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NEURAL NETWORK BASED OPTIMAL CONTROL WITH CONSTRAINTS 

Daniela Toshkova, Georgi Toshkov, Todorka Kovacheva 

Abstract: In the present paper the problems of the optimal control of systems when constraints are imposed on 
the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The 
obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is 
given. 
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Introduction 
The optimal control problem with constraints is usually solved by applying Pontryagin’s maximum principle. As it 
is known the optimal control solution can be obtained computationally. Even in the cases when it is possible an 
analytical expression for optimal control function to be found, the form of this function is quite complex. Because 
of that reason the possibilities of using neural networks for solving the optimal control problem are studied in the 
present paper. 
The ability of neural networks to approximate nonlinear function is central to their use in control. Therefore it can 
be effectively utilized to represent the regulator nonlinearity. Other advantages are their robustness, parallel 
architecture.  
Lately, different approaches are proposed in the literature treating the problem of constrained optimal control for 
using neural networks. In [Ahmed 1998] a multilayered feedforward neural network is employed as a controller. 
The training of the neural network is realized on the basis of the so called concept of Block Partial Derivatives. In 
[Lewis 2002] a closed form solution of the optimal control problem with constraints is obtained solving the 
associate Hamilton-Jacobi-Bellman (HJB) equation. The solution of the value function of HJB equation is 
approximated by using neural networks. 
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In the present paper the problem of finding the optimal control with constraints is considered. A numerical 
example is given.   

Problem Statement 

The control system, described by following differential equations is considered:  

∑
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dt

dx
 (i = 1, 2, …, n) (1) 

where xj are phase coordinates of the system, function u describes the control action and aij are constant 
coefficients. The admissible control u belonging to the set U of piecewise linear functions is constrained by the 
condition 

1)t(u ≤  (2) 
Following problem for finding the optimal control is formulated. To find such a control function u(x1,…, xn) for the 
system (1) among all the admissible controls that the corresponding trajectory (x1(t),…, x2(t)) of the system (1) 
starting from any initial state (x1(0),…, x2(0)) to tend to zero at t → ∞ and the performance index 
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to be converging and to take its smallest possible value. The coefficient qi and r are positive weight constants.  
 

Optimality Conditions 
The notation is introduced [Pontryagin 1983]: 
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One more variable θ0 is added to the state variables (x1,…, xn) of the system (1) [Chjan 1961]. It is a solution of 
the following equation 
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and initial condition x0(0) = 0. Then the quantity J according to (9) becomes equal to the boundary of x(t) when 
t → ∞. The system of differential equation, which are adjoint to the system (7) is composed with new variables 
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After that the Hamilton function is composed:  
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In the right-hand side of Eq. (9) the quantity u is contained in the expression  
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Because of that the condition for maximum of H coincide with the condition 
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Having in mind condition (7) the quantity Ψ0 is a constant. As its value can be any negative number it is set to 
Ψ0 = -1. 
After placing this value in Eq. (11) the maximum of the expression in the square brackets will be reached when 
the first negative addend becomes zero if it is possible or takes its minimal absolute value. The expression 

2n

1i
ii )t(b

r2
1)t(u ⎥

⎦

⎤
⎢
⎣

⎡
Ψ− ∑

=
 (12) 

will take its minimal absolute value if on condition |u| ≤ 1 a value of the following kind is chosen for u 

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−≤Ψ−

≥Ψ

≤ΨΨ

=

∑

∑

∑∑

=

=

==

1b
r2

1at1

1b
r2

1at1

1b
r2

1atb
r2

1

)t(u

n

1i
ii

n

1i
ii

n

1i
ii

n

1i
ii

 (13) 

The values of ψс(t) can be determined if the adjoint equations (7), (8) are solved. This leads to the requirement 
the initial values of ψ0(0) to be found beforehand.  
First u(t) is assumed not to reach its boundary values. Then after placing the upper expression from (13) instead 
of u(t) in Eqs. (1), (7) и (8) one obtains 
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This system of equations has to be solved with the initial conditions x1(0),…, xn(0) as well as with the final 
(boundary) conditions  

( ) ( ) ( ) 0txlim...txlimtxlim nt2t1t
====

∞→∞→∞→  (15) 

It is necessary the appropriate initial conditions ψ1(0), … , ψn(0) to be selected in such a way that the initial and 
the final conditions for x1(t),…, xn(t) to be satisfied.  
The relationship between xi(0) and ψi(0) has the following form [4]: 
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These relationships have to be kept in any time, for which one can always assume to be the initial one. Therefore 
the optimal control u within the boundaries is determined and it has the following form: 
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hand boundary conditions are satisfied i.e. the solution of the system (1), which became nonlinear in connection 
to the nonlinear relationship between u and x1,…, xn, tends to zero. In other words the solution of the system has 
to be asymptotically stable. Thus the optimal control is defined by the expression 
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Structure and Training of the Neural Network 

For the control function realization a feed forward neural network with one hidden layer is used. Thus the 
necessity of solving a large number of equations for determining the coefficients ki drops off.  
The neural network consists of three layers – an input, output and hidden one. The input and hidden layers have 
five neurons and the output layer – one. The activation function of the output neuron is piecewise linear. The 
neural network output is  
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where ν = wTz. The neural network input is denoted z and w is the neural network weight. The neural network 
output represents the control u, x – the state vector and weights are the coefficient k. 

The neural network is trained according to the back-propagation algorithm. Let the training sample N
1nd(n)} {z(n), =  

be given where z(n) are the system states and d(n) is the corresponding control, which are known preliminarily. 
The neural network is trained according to the back-propagation algorithm [Haykin 1999]. 

Simulation Results 

In order to verify the suggested approach for solving the optimal control problem following system is considered: 
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and the control is constrained by 
|u| ≤ 1 

The performance index to be minimized is of the form: 
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The problem is solved by using Pontryagins principle and neural networks. The results, which are obtained by 
both approaches, are compared. In Fig. 1 the optimal control, obtained by using neural networks is shown. Fig. 2 
depicts the corresponding states trajectory. In Fig. 3 and Fig. 4 the optimal control, obtained by applying the 
maximum principle and the corresponding trajectory are given respectively. By 1 and 2 are denoted x1 and x2 
respectively.   

0 2 4 6 8 10 12 14 16

1.5

1

0.5

0

-0.5

-1

-1.5

time,s

co
nt

ro
l

 
Fig. 1. Optimal control, obtained by using  

the suggested neural network based approach 
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Fig. 2. Optimal control, obtained by applying  

the maximum principle 
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Fig.3 Optimal trajectory (neural network based approach) 
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Fig.4 Optimal trajectory (Pontryagin’s maximum principle) 
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Conclusion 
In the present paper an approach for optimal constrained control based on using of neural networks is suggested.  
On the basis of the simulation experiments one can say that the proposed approach for optimal control is 
accurate enough for the engineering practice. The suggested approach can be applied for optimal control in real 
time, where the control is constrained. 
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LINEAR CLASSIFIERS BASED ON BINARY DISTRIBUTED REPRESENTATIONS 

Dmitri Rachkovskij 

Abstract: Binary distributed representations of vector data (numerical, textual, visual) are investigated in 
classification tasks. A comparative analysis of results for various methods and tasks using artificial and real-world 
data is given. 
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Introduction 
Classification tasks consist in assigning input data samples to one or more classes from a predefined set [1]. 
Classification in the inductive approach is realized on the basis of a training set containing labeled data samples. 
Usually, input data samples are represented as numeric vectors. Vector elements are real numbers (e.g., some 
measurements of object characteristics or their function) or binary values (indicators of some features in the input 
data). 
This vector information often isn’t explicitly relevant to the classification, therefore some kind of transformation is 
necessary. We have developed methods for transformation of input information of various kinds (such as 
numerical [2], textual [3], visual [4]) to binary distributed representations. These representations can then be 


