International Journal "Information Theories & Applications" Vol.14 / 2007 81

Bibliography

[Sirodzha, 2002] Sirodzha, I.B. Quantovye modeli I metody iskusstvennogo intellekta dlya prinyatiya reshenij I upravleniya. (Quantum models and methods of artificial intelligence for decision-making and management). Naukova dumka. – Kyiv: 2002. – 420 pp.

[Sirodzha,1992] Sirodzha, I.B. Matematicheskoe I programmnoe obespechenie intellektualnykh compiuternykh sistem. (Mathematical provision and programming software of intellectual computer systems.) – Kharkiv: KhAI,1992.

Authors' Information

Liudmyla Molodykh – a post-graduate student of Computer System Software Department, National Aerospace University named after N.I. Zhuckovsky "Kharkov Aviation Institute"; room 518, Impulse Building, Chkalova st., 17, Kharkiv, Ukraine, 61070; e-mail: molodykh@onet.com.ua; flamelia@mail.ru

Igor B. Sirodzha – Professor, Doctor of Technical Sciences, Head of Computer System Software Department, National Aerospace University named after N.I. Zhuckovsky "Kharkov Aviation Institute"; room 414, Impulse Building, Chkalova st., 17, Kharkiv, Ukraine, 61070.

CONSTRUCTING OF A CONSENSUS OF SEVERAL EXPERTS STATEMENTS*

Gennadiy Lbov, Maxim Gerasimov

Abstract: Let Γ be a population of elements or objects concerned by the problem of recognition. By assumption, some experts give probabilistic predictions of unknown belonging classes γ of objects $a \in \Gamma$, being already aware of their description X(a). In this paper, we present a method of aggregating sets of individual statements into a collective one using distances / similarities between multidimensional sets in heterogeneous feature space.

Keywords: pattern recognition, distance between experts statements, consensus.

ACM Classification Keywords: 1.2.6. Artificial Intelligence - knowledge acquisition.

Introduction

We assume that $X(a) = (X_1(a), ..., X_j(a), ..., X_n(a))$, where the set X may simultaneously contain qualitative and quantitative features X_j , $j = \overline{1, n}$. Let D_j be the domain of the feature X_j , $j = \overline{1, n}$. The feature space is given by the product set $D = \prod_{j=1}^n D_j$. In this paper, we consider statements S^i , $i = \overline{1, M}$; represented as sentences of type "if $X(a) \in E^i$, then the object a belongs to the γ -th pattern with probability p^i ", where $\gamma \in \{1, ..., k\}$, $E^i = \prod_{j=1}^n E^i_j$, $E^i_j \subseteq D_j$, $E^i_j = [\alpha^i_j, \beta^i_j]$ if X_j is a quantitative feature, E^i_j is a finite subset of feature values if X_j is a nominal feature. By assumption, each statement S^i has its own weight w^i . Such a value is like a measure of "assurance".

Without loss of generality, we can limit our discussion to the case of two classes, k = 2.

^{*} The work was supported by the RFBR under Grant N04-01-00858.

Distances between Multidimensional Sets

In the works [1, 2] we proposed a method to measure the distances between sets (e.g., E^1 and E^2) in heterogeneous feature space. Consider some modification of this method. By definition, put

$$\begin{split} \rho(E^1,E^2) &= \sum\nolimits_{j=1}^n k_j \rho_j(E^1_j,E^2_j) \text{ or } \rho(E^1,E^2) = \sqrt{\sum\nolimits_{j=1}^n k_j (\rho_j(E^1_j,E^2_j))^2} \text{ ,} \\ \text{where } 0 \leq k_j \leq 1 \text{ , } \sum\nolimits_{j=1}^n k_j = 1 \text{ .} \end{split}$$

Values $\rho_j(E_j^1, E_j^2)$ are given by: $\rho_j(E_j^1, E_j^2) = \frac{|E_j^1 \Delta E_j^2|}{|D_j|}$ if X_j is a nominal feature,

$$\rho_j(E_j^1, E_j^2) = \frac{r_j^{12} + \theta \mid E_j^1 \Delta E_j^2 \mid}{\mid D_j \mid} \text{ if } X_j \text{ is a quantitative feature, where } r_j^{12} = \left| \frac{\alpha_j^1 + \beta_j^1}{2} - \frac{\alpha_j^2 + \beta_j^2}{2} \right|$$

It can be proved that the triangle inequality is fulfilled if and only if $0 \le \theta \le 1/2$.

The proposed measure ρ satisfies the requirements of distance there may be.

Consider the set $\Omega_{(1)} = \{S_{(1)}^1, ..., S_{(1)}^{m_1}\}$, where $S_{(1)}^u$ is a statement concerned to the first pattern class, $u = \overline{1, m_1}$. Let E^u be the relative sets to statements $S_{(1)}^u$, $E^u \subseteq D$, $u = \overline{1, m_1}$. By analogy, determine $\Omega_{(2)} = \{S_{(2)}^1, ..., S_{(2)}^{m_2}\}$, $S_{(2)}^v$, \tilde{E}^v as before, but for the second class.

By definition, put
$$k_j = \frac{\tau_j}{\sum_{i=1}^n \tau_i}$$
, where $\tau_j = \sum_{u=1}^{m_1} \sum_{v=1}^{m_2} \rho_j(E_j^u, \widetilde{E}_j^v)$, $j = \overline{1, n}$.

Consensus

We first treat single expert's statements concerned to a certain pattern class: let Ω be a set of such statements, $\Omega = \{S^1, ..., S^m\}$, E^i be the relative set to a statement S^i , $i = \overline{1, m}$.

Denote by $E^{i_1i_2} := E^{i_1} \oplus E^{i_2} = \prod_{j=1}^n (E^{i_1}_j \oplus E^{i_2}_j)$, where $E^{i_1}_j \oplus E^{i_2}_j$ is the Cartesian join of feature values $E^{i_1}_j$ and $E^{i_2}_j$ for feature X_j and is defined as follows.

When X_j is a nominal feature, $E_j^{i_1} \oplus E_j^{i_2}$ is the union: $E_j^{i_1} \oplus E_j^{i_2} = E_j^{i_1} \bigcup E_j^{i_2}$.

When X_j is a quantitative feature, $E_j^{i_1} \oplus E_j^{i_2}$ is a minimal closed interval such that $E_j^{i_1} \bigcup E_j^{i_2} \subseteq E_j^{i_1} \oplus E_j^{i_2}$. Denote by $r^{i_1i_2} \coloneqq d(E^{i_1i_2}, E^{i_1} \bigcup E^{i_2})$.

The value d(E,F) is defined as follows: $d(E,F) = \max_{E'\subseteq E\setminus F} \min_{j|E'_j|\neq |E_j|} \frac{k_j |E'_j|}{diam(E)}$, where E' is any subset such that its projection on subspace of quantitative features is a convex set.

By definition, put $I_1 = \{\{1\}, ..., \{m\}\}$, ..., $I_q = \{\{i_1, ..., i_q\} \mid r^{i_u i_v} < \varepsilon \quad \forall u, v = \overline{1, q}\}$, where ε is a threshold decided by the user, $q = \overline{2, Q}$; $Q \le m$. Take any set $I_1 = \{i_1, ..., i_n\}$ of indices such that $I_1 \in I_2$ and $I_2 \notin I_2$.

Take any set $J_q = \{i_1, ..., i_q\}$ of indices such that $J_q \in I_q$ and $J_q \not\subset J_{q+1} \quad \forall J_{q+1} \in I_{q+1}$.

Now, we can aggregate the statements S^{i_1} , ..., S^{i_q} into the statement S^{J_q} :

 $S^{J_q} =$ "if $X(a) \in E^{J_q}$, then the object a belongs to the γ -th pattern with probability p^{J_q} ", where

$$E^{J_{q}} = E^{i_{1}} \oplus ... \oplus E^{i_{q}}, \ p^{J_{q}} = \frac{\sum_{i \in J_{q}} c^{iJ_{q}} w^{i} p^{i}}{\sum_{i \in J_{q}} c^{iJ_{q}} w^{i}}, \ c^{iJ_{q}} = 1 - \rho(E^{i}, E^{J_{q}}).$$

By definition, put to the statement S^{J_q} the weight $w^{J_q} = \left(1 - d(E^{J_q}, \bigcup_{i \in J_q} E^i)\right) \frac{\sum_{i \in J_q} c^{iJ_q} w^i}{\sum_{i \in J_q} c^{iJ_q}}$.

The procedure of forming a consensus of single expert's statements consists in aggregating into statements S^{J_q} for all J_q under previous conditions, $q = \overline{1, Q}$.

After coordinating each expert's statements separately, we can construct an agreement of several independent experts for each pattern class. The procedure is as above, except the weights: $w^{J_q} = \sum_{i \in I_a} c^{iJ_q} w^i$.

Solution of Disagreements

After constructing of a consensus for each pattern, we must make decision rule in the case of contradictory statements. Take any sets $E_{(1)}^{u}$ and $E_{(2)}^{v}$ such that $E_{(1)}^{u} \cap E_{(2)}^{v} = E^{uv} \neq \emptyset$, where the set $E_{(\gamma)}^{u}$ corresponds to a statement $S_{(\gamma)}^{u}$ from the experts agreement concerned to the γ -th pattern class, $\gamma = 1, 2$.

Consider the sets $I_{(\gamma)}^{uv} = \{i \mid (S^i \in \Omega_{(\gamma)}) \text{ and } (\rho(E^i, E^{uv}) < \varepsilon^*)\}$, where ε^* is a threshold, $0 < \varepsilon^* < 1$.

By definition, put
$$p_{(\gamma)}^{uv} = \frac{\sum_{i \in I_{(\gamma)}^{uv}} (1 - \rho(E_{(\gamma)}^i, E^{uv})) w^i p^i}{\sum_{i \in I_{(\gamma)}^{uv}} (1 - \rho(E_{(\gamma)}^i, E^{uv})) w^i}$$
. Denote by $\gamma^* \coloneqq \arg \max_{\gamma} (p_{(\gamma)}^{uv})$.

Thus, we can make decision statement:

 $S^{uv} = "$ if $X(a) \in E^{uv}$, then the object *a* belongs to the γ^* -th pattern with probability $p_{(x^*)}^{uv}$

with the weight
$$w^{uv} = \left| \frac{\sum_{i \in I_{(1)}^{uv}} (1 - \rho(E_{(1)}^i, E^{uv})) w^i - \sum_{i \in I_{(2)}^{uv}} (1 - \rho(E_{(2)}^i, E^{uv})) w^i}{\sum_{i \in I_{(\gamma^*)}^{uv}} (1 - \rho(E_{(\gamma^*)}^i, E^{uv}))} \right|$$

Bibliography

- [1] G.S.Lbov, M.K.Gerasimov. Determining of distance between logical statements in forecasting problems. In: Artificial Intelligence, 2'2004 [in Russian]. Institute of Artificial Intelligence, Ukraine.
- [2] G.S.Lbov, V.B.Berikov. Decision functions stability in pattern recognition and heterogeneous data analysis [in Russian]. Institute of Mathematics, Novosibirsk, 2005.

Authors' Information

Gennadiy Lbov – Institute of Mathematics, SB RAS, Koptyug St., bl.4, Novosibirsk, Russia; e-mail: <u>lbov@math.nsc.ru</u>

Maxim Gerasimov – Institute of Mathematics, SB RAS, Koptyug St., bl.4, Novosibirsk, Russia; e-mail: <u>max_post@bk.ru</u>