on
Membrane Computing, Tarragona, July 17-22 2003, 41-52 and in (Carlos Marín-Vide, Giancarlo Mauri, Gheorghe Paun,
Grzegrorz Rozenberg, Arto Saloma Eds.) Lecture Notes in Computer Science, 2933, Springer Verlag, 2004, 19-30.

[Arroyo 2004b] F.Arroyo, C.Luengo, L.Fernandez, L.F.Mingo, J.Castellanos. Simulating membrane systems in digital
computers. International Journal Information Theories and Applications, 11, 1 (2004), 29-34.

[Arroyo 2004c] F. Arroyo, C. Luengo, J. Castellanos, L.F. de Mingo, Representing Multisets and Evolution Rules in
Membrane Processors, Pre-proceedings of the Fifth Workshop on Membrane Computing (WMC5), Milano, Italy, June
2004, 126-137.

[Fernandez, 2005a] L.Fernandez, F.Arroyo, J.Castellanos, V.J.Martinez, Software Tools / P Systems Simulators
Interoperability, Pre-proceedings of the 6th Workshop on Membrane Computing, Vienna - Austria, July 2005.

[Fernandez, 2005b] L.Fernandez, V.J.Martínez, F.Arroyo, L.F.Mingo, A Hardware Circuit for Selecting Active Rules in
Transition P Systems, Workshop on Theory and Applications of P Systems. Timisoara (Rumanía), september, 2005.

International Journal "Information Theories & Applications" Vol.14 / 2007

331

[Fernandez, 2006] L.Fernandez, F.Arroyo, J.Castellanos, J.A.Tejedor, I.García, New Algorithms for Application of Evolution
Rules based on Applicability Benchmarks, BIOCOMP06 International Conference on Bioinformatics and
Computational Biology, Las Vegas (USA), july, 2006 (submitted).

 [Paun 1998] Gh. Paun, Computing with membranes, Journal of Computer and System Sciences, 61 (2000), and Turku
Center for Computer Science-TUCS Report No 208, 1998.

[Petreska 2003] B.Petreska, C.Teuscher, A hardware membrane system. Preproceedings of the Workshop on Membrane
Computing (A.Alhazov, C.Martín-Vide and Gh.Paun, eds) Tarragona, July 17-22 2003, 343-355.

Authors' Information
Victor J. Martinez Hernando – Dpto. Arquitectura y Tecnología de Computadores de la Escuela Universitaria de
Informatica de la Universidad Politécnica de Madrid, Ctra. Valencia, km. 7, 28031 Madrid (Spain);
e-mail: victormh@eui.upm.es
Luis Fernandez Munoz – Dpto. Lenguajes, Proyectos y Sistemas Informaticos de la Escuela Universitaria de
Informatica de la Universidad Politécnica de Madrid; Ctra. Valencia, km. 7, 28031 Madrid (Spain);
e-mail: setillo@eui.upm.es
Fernando Arroyo Montoro – Dpto. Lenguajes, Proyectos y Sistemas Informaticos de la Escuela Universitaria de
Informatica de la Universidad Politécnica de Madrid, Ctra. Valencia, km. 7, 28031 Madrid (Spain);
e-mail: farroyo@eui.upm.es
Abraham Gutierrez – Dpto. Informatica Aplicada de la Escuela Universitaria de Informatica de la Universidad
Politécnica de Madrid, Ctra. Valencia, km. 7, 28031 Madrid (Spain); e-mail: abraham@eui.upm.es

CONTRADICTION VERSUS SELFCONTRADICTION IN FUZZY LOGIC*

Carmen Torres, Susana Cubillo, Elena Castineira

Abstract: Trillas et al. introduced in [7] and [8] the concepts of both self-contradictory fuzzy set and contradiction
between two fuzzy sets. Later, in [1] and [2] the necessity of determine not only the contradiction, but also the
degree in that this property occurs, was considered. This paper takes up again these subjects, and firstly we
study if there exists some connection between the two first notions. After that, taking into account that self-
contradiction of a fuzzy set could be understood as the contradiction with itself, and starting from the degrees of
contradiction between two fuzzy sets proposed in [5], we obtain degrees of self-contradiction. Finally,
preservation of some intuitive properties both in the use of connectives and in the obtaining of new knowledge
throughout compositional rule of inference, are tested.

Keywords: fuzzy sets, t-norm, t-conorm, strong fuzzy negations, contradiction, measures of contradiction, fuzzy
relation, compositional rule of inference.

ACM Classification Keywords: F.4.1 Mathematical Logic and Formal Languages: Mathematical Logic (Model
theory, Set theory); I.2.3 Artificial Intelligence: Deduction and Theorem Proving (Uncertainty, “fuzzy” and
probabilistic reasoning); I.2.4 Artificial Intelligence: Knowledge Representation Formalisms and Methods
(Predicate logic, Representation languages).

* This work is partially supported by CICYT (Spain) under project TIN 2005-08943-C02-001 and by UPM-CAM
(Spain) under project R05/11240.

