Bibliography

[Sirodzha, 2002] Sirodzha, I.B. Quantovye modeli I metody iskusstvennogo intellekta dlya prinyatiya reshenij I upravleniya. (Quantum models and methods of artificial intelligence for decision-making and management). Naukova dumka. - Kyiv: 2002. - 420 pp.
[Sirodzha,1992] Sirodzha, I.B. Matematicheskoe I programmnoe obespechenie intellektualnykh compiuternykh sistem. (Mathematical provision and programming software of intellectual computer systems.) - Kharkiv: KhAl,1992.

Authors' Information

Liudmyla Molodykh - a post-graduate student of Computer System Software Department, National Aerospace University named after N.I. Zhuckovsky "Kharkov Aviation Institute"; room 518, Impulse Building, Chkalova st., 17, Kharkiv, Ukraine, 61070; e-mail: molodykh@onet.com.ua; flamelia@mail.ru
Igor B. Sirodzha - Professor, Doctor of Technical Sciences, Head of Computer System Software Department, National Aerospace University named after N.I. Zhuckovsky "Kharkov Aviation Institute"; room 414, Impulse Building, Chkalova st., 17, Kharkiv, Ukraine, 61070.

CONSTRUCTING OF A CONSENSUS OF SEVERAL EXPERTS STATEMENTS* Gennadiy Lbov, Maxim Gerasimov

Abstract

Let Γ be a population of elements or objects concerned by the problem of recognition. By assumption, some experts give probabilistic predictions of unknown belonging classes γ of objects $a \in \Gamma$, being already aware of their description $X(a)$. In this paper, we present a method of aggregating sets of individual statements into a collective one using distances / similarities between multidimensional sets in heterogeneous feature space.

Keywords: pattern recognition, distance between experts statements, consensus.
ACM Classification Keywords: I.2.6. Artificial Intelligence - knowledge acquisition.

Introduction

We assume that $X(a)=\left(X_{1}(a), \ldots, X_{j}(a), \ldots, X_{n}(a)\right)$, where the set X may simultaneously contain qualitative and quantitative features $X_{j}, j=\overline{1, n}$. Let D_{j} be the domain of the feature $X_{j}, j=\overline{1, n}$. The feature space is given by the product set $D=\prod_{j=1}^{n} D_{j}$. In this paper, we consider statements $S^{i}, i=\overline{1, M}$; represented as sentences of type "if $X(a) \in E^{i}$, then the object a belongs to the γ-th pattern with probability $p^{i}{ }^{n}$, where $\gamma \in\{1, \ldots, k\}, E^{i}=\prod_{j=1}^{n} E_{j}^{i}, E_{j}^{i} \subseteq D_{j}, E_{j}^{i}=\left[\alpha_{j}^{i}, \beta_{j}^{i}\right]$ if X_{j} is a quantitative feature, E_{j}^{i} is a finite subset of feature values if X_{j} is a nominal feature. By assumption, each statement S^{i} has its own weight w^{i}. Such a value is like a measure of "assurance".
Without loss of generality, we can limit our discussion to the case of two classes, $k=2$.

[^0]
Distances between Multidimensional Sets

In the works [1, 2] we proposed a method to measure the distances between sets (e.g., E^{1} and E^{2}) in heterogeneous feature space. Consider some modification of this method. By definition, put
$\rho\left(E^{1}, E^{2}\right)=\sum_{j=1}^{n} k_{j} \rho_{j}\left(E_{j}^{1}, E_{j}^{2}\right)$ or $\rho\left(E^{1}, E^{2}\right)=\sqrt{\sum_{j=1}^{n} k_{j}\left(\rho_{j}\left(E_{j}^{1}, E_{j}^{2}\right)\right)^{2}}$,
where $0 \leq k_{j} \leq 1, \sum_{j=1}^{n} k_{j}=1$.
Values $\rho_{j}\left(E_{j}^{1}, E_{j}^{2}\right)$ are given by: $\rho_{j}\left(E_{j}^{1}, E_{j}^{2}\right)=\frac{\left|E_{j}^{1} \Delta E_{j}^{2}\right|}{\left|D_{j}\right|}$ if $\quad X_{j}$ is a nominal feature, $\rho_{j}\left(E_{j}^{1}, E_{j}^{2}\right)=\frac{r_{j}^{12}+\theta\left|E_{j}^{1} \Delta E_{j}^{2}\right|}{\left|D_{j}\right|}$ if X_{j} is a quantitative feature, where $r_{j}^{12}=\left|\frac{\alpha_{j}^{1}+\beta_{j}^{1}}{2}-\frac{\alpha_{j}^{2}+\beta_{j}^{2}}{2}\right|$.
It can be proved that the triangle inequality is fulfilled if and only if $0 \leq \theta \leq 1 / 2$.
The proposed measure ρ satisfies the requirements of distance there may be.
Consider the set $\Omega_{(1)}=\left\{S_{(1)}^{1}, \ldots, S_{(1)}^{m_{1}}\right\}$, where $S_{(1)}^{u}$ is a statement concerned to the first pattern class, $u=\overline{1, m_{1}}$. Let E^{u} be the relative sets to statements $S_{(1)}^{u}, E^{u} \subseteq D, u=\overline{1, m_{1}}$. By analogy, determine $\Omega_{(2)}=\left\{S_{(2)}^{1}, \ldots, S_{(2)}^{m_{2}}\right\}, S_{(2)}^{v}, \tilde{E}^{v}$ as before, but for the second class.
By definition, put $k_{j}=\frac{\tau_{j}}{\sum_{i=1}^{n} \tau_{i}}$, where $\tau_{j}=\sum_{u=1}^{m_{1}} \sum_{v=1}^{m_{2}} \rho_{j}\left(E_{j}^{u}, \widetilde{E}_{j}^{v}\right), j=\overline{1, n}$.

Consensus

We first treat single expert's statements concerned to a certain pattern class: let Ω be a set of such statements, $\Omega=\left\{S^{1}, \ldots, S^{m}\right\}, E^{i}$ be the relative set to a statement $S^{i}, i=\overline{1, m}$.

Denote by $E^{i_{1} i_{2}}:=E^{i_{1}} \oplus E^{i_{2}}=\prod_{j=1}^{n}\left(E_{j}^{i_{1}} \oplus E_{j}^{i_{2}}\right)$, where $E_{j}^{i_{1}} \oplus E_{j}^{i_{2}}$ is the Cartesian join of feature values $E_{j}^{i_{1}}$ and $E_{j}^{i_{2}}$ for feature X_{j} and is defined as follows.
When X_{j} is a nominal feature, $E_{j}^{i_{1}} \oplus E_{j}^{i_{2}}$ is the union: $E_{j}^{i_{1}} \oplus E_{j}^{i_{2}}=E_{j}^{i_{1}} \cup E_{j}^{i_{2}}$.
When X_{j} is a quantitative feature, $E_{j}^{i_{1}} \oplus E_{j}^{i_{2}}$ is a minimal closed interval such that $E_{j}^{i_{1}} \cup E_{j}^{i_{2}} \subseteq E_{j}^{i_{1}} \oplus E_{j}^{i_{2}}$.
Denote by $r^{i_{i i_{2}}}:=d\left(E^{i_{1 i_{2}}}, E^{i_{1}} \cup E^{i_{2}}\right)$.
The value $d(E, F)$ is defined as follows: $d(E, F)=\max _{E^{\prime} \subseteq E \neq F} \min _{j\left|E_{j}^{\prime}\right| \nmid \nmid E_{j} \mid} \frac{k_{j}\left|E^{\prime}\right|}{\operatorname{diam}(E)}$, where E^{\prime} is any subset such that its projection on subspace of quantitative features is a convex set.
By definition, put $I_{1}=\{\{1\}, \ldots,\{m\}\}, \ldots, I_{q}=\left\{\left\{i_{1}, \ldots, i_{q}\right\} \mid r^{i_{u} i_{v}}<\varepsilon \quad \forall u, v=\overline{1, q}\right\}$, where ε is a threshold decided by the user, $q=\overline{2, Q} ; Q \leq m$.
Take any set $J_{q}=\left\{i_{1}, \ldots, i_{q}\right\}$ of indices such that $J_{q} \in I_{q}$ and $J_{q} \not \subset J_{q+1} \forall J_{q+1} \in I_{q+1}$.
Now, we can aggregate the statements $S^{i_{1}}, \ldots, S^{i_{q}}$ into the statement $S^{J_{q}}$:
$S^{J_{q}}=$ "if $X(a) \in E^{J_{q}}$, then the object a belongs to the γ-th pattern with probability $p^{J_{q} " \text { ", where }}$ $E^{J_{q}}=E^{i_{1}} \oplus \ldots \oplus E^{i_{q}}, p^{J_{q}}=\frac{\sum_{i \in J_{q}} c^{i J_{q}} w^{i} p^{i}}{\sum_{i \in J_{q}} c^{i J_{q}} w^{i}}, c^{i J_{q}}=1-\rho\left(E^{i}, E^{J_{q}}\right)$.
By definition, put to the statement $S^{J_{q}}$ the weight $w^{J_{q}}=\left(1-d\left(E^{J_{q}}, \bigcup_{i \in J_{q}} E^{i}\right)\right) \frac{\sum_{i \in J_{q}} c^{i J_{q}} w^{i}}{\sum_{i \in J_{q}} c^{i J_{q}}}$.
The procedure of forming a consensus of single expert's statements consists in aggregating into statements $S^{J_{q}}$ for all J_{q} under previous conditions, $q=\overline{1, Q}$.
After coordinating each expert's statements separately, we can construct an agreement of several independent experts for each pattern class. The procedure is as above, except the weights: $w^{J_{q}}=\sum_{i \in J_{q}} c^{i J_{q}} w^{i}$.

Solution of Disagreements

After constructing of a consensus for each pattern, we must make decision rule in the case of contradictory statements. Take any sets $E_{(1)}^{u}$ and $E_{(2)}^{v}$ such that $E_{(1)}^{u} \cap E_{(2)}^{v}=E^{u v} \neq \varnothing$, where the set $E_{(\gamma)}^{u}$ corresponds to a statement $S_{(\gamma)}^{u}$ from the experts agreement concerned to the γ-th pattern class, $\gamma=1,2$.
Consider the sets $I_{(\gamma\}}^{u v}=\left\{i \mid\left(S^{i} \in \Omega_{(\gamma)}\right)\right.$ and $\left.\left(\rho\left(E^{i}, E^{u v}\right)<\varepsilon^{*}\right)\right\}$, where ε^{*} is a threshold, $0<\varepsilon^{*}<1$.
By definition, put $p_{(\gamma)}^{u v}=\frac{\sum_{i \in \epsilon_{(\gamma)}^{u v}}\left(1-\rho\left(E_{(\gamma)}^{i}, E^{u v}\right)\right) w^{i} p^{i}}{\sum_{i \in \epsilon_{(\gamma)}^{u(}}\left(1-\rho\left(E_{(\gamma)}^{i}, E^{u v}\right)\right) w^{i}}$. Denote by $\gamma^{*}:=\underset{\gamma}{\arg \max }\left(p_{(\gamma)}^{u v}\right)$.
Thus, we can make decision statement:
$S^{u v}="$ if $X(a) \in E^{u v}$, then the object a belongs to the γ^{*}-th pattern with probability $p_{\left(\gamma^{*}\right)}^{u v}$ "
with the weight $w^{u v}=\left|\frac{\sum_{i \in I_{(1)}^{u u}}\left(1-\rho\left(E_{(1)}^{i}, E^{u v}\right)\right) w^{i}-\sum_{i \in I_{(2)}^{u u}}\left(1-\rho\left(E_{(2)}^{i}, E^{u v}\right)\right) w^{i}}{\sum_{i \in I_{\left(\gamma^{*}\right)}^{u v}}\left(1-\rho\left(E_{\left(\gamma^{*}\right)}^{i}, E^{u v}\right)\right)}\right|$.

Bibliography

[1] G.S.Lbov, M.K.Gerasimov. Determining of distance between logical statements in forecasting problems. In: Artificial Intelligence, 2'2004 [in Russian]. Institute of Artificial Intelligence, Ukraine.
[2] G.S.Lbov, V.B.Berikov. Decision functions stability in pattern recognition and heterogeneous data analysis [in Russian]. Institute of Mathematics, Novosibirsk, 2005.

Authors' Information

Gennadiy Lbov - Institute of Mathematics, SB RAS, Koptyug St., bl.4, Novosibirsk, Russia; e-mail: lbov@math.nsc.ru
Maxim Gerasimov - Institute of Mathematics, SB RAS, Koptyug St., bl.4, Novosibirsk, Russia; e-mail: max post@bk.ru

[^0]: * The work was supported by the RFBR under Grant N04-01-00858.

