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REALIZATION OF AN OPTIMAL SCHEDULE FOR THE TWO-MACHINE 
FLOW-SHOP WITH INTERVAL JOB PROCESSING TIMES 

Natalja Leshchenko, Yuri Sotskov 

Abstract: Non-preemptive two-machine flow-shop scheduling problem with uncertain processing times of n jobs 
is studied. In an uncertain version of a scheduling problem, there may not exist a unique schedule that remains 
optimal for all possible realizations of the job processing times. We find necessary and sufficient conditions 
(Theorem 1) when there exists a dominant permutation that is optimal for all possible realizations of the job 
processing times. Our computational studies show the percentage of the problems solvable under these 
conditions for the cases of randomly generated instances with 100≤n . We also show how to use additional 
information about the processing times of the completed jobs during optimal realization of a schedule (Theorems 
2 – 4). Computational studies for randomly generated instances with 50≤n  show the percentage of the two-
machine flow-shop scheduling problems solvable under the sufficient conditions given in Theorems 2 – 4. 
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Introduction 
In scheduling theory, it is usually assumed that the job processing times are known exactly before scheduling. 
However, the real-world scheduling problems usually are not deterministic: Machines may break down, activities 
may take longer time to be executed than it is expected before scheduling, jobs may be added or canceled, etc. 
In operations research literature, there are different approaches concerning management of uncertainty in 
scheduling (see surveys [Aytug et al., 2005; Davenport, Beck, 2000; Gupta, Stafford, 2006]).  
The stochastic method [Elmaghraby, Thoney, 2000; Pinedo, 1995] for dealing with uncertainty is useful when the 
process has enough prior information to characterize the probability distributions of the random processing times 
and there are a lot of realizations of a similar process. In the particular case of the stochastic scheduling problem, 
random processing times may be controllable, and the objective is to choose the optimal processing times (which 
are under control of a decision-maker) and the optimal schedule with the chosen job processing times. For such a 
problem, the objective function depends on both the job processing times and the job completion times (see, e.g., 
[Jansen, Mastrolilli, Solis-Oba, 2005]). The current trends in the field of scheduling under the fuzziness notion 
have been presented in [Slowinski, Hapke, 1999]. In the field of operations research for the problems under 
uncertainty auxiliary criteria are often used. The most popular auxiliary criteria are criteria introduced by Wald, 
Hurwicz, and Savage (see [Shafransky, 2005] for a brief survey). 
In spite of several developments, flow-shop scheduling problem with uncertain job processing times remains 
unsolved (see [Gupta, Stafford, 2006]). In the most of these developments, Johnson’s rule and analysis methods 
play a significant role. In this paper, we consider a two-machine flow-shop scheduling problem with interval job 
processing times. A scheduling problem with interval job processing times is rather general, since most events 
that are uncertain before scheduling may be considered as factors that vary the job processing times. The 
processing time may depend on the distance between machines, the type of transport used, traffic conditions, 
intervals of availability of machines, possible machine breakdowns, emergence of new unexpected jobs with high 
priority, early or late arrival of raw materials, etc. In [Gupta, Stafford, 2006], there were discussed 21 restrictions 
involved in the classical flow-shop problem (denoted as max|| CF ) with the fixed job processing times, where 
criterion maxC  denotes minimization of a schedule length. Nine of these restrictions addressed the criterion and 
type of the processing system, but all the remaining restrictions may be overcome by using suitable intervals for 
possible variations of the job processing times. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62658547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal "Information Theories & Applications" Vol.14 / 2007 
 

 

183

Problem Setting 

We consider the non-preemptive flow-shop scheduling problem with two machines and random bounded job 
processing times (only lower and upper bounds of the job processing times are assumed to be given before 
scheduling). This problem is denoted as max||2 CtttF U

jmjm
L
jm ≤≤ .  

Two machines } ,{ 21 MMM =  have to process set of n jobs } ..., ,2 ,1{ nJ =  with the same machine route 
),( 21 M M . All the n jobs are available to be processed from time τ = 0. In contrast to deterministic scheduling 

problem, it is assumed that processing time jmt  of job Jj∈  on machine MM m ∈  is not fixed before 

scheduling. In a realization of the process, jmt  may be equal to any real value between lower bound 0≥L
jmt  

and upper bound L
jm

U
jm tt ≥  being given before scheduling. The probability distribution of the random job 

processing time is unknown.  
Thus, we address the stochastic flow-shop scheduling problem for the case when it is hard to obtain exact 
probability distributions for random bounded job processing times, and when assuming a specific probability 
distribution is not realistic. It has been observed that, although the exact probability distribution of the job 
processing times may be unknown in advance, upper and lower bounds on the job processing times are easy to 
obtain in many practical cases. In such a case there may not exist a unique schedule that remains optimal for all 
possible realizations of the job processing times and this question is considered in detail in the next section.  

If equality L
jmt = U

jmt  holds for each job Jj∈  and each machine ,MM m ∈  then problem 

max||2 CtttF U
jmjm

L
jm ≤≤  turns into a deterministic flow-shop problem (denoted as max||2 CF ) that is 

polynomially solvable due to Johnson’s algorithm [Johnson, 1954]. Permutation that is constructed by Johnson’s 
algorithm is called a Johnson's permutation. At least one optimal permutation for problem max||2 CF  is a 
Johnson’s permutation. (It should be noted however, that for the problem max||2 CF , an optimal schedule may 
also be defined by permutation that is not a Johnson’s permutation.)  

In contrast to deterministic problem max||2 CF  we call problem max||2 CtttF U
jmjm

L
jm ≤≤  as an uncertain 

scheduling problem. 

Existence of a Dominant Johnson’s Permutation for the Uncertain Flow-Shop Problem 

Let T denote a set of feasible vectors ),...,,,( 212,11,1 nn t t  t tt =  of the job processing times: 

{ }MmJjttttT U
jmjm

L
jm ∈∈≤≤=  , , |  . 

The set S of all feasible permutations (schedules) has cardinality !|| nS = . Permutation Si ∈π  dominates each 
other permutation Sk ∈π  with ik ≠  if inequality ),(),( maxmax tCtC ki ππ ≤  holds for each permutation 

Sk ∈π , where ),(max tC iπ  denotes objective value maxC  (length of a schedule) to the deterministic problem 
max||2 CF  with the fixed vector Tt∈  of the job processing times. 

We call permutation Si ∈π  a dominant Johnson’s permutation to the uncertain problem 

max||2 CtttF U
jmjm

L
jm ≤≤  if for any feasible vector Tt∈  of the job processing times permutation iπ  is a 

Johnson's permutation (so permutation iπ is optimal) for the deterministic problem max||2 CF  with this vector 
Tt∈  of the job processing times.  

We consider the case when inequality L
jmt < U

jmt  holds for each job Jj∈  and each machine MM m ∈ . 
For this case the following theorem has been proven in [Leshchenko, Sotskov, 2005]. 
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Theorem 1 Let L
jmt < U

jmt , Jj∈ , .MM m ∈  Then there exists a dominant Johnson’s permutation Si ∈π  to 

the uncertain problem max||2 CtttF U
jmjm

L
jm ≤≤  if and only if: 

a) For any pair of jobs i and j with L
k

U
k tt 21 ≤ , k = i, j (with L

k
U
k tt 12 ≤ , k = i, j, respectively) either L

j
U
i tt 11 ≤  or 

L
i

U
j tt 11 ≤  (either L

j
U
i tt 22 ≤  or L

i
U
j tt 22 ≤ ); 

b) There exists at most one job ∗j  such that U
j

L
j

U
j

L
j tttt 1221 , << , and the following inequalities hold: 

{ }L
i

U
i

U
i

L
j tttt 2111  |max* ≤≥ , { }L

i
U
i

U
i

L
j tttt 1222 |max* ≤≥ . 

Computational Results for Necessary and Sufficient Conditions of Theorem 1 

In this section, we consider randomly generated uncertain flow-shop problems max||2 CtttF U
jmjm

L
jm ≤≤  and 

answer (by experiments on PC) the question of how many uncertain instances have a Johnson’s permutation that 
is optimal for all corresponding deterministic problems max||2 CF  with feasible vectors Tt∈  of the job 
processing times. Namely, for each randomly generated instance max||2 CtttF U

jmjm
L
jm ≤≤  under 

consideration we tested whether condition of Theorem 1 hold. 
The computational algorithm was coded in C++. For the experiments, we used an AMD 3000 MHz processor with 
1024 MB main memory. For each job, the lower bound of job processing time was randomly generated in the 
range [1,1000] and the upper bound of job processing time was computed as follows: 

%)100/%1( Ltt L
jm

U
jm += .  

In each series we generated and tested 1000 instances (for each combination of n and L under consideration). 
Random instances have been generated as follows. We tested two-machine flow-shop scheduling problems with 
n ∈ {5, 10, 15, …, 100} jobs, integer processing times uniformly distributed in the range [1,1000], and L ∈ {1, 2, 
…, 10}.  

Table 1. Percentage of instances solvable due to Theorem 1 
L\n 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 
1 94.5 85.1 70 53.5 36.9 24.9 14.7 8.2 4.8 1.9 1.3 0.6 0.3 0 0 0 0 0 0 0 
2 91.2 69.3 45.6 24.2 11.8 4.2 1.1 0.6 0.1 0 0 0 0 0 0 0 0 0 0 0 
3 87.7 58.4 28.3 10.3 3.8 1.3 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 82.4 47.4 18.8 5.5 0.8 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 75.5 37.4 11.3 2.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 72.5 32.4 7.8 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 66.9 25 5.4 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 65.8 19.9 2.1 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 63.4 18 2.4 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 59.2 14.4 2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 1 presents the percentage of instances in the series for which conditions of Theorem 1 hold. From our 
experiment, it follows that increasing simultaneously both numbers n and L decreases the number of instances 
solvable due to Theorem 1. 

Optimal Realization of a Schedule 
In Table 1, there are many cases for which percentage of instances solvable due to Theorem 1 is equal to 0, i.e., 
unique dominant permutation does not exist in each of such cases. For such instances, we propose to use 
modified Johnson’s algorithm developed in [Leshchenko, Sotskov, 2005] to construct partial strong order of jobs J 
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(we considered only the cases when strong inequality L
jmt < U

jmt  holds for each job Jj∈  and each machine 
MM m ∈ ).   

Theorem 2 Let inequality L
jmt < U

jmt  hold for each job Jj∈  and each machine .MM m ∈  The order wj →  of 
jobs Jj∈  and Jw∈  is optimal for processing jobs of set J if and only if at least one of the following three 
conditions holds: 

L
w

U
w tt 12 ≤  and  L

j
U
j tt 21 ≤ ; 

L
w

U
j tt 11 ≤  and  L

j
U
j tt 21 ≤ ; 

L
w

U
w tt 12 ≤  and  L

j
U
w tt 22 ≤ . 

 
Let us consider instances with graph of the above partial strong order when no more than two jobs are not in this 
order at any time moment (see Fig. 1 for example). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A graph reduction of the partial strong order constructed due to modified Johnson’s algorithm 
 
To answer the question of how many instances of the uncertain two-machine flow-shop scheduling problem have 
such form of the partial strong order (constructed due to Theorem 2), we made experiments on PC analogous to 
those presented in the previous section.  
We call pair of jobs conflict pair of jobs if they are ready for processing but their optimal order is not fixed in the 
above partial strong order (see pair of jobs 3 and 4, and pair of jobs 6 and 7 in Fig. 1). Table 2 presents the 
percentage of instances in the series where no more than one conflict pair of jobs exists at any time. As we see 
from Table 2, increasing both numbers n and L decreases the number of instances with no more than one conflict 
pair of jobs existing at any time.  
For each series we generated and tested 100 instances (for each combination of n and L under consideration). 
Random instances have been generated as follows. We tested problems with n ∈ {5, 10, 15, …, 50} jobs, integer 
job processing times uniformly distributed in the range [10,1000], and L ∈ {1, 2, 3, …, 15}. For each job, the lower 
bound of the job processing times was randomly generated in the range [10,1000] and the upper bound of the job 
processing times was computed as follows: %)100/%1( Ltt L

jm
U
jm += . We restricted the experiments by 

50≤n  due to the results presented in Table 2. 
 
Table 2. Percentage of instances for which no more than one conflict pair of jobs exists at any time (the lower 
bounds of the processing times are uniformly distributed in the range [10, 1000] with %)100/%1( Ltt L

jm
U
jm += ) 

1 2 5 

3 

4 

6 

7 

8 9 10 
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n\ L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
5 5 8 8 16 18 25 26 20 25 29 37 40 38 36 46 
10 15 29 28 37 51 50 54 52 52 63 60 45 55 53 42 
15 32 44 48 59 63 55 48 40 45 37 38 33 33 19 23 
20 41 65 47 48 45 47 34 36 22 17 13 6 10 5 4 
25 52 63 60 42 21 18 14 8 9 8 6 5 2 1 1 
30 67 53 50 20 20 12 8 3 3 0 0 0 0 0 0 
35 68 51 33 24 10 2 1 0 0 0 0 0 0 0 0 
40 69 34 22 5 4 0 0 0 0 0 0 0 0 0 0 
45 57 35 18 9 1 0  0 0 0 0 0 0 0 0 0 
50 50 21 10 0 0 0 0 0 0 0 0 0 0 0 0 
 
For a conflict pair of jobs, the following sufficient conditions for constructing an optimal order for processing two 
jobs have been proven. If in the above partial strong order of jobs (with no more than one conflict pair of jobs at 
any time) two first jobs make conflict pair, then one can use the following sufficient conditions for optimal ordering 
of the conflict jobs. 
Theorem 3 Let jobs 1 and 2 make first conflict pair of jobs and let job 3 must be processed optimally after them. 
Then the order 21→  of jobs J∈1  and J∈2  is optimal for processing jobs from set J if at least one of the 
following three conditions holds: 

};max{};max{ 2,21,11,22,11,22,12,21,1
LLLLUUUU tttttttt ++≤++ ; 

LLUU tttt 1,31,22,12,2 };0max{ ≤−+ ; 
LLLUUUU ttttttt 1,31,21,11,22,12,21,1 };max{ ++≤++ . 

 
Let processing set of jobs J start at time 0τ = 0, and at time 01 ττ >  machine M1 completed all the jobs before the 
next conflict pair of jobs. Without lose of generality, we assume that jobs (1, 2, …, j –1) are completed on 
machine M1 in this order, jobs j and j +1 make next conflict pair of jobs, and job j +2 has to be processed optimally 
after this conflict pair of jobs. At time 1τ  we need to decide which job j or j +1 has to be processed next on 
machine M1 in order to obtain an optimal schedule. It is clear that at time 1τ  the exact processing times of jobs (1, 
2, …, j –1): 1,11,21,1 ,, −jt ..., t t , on machine M1 are already known. We assume also that at time 1τ  the processing 
times of jobs {1, 2, …, j –1} on machine M2 are also known. Thus, at time 1τ  the initial part 

),,,( 2,11,12,11,1 −− jj t t ..., t t  of the vector Tt∈ of the job processing times is already known.  

Let с1 denote the completion time of all jobs (1, 2, …, j –1) on machine M1 and с2 denote the completion time of 
all jobs (1, 2, …, j –1) on machine M2.  
Theorem 4 The order 1+→ jj  of conflict pair of jobs Jj∈  and Jj ∈+ )1( is optimal for processing jobs of 
set J if at least one of the following seven conditions holds: 

211 ctc U
j ≤+ ;  L

j
U
j

U
j tcttc 221,111 +≤++ + ;       (1) 

211 ctc L
j >+ ;   U

j
U
j

L
j

L
j tttt 2,121,21,1 +++ +≥+ ;  L

j
U
j tt 21,1 ≤+ ;   (2) 

U
j

L
j tt 21,1 >+ ;  U

j
L
j

L
j tcttc 221,111 +≥++ + ;  U

j
L
j tt 2,11,2 ++ ≥ ;    (3) 

211 ctc L
j ≤+ ;  211 ctc U

j >+ ;  L
j

U
j tt 21,1 ≤+ ; U

j
U
j

L
j

L
j tttt 2,121,21,1 +++ +≥+ ; (4) 
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U
j

L
j

L
j tcttc 221,111 +≤++ + ;  L

j
U
j

U
j tcttc 221,111 +>++ + ;  U

j
L
j tt 21,1 >+ ; U

j
L
j tt 2,11,2 ++ ≥ ; (5) 

211 ctc L
j ≤+ ;  U

j
L
j

L
j tcttc 221,111 +≤++ + ;  211 ctc U

j >+ ;    (6) 
L
j

U
j tt 21,1 >+ ;  U

j
U
j

L
j

L
j tttt 2,121,21,1 +++ +≥+ ;  U

j
L
j tt 2,11,2 ++ ≥ ; 

211 ctc L
j >+ ;  L

j
U
j tt 21,1 >+ ;  U

j
L
j tt 21,1 ≤+ ; U

j
U
j

L
j

L
j tttt 2,121,21,1 +++ +≥+ . (7) 

The experiments on PC have been realized for calculating percentage of the number of conflict pair of jobs 
resolved due to Theorem 3 and Theorem 4 (Table 3) and percentage of instances solvable exactly due to 
Theorems 3 and 4 (Table 4). It is clear that only serious of instances which has non-zero value in Table 2 were 
considered in Tables 3 and 4 (each serious with zero value in Table 2 is indicated by symbol – in Table 3 and in 
Table 4). For each series we generated and tested 1000 instances with no more than one conflict pair of jobs at 
any time (for each combination of n and L under consideration). To this end, we used conditions of Theorem 2.  
We tested problems with n ∈ {5, 10, 15, …, 50} jobs, integer processing times with lower and upper bounds 
uniformly distributed in the range [10,1000], and L ∈ {1, 2, 3, …, 15}. We restricted the experiments by 50≤n  
due to the results given in Table 2. For each job, the lower bound of the job processing times was randomly 
generated in the range [10,1000] and the upper bound of the job processing times was computed as follows: 

%)100/%1( Ltt L
jm

U
jm += .  

Тable 3. Percentage of the number of conflict resolutions due to Theorem 3 and Theorem 4 

n\L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

5 73.53 71.21 72.89 70.73 69.91 69.19 69.03 70.32 68.88 67.25 68.28 65.96 66.16 65.17 63.47 

10 92.32 91.8 92.76 91.46 91.96 93.33 90.83 91.08 91.38 90.64 90.67 90.54 90.71 90.07 91 

15 96.97 97.41 96.85 96.13 97.12 96.89 96.31 97.12 96.8 97.04 97.31 96.14 96.62 95.96 96.07 

20 98.3 97.78 98.17 98.13 97.52 97.86 98.17 98.19 98.18 98.08 97.84 97.65 98.17 97.67 97.56 

25 98.55 99.04 99.07 98.75 98.73 98.57 98.5 98.59 99 98.73 98.63 98.55 98.68 98.52 98.19 

30 99.2 99.18 99.03 99.11 99.01 99.03 99.13 99.11 98.82 - - - - - - 

35 98.76 99.22 99.34 99.28 99.34 99.48 99.2 - - - - - - - - 

40 99.36 99.45 99.57 99.63 99.47 - - - - - - - - - - 

45 99.42 99.72 99.57 99.57 99.42 - - - - - - - - - - 

50 99.3 99.51 99.49 - - - - - - - - - - - - 

Тable 4. Percentage of the instances with all conflicts being resolved due to Theorem 3 and Theorem 4 

n \ L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

5 78.3 75.6 77.5 75.5 74.8 73.8 73.6 74.4 74 72.3 73 70.3 71.6 70 69 
10 92.4 91.6 92.4 90.7 90.9 92.2 88.9 89 89.2 88 88.1 86.8 86.6 85.5 87.9 
15 96.7 96.7 95.8 94.5 95.1 94.6 93.3 94.2 92.7 93.6 93.6 90.5 91.6 89.1 88.9 
20 97.8 96.5 96.6 95.9 94.1 94 94.7 94.8 93.6 93 92.4 90.5 92.1 89.9 90.2 
25 97.9 98.1 97.6 96.3 95.6 94.3 93.3 93.4 94.9 93.3 92.2 91.5 92 90.7 88.1 
30 98.4 98 97.2 96.1 95.7 94.9 94.4 94.8 94 91.5 - - - - - 
35 97.4 97.4 97.2 96.3 95.9 96.4 94 - - - - - - - - 
40 98.4 97.7 97.7 97.6 96 - - - - - - - - - - 
45 98.2 98.6 97.1 96.5 94.5 - - - - - - - - - - 
50 97.5 97 95.9 - - - - - - - - - - - - 

 



International Journal "Information Theories & Applications" Vol.14 / 2007 
 

 

188 

From Tables 3 and 4 it follows that the most randomly generated instances of the uncertain problem 
max||2 CtttF U

jmjm
L
jm ≤≤  (each of which has no more than one conflict pair of jobs at any time) are solved 

exactly during realization of the process due to sufficient conditions given in Theorems 3 and 4 (in spite of the 
uncertain job processing times before scheduling).  

Conclusion  

It is clear that in spite of uncertainty of the job processing times it is necessary to choose only one schedule for 
practical realization of the process. Theorem 1 allows obtain a dominant permutation for problem 

max||2 CtttF U
jmjm

L
jm ≤≤  before realization of the process. Indeed, such a dominant schedule (if any) is the 

best one for any feasible realization of the job processing times. If condition of Theorem 1 does not hold, then one 
can use Theorem 2, Theorem 3, or Theorem 4 for constructing optimal schedule during realization of the process 
under consideration.  
Clearly, this approach is useful if the level of uncertainty is low enough (the best results were obtained for the 
non-zero cases presented in Table 2). If level of uncertainty exceeds a certain threshold, then others approaches 
to problem max||2 CtttF U

jmjm
L
jm ≤≤  outperform the approach based on Theorems 1 – 4. If there is no 

possibility to construct one dominant schedule for problem max||2 CtttF U
jmjm

L
jm ≤≤  (i.e., conditions of 

Theorem 1 do not hold), it may be fruitful to construct more general schedule form on the basis of a partial strong 
order of jobs J (Theorem 2). Then one can consider the realization stage of a schedule for the flow-shop when a 
part of the schedule is already realized. Theorems 3 and 4 show how to use additional information about realized 
operations in order to obtain better solution than that constructed before scheduling. In such a case, a realistic 
solution process can be seen as consisting of static and dynamic phases. At the static phase, a scheduler can 
construct a family of the dominant permutations. At the dynamic phase of the decision-making, a scheduler has to 
select an appropriate schedule from such a family of the dominant permutations to react in real-time to the actual 
processing times of the already completed jobs.  
Thus, our approach falls into the category of predictive-reactive scheduling. The static phase (based on 
Theorems 1 and 2) may be considered as predictive scheduling and dynamic phase (based on Theorems 3 and 
4) may be considered as reactive scheduling (see [Aytud et al., 2005; Gupta, Stafford, 2006]). 
It is interesting to find sufficient conditions for choosing the unique permutation that is optimal for any feasible 
processing times of the remaining operations. If a scheduler cannot make right decision at time 0>τ , he (she) 
has to use one of the solution policies, which does not guarantee to find an optimal schedule for any realization of 
the remaining job processing times. The solution policy may be optimistic or pessimistic (see [Aytud et al., 2005; 
Shafransky, 2005]), or a scheduler can minimize objective function in average. For an uncertain problem it may 
be necessary to look for an optimal scheduling policy that stochastically minimizes the makespan [Ku, Niu, 1986; 
Pinedo, 1995]. To this end, it is necessary to obtain the reliable probability distributions for the random processing 
times. In general case, the choice of the job may also be based on minimization of possible loss of the objective 
function value. 
The research was partially supported by INTAS (project 03-51-5501) and ISTC (project B-986). The authors 
would like to thank Ms. Natalja G. Egorova for the help in computational experiments. 
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ACCESS RIGHTS INHERITANCE IN INFORMATION SYSTEMS  
CONTROLLED BY METADATA 

Mariya Chichagova, Ludmila Lyadova 

Abstract: All information systems have to be protected. As the number of information objects and the number of 
users increase the task of information system’s protection becomes more difficult. One of the most difficult 
problems is access rights assignment. This paper describes the graph model of access rights inheritance. This 
model takes into account relations and dependences between different objects and between different users. The 
model can be implemented in the information systems controlled by the metadata, describing information objects 
and connections between them, such as the systems based on CASE-technology METAS. 

Keywords: access control mechanisms, graph model, metadata, CASE-technology. 
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Introduction 
As information systems become larger and more complex, and as the number of their users increase, there are 
growing needs for methods that can simplify and even partly automate the process of access rights assignment.  
The main problem of traditional access control mechanisms is that they don’t take into account the relations 
between information objects.  


