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1. Introduction. The main concern of this paper is to present some improve-

ments to results on the existence or non-existence of countably additive Borel measures

that are not Radon measures on Banach spaces taken with their weak topologies, on

the standard axioms (ZFC) of set-theory. However, to put the results in perspective we

shall need to say something about consistency results concerning measurable cardinals.

We shall use the term Borel measure for a countably additive finite non-negative

set function defined on the Borel sets of a topological space. A Borel measure µ on a

topological space X is said to be a Radon measure if, for each Borel set B in X and

each ε > 0, there is a compact set K contained in B with µ (K) > µ (B) − ε. A Borel

measure µ on a topological space X will be said to be inner regular if, for each open set

G in X and each ε > 0, there is a closed set F contained in G with µ (F ) > µ (G) − ε.

A simple argument shows that each Borel measure on a complete separable

metric space is automatically a Radon measure. We give a proof in Section 3. For a

rather different proof see Royden [31], Proposition 18, page 411.

Following Marczewski and Sikorski [27], we shall say that a cardinal κ is of

measure zero, if the only Borel measure on the discrete space with cardinal κ that assigns
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the value 0 to each individual point is the zero measure. Combining the elementary

result italicised above with a theorem of Marczewski and Sikorski [27], we obtain the

following theorem (see, for example, Gardner and Pfeffer [13], Theorem 11.10).

Theorem 1 (MS). If X is a complete metric space, with a dense subset with

cardinal of measure zero, then each Borel measure on X is a Radon measure.

Note that when X is a metric space the condition that X has a dense subset

with cardinal of measure zero is equivalent to the condition that X has a open base

for its topology with cardinal of measure zero and to the condition that every discrete

subset of X has cardinal of measure zero. In particular, we find that: in a complete

metric space X, every Borel measure is a Radon measure, if, and only if, each discrete

subset of X has a cardinal of measure zero.

This theorem has an immediate corollary (see, for example, Talagrand [34],

Section 16-2-5).

Corollary 2 (MS). Let E be a Banach space with a dense subset with cardinal

of measure zero, and suppose that (E,norm) and (E,weak) have the same Borel sets.

Then each Borel measure on (E,weak) is also a Borel measure on (E,norm) and is a

Radon measure on both these spaces.

We remark that there are many conditions that can be imposed on a Banach

space to ensure that the weak Borel sets and the norm Borel sets coincide. We mention

some of these conditions; full definitions for these and other concepts will be given in

Section 2 below. If a Banach space is weakly compactly generated, then it is a K-

analytic set in its weak topology. If a Banach space is K-analytic in its weak topology,

then it has an equivalent locally uniformly convex norm. A locally uniformly convex

norm is a Kadec norm. If a Banach space has a Kadec norm, then the weak Borel sets

and the norm Borel sets coincide. There is an extensive renorming theory for Banach

spaces that has yielded much information concerning Banach spaces that admit locally

uniformly convex norms. For further details see the subsection on Banach spaces in

Section 2 below.

The next result is well-known; Talagrand [34], see his Section (2-3-4), attributes

it to Phillips and Grothendiek.

Theorem 3 (PG). If E is a Banach space, a Radon measure on (E,weak)

extends from the weak Borel sets to the norm Borel sets to form a Radon measure on

(E,norm).

Existing proofs of this result are rather complicated. We outline an alternative
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proof, based on the proof of Theorem 4.1 of [18], without claiming that it is particularly

simple.

The following version of Choquet’s capacitability theorem [2] is appropriate for

our purposes.

Theorem 4 (C). Let X be a K-analytic space. Then each inner regular Borel

measure on X is a Radon measure.

This yields immediately

Corollary 5 (C). Let E be a Banach space that is K-analytic in its weak

topology. Then each inner regular Borel measure on (E,weak) is a Radon measure on

(E,weak) and also a Radon measure on (E,norm).

The absence of any condition on the cardinality of the dense subsets of the spaces

in these results is partially explained by the fact that a K-analytic space is always a

Lindelöf space and so contains no uncountable closed discrete subset. Dieudonné’s

example, see [15], Exercise 10 on page 231 (see acknowledgments at the beginning of

the book), of a Borel measure that is not a Radon measure on the compact space of

all ordinals up to ω1, with the order topology, shows the necessity of the condition of

inner regularity in Theorem 4 (C). The situation in Corollary 5 is illustrated by the

example of the Banach space c0 (Γ) with Γ a discrete space with uncountable cardinal.

This space is weakly compactly generated (by the weakly compact set consisting of

the origin together with the vectors of the standard basis) and so is weakly K-analytic.

Thus (c0(Γ), weak) contains no closed uncountable discrete subset, but it does contain a

discrete subset (not closed) of cardinal equal to that of Γ, and this set can be closed and

discrete in (c0(Γ), norm). Further (c0(Γ), weak) contains no dense set of cardinal less

than Γ. If it were possible to take Γ to be a discrete space with a cardinal not of measure

zero, then there would be a Borel measure on (c0(Γ), norm) and on (c0(Γ), weak) that

was neither a Radon measure on (c0(Γ), weak) nor on (c0(Γ), norm). See also some

further remarks in Section 3.

We now turn our attention to the study of Banach spaces E for which (E,weak)

admits the construction of a Borel measure that is not Radon. Such Banach spaces are

easy to find, if one has a cardinal that is not of measure zero. However, there may be

no such cardinals, and in their absence it is difficult to find such Banach spaces. The

first example is due to Talagrand [33] and [34], Section (16-1-2).

Theorem 6 (T). Let Γ be an uncountable discrete space and let ℓ∞c (Γ) be the

Banach space of all bounded real-valued functions of countable support on Γ with the
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supremum norm. Then there is a Borel measure on (ℓ∞c (Γ), weak) that is not a Radon

measure.

A second example is due to de Maria and Rodriguez-Salinas [3]. We write

N = {1, 2, . . .} and denote the Stone-Čech compactification of N by βN.

Theorem 7 (dMR-S). Let C(βN\N) be the Banach space of all continuous

functions on the compact set βN\N with the supremum norm. Then there is a Borel

measure on (C(βN\N), weak) that is not a Radon measure.

De Maria and Rodriguez-Salinas obtain their result by combining some new

ideas with Talagrand’s method.

The main aim of this paper is to give some general criteria on a compact Haus-

dorff space K that ensure that (C(K), weak) admits a Borel measure that is not a

Radon measure. We prove three theorems.

Theorem 8. Let K be a compact Hausdorff space with a non-empty family

D of non-empty proper clopen subsets with the two following properties.

(a) The union of any increasing sequence of members of D is properly contained in a

member of D.

(b) If S1, S2, . . . and T1, T2, . . . are two increasing sequences of clopen sets, all con-

tained in a fixed set of D, with

Sn ∩ Tn = Ø, for n ≥ 1,

then there are disjoint clopen sets S0 and T0 with

Sn ⊂ S0 and Tn ⊂ T0, for n ≥ 1.

Then (C(K), weak) admits a Borel measure that is not a Radon measure.

This theorem is proved by use of Talagrand’s method. We show that Talagrand’s

Theorem 6 (T) can be obtained as a consequence. We obtain a second consequence of

Theorem 8.

Theorem 9. Let K be an infinite compact Hausdorff space that is a totally

disconnected F -space with the property that each non-empty zero set in K contains

some infinite open set. Then (C(K), weak) admits a Borel measure that is not a Radon

measure.
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We verify that Theorem 7 (dMR-S) is a consequence of Theorem 9. We also

obtain a generalisation of de Maria and Rodriguez-Salinas’ theorem.

Theorem 10. Let X be a locally compact Hausdorff space that is not pseudo-

compact. Then C(βX\X) admits a Borel measure that is not a Radon measure.

Before we embark on the difficult proofs of Theorems 6 to 11 we give in Section

4 a simple proof of the following analogue of Theorem 6.

Theorem 11. Let Γ be an uncountable discrete space and let ℓ∞c (Γ) be the

Banach space of all bounded real-valued functions of countable support on Γ with the

supremum norm. Then there is a Borel measure on ℓ∞c (Γ) taken with the topology of

pointwise convergence on Γ that is not a Radon measure.

In fact, all the Borel measures that are not Radon measures constructed in

Theorems 6 to 11, are Borel measures taking only the values 0 and 1, assigning the

value 0 to each point and the value 1 to the whole space.

We remark that, if a Hausdorff space X contains a discrete subset D (not

necessarily closed) whose cardinal is not of measure zero, then there is a Borel measure

µ on X that is not a Radon measure. The measure µ can be obtained by extending to

X the non-zero Borel measure on D assigning measure 0 to each individual point of D,

provided by the assumption that the cardinal of D is not of measure zero.

An open question concerns the relationship, if any, between the concept of

σ-fragmentability of a Banach space, a concept that we have recently studied with

Namioka, see [16], [18], [19], [20], [21], [22], [23], [24], and the existence on the Banach

space of weak Borel measures that are not weak Radon measures. Until recently our

ignorance of these two concepts matched exactly and left open the possibility that

a Banach space is σ-fragmentable in some sense, if, and only if, all the weak Borel

measures are Radon measures. Now Holický and Pelant [17] have given an example, on

the assumption that there is no real meassurable cardinal, of a Banach space, which is

not σ-fragmented by any metric, but all the weak Borel measures are Radon meassures.

The above results leave unanswered difficult questions concerning the Borel

measures on (ℓ∞, weak). Since the points of ℓ∞ are separated by a countable family of

weakly continuous functions it is easy to show that there can be no such measure taking

only the values 0 or 1, the points having measure 0 and the whole space having measure

1. On the other hand, ℓ∞ contains a norm discrete family of points of cardinal 2ℵ0 ,

and so, if 2ℵ0 is not of measure zero, then (ℓ∞, norm) and so also (ℓ∞, weak) admits

a Borel measure that is not a Radon measure. Indeed it may be possible to construct
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a Borel measure on (ℓ∞, weak) that is not a Radon measure, without any measurable

cardinal assumption. In this direction, Talagrand [34], Theorem 16-3-3, see also [11],

has constructed a Baire measure on (ℓ∞, weak) that is not a Radon measure. It is not

known if this Baire measure can be extended to a Borel measure.

We conclude this introduction by quoting some results concerning cardinals of

measure zero and the two types of measurable cardinals. A cardinal κ > ℵ0 is said to

be real-valued measurable, if there exists a Borel measure on the discrete space Γ (κ) of

cardinal κ, that assigns the value 0 to each point of Γ (κ) assigns the value 1 to Γ (κ)

and is additive over any disjoint family of cardinal less than κ, of sets of Γ (κ), see, for

example, Drake [6], page 177. It is known, see [6], Theorem 1.4, page 176, that if there

is a cardinal that is not of measure zero, then the smallest such cardinal is a real-valued

measurable cardinal. A cardinal κ > ℵ0 is said to be measurable, if there is a Borel

measure on the discrete space Γ (κ) of cardinal κ, that takes only the values 0 and 1,

and assigns the value 0 to each point of Γ (κ) and assigns the value 1 to Γ (κ) and is

additive over any disjoint family of cardinal less than κ of sets of Γ (κ), see [6], page

177.

As is well-known, Gödel proved that the assertion “V = L” is consistent with the

axioms (ZFC). Further, it is known that “V = L” implies that there is no measurable

cardinal, see, for example, [6], Theorem 2.10, page 184. Again, “V = L” implies that

there are no real-valued measurable cardinals, so that all cardinals are of measure zero,

see, for example, [26], Lemma 27.7, page 303, and [6], Theorem 1.3, page 174. Thus it

is consistent with ZFC to assume that all cardinals are of measure zero.

However the status of the question of whether or not the existence of a mea-

surable cardinal is consistent with ZFC is rather different. Note that the existence of a

measurable cardinal implies the existence of an inaccessible cardinal, see [26], Lemma

27.2, page 298. Now it follows that Gödel’s second incompleteness theorem implies

that it can not be shown by methods that are formalizable in ZFC that the existence of

inaccessible cardinals is consistent with ZFC, see [26], Theorem 27 and its explanation

on page 86.

We are grateful to a referee, who made many penetrating comments that have

enabled us to improve the presentation of this article.

2. Notation and Conventions. In this section we give a brief summary of

our notation and conventions.

2.1. Measure Theory. We have already in the introduction given the defini-

tions of Borel measures, inner regular Borel measures and Radon measures. A Borel
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measure µ is said to be τ -additive if, whenever U is a family of open sets with the

property

‘if U1, U2 belong to U there is a U3 in U with U1 ∪ U2 ⊂ U3’.

then

sup {µ(U) : U ∈ U} = µ
(

⋃

{U : U ∈ U}
)

.

It is easy to verify that a Radon measure is automatically τ -additive. A Borel measure

on a Hausdorff space that takes only the values 0 and 1 and assigns the value 0 to each

individual point and the value 1 to the whole space is necessarily non-τ -additive.

If µ is a Borel measure on a Hausdorff space X, a set S in X is said to be a

support for µ if µ (S) = µ (X). If there is a minimal element in the family of closed

supports for µ, this minimal element is unique and is called the support of µ. If µ is

τ -additive, it has a minimal closed support.

We remark that many results that hold for Borel measures on metric spaces, fail

for general topological spaces, but do hold for τ -additive Borel measures on topological

spaces (see, for example, [13],[12]).

2.2. Topological spaces. A topological space X is said to be totally discon-

nected if, whenever x and y are distinct points, there is a clopen (i.e. both closed and

open) set that contains one point but not the other. A completely regular Hausdorff

space X is said to be strongly zero-dimensional, if whenever A and B are separated, in

that there is a continuous function on X taking the value 0 on A and the value 1 on B,

there is a clopen set containing A without meeting B (Engelking [9] gives a different

definition but proves that it is equivalent to this one). A compact Hausdorff space is

totally disconnected, if, and only if, it is strongly zero-dimensional.

A completely regular Hausdorff space X is said to be an F -space if each function

defined, bounded and continuous on a cozero subset of X can be extended to a bounded

continuous function on X. For equivalent definitions and a whole range of examples

see Gillman and Jerison [14].

A topological space X is said to be pseudocompact, if each continuous function

defined on X is bounded.

A set-valued function F from a topological space Y to a topological space X,

that is a map from Y to the power set of X, is said to be upper semi-continuous if,

for each η in Y and each open set G in X containing F (η), the set of y in Y with

F (y) ⊂ G is open in Y . A space X is said to be K-analytic if is a Hausdorff space

that is the image of complete separable metric space (that can always be taken to be
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N
N) under a compact-valued upper semi-continuous set-valued map. For an account

of such spaces see, for example, [25].

2.3. Banach Spaces. When K is a compact Hausdorff space we use C (K) to

denote the space of continuous real-valued functions on K with the supremum norm.

The dual space of C (K) is the space of differences of Radon measures on K, taken

with the total variation norm. If Γ is a discrete set, ℓ∞ (Γ) denotes the Banach space of

bounded real-valued functions on Γ with the supremum norm, and we identify ℓ∞ (Γ)

in the natural way with C (βΓ), βΓ being the Stone-Čech compactification of Γ. Of

course the usual space ℓ∞ is identified with ℓ∞ (N) = C (βN). We also use ℓ∞c (Γ)

to denote the Banach sub-space of ℓ∞ (Γ) consisting of the function of ℓ∞ (Γ) having

countable support.

A Banach space E is said to be weakly compactly generated, if E is the norm

closure of the linear span of a weakly compact subset. A Banach space E is said to

be weakly K-analytic if (E,weak), is a K-analytic space. A Banach space norm ‖·‖ is

said to be locally uniformly convex if, for each point f of E and each sequence {gn} of

points of E, the convergence of ‖gn‖ to ‖f‖ together with the convergence of ‖f + gn‖

to 2‖f‖ entail the convergence of gn to f in norm. A Banach space norm ‖·‖ is said to

be a Kadec norm if the restrictions of the norm topology and of the weak topology to

the unit sphere {g : ‖g‖ = 1} coincide.

It is easy to verify that any separable Banach space and any reflexive Banach

space is weakly compactly generated. Talagrand [32] proves that any weakly compactly

generated Banach space is, when naturally embedded in its second dual, a weak∗ Kσδ-

set and so is weakly K-analytic; see [25], Section 2.11, for a simple proof. Now Vašák

[37], building on Amir and Lindenstrauss’s construction of long sequences of projections

[1] and on Troyanski’s renorming theorem [35], showed that a weaklyK-analytic Banach

space has an equivalent locally uniformly convex norm. Note that, when Γ is a set of

arbitrary cardinality, Day’s norm on c0 (Γ) is locally uniformly convex, see [4], Chapter

4. It follows directly from the definitions that a locally uniformly convex norm is a

Kadec norm. Edgar [7], Theorem 1.1, or [8] Corollary 2.4, shows that, when a Banach

space admits a Kadec norm, the norm Borel sets coincide with the weak Borel sets (see

also Section 3 below).

3. Borel Measures that are Radon Measures. In this section we will

be concerned with circumstances when Borel measures can be shown to be Radon

measures. We outline some of the steps that lead to some of the results mentioned in

the introduction.
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It is well-known that a totally bounded complete metric space is compact. See,

for example, Engelking [9], Theorem 4.3.29. As Engelking remarks, this was proved

by Fréchet in 1910, see [10]. Now suppose that µ is a Borel measure on a complete

separable metric space X. For each n ≥ 1, the separable metric space X can be covered

by a sequence of closed balls of diameter less than 1/n. Let ε > 0 be given. Since µ is

a Borel measure, we can choose a set Fn that is the union of a finite subfamily of the

countable family of closed balls of diameter less than 1/n covering X, and satisfying

µ (X\Fn) < ε2−n−1.

Then K =
∞
⋂

n=1
Fn is a totally bounded complete separable metric space and so is

compact. Further

µ (X\K) ≤
∞
∑

n=1

µ (X\Fn) <
1

2
ε.

Since X is a metric space, µ is inner regular, in the strong sense, that for each Borel

set B in X there is a closed set F contained in B with

µ (F ) > µ (B) −
1

2
ε.

Now F ∩K is a compact set contained in B with

µ(F ∩K) > µ (B) − ε.

Thus µ is a Radon measure. We have outlined a proof that

(a) a Borel measure on a complete separable metric space is a Radon measure.

For another proof of this result see Royden [31], Proposition 18, page 411.

The result of Marczewski and Sikorski [27] lies rather deeper. It asserts that

(b) a Borel measure on a metric space X that has a dense subset having cardinal of

measure zero, has a minimal closed support that is separable.

We split the proof of (b) into the proofs of two assertions.

(c) If a Borel measure on a metric space X has a minimal closed support, that support

is separable.

(d) If a Borel measure is defined on a metric space X that has a dense subset having

cardinal of measure zero, then it has a minimal closed support.
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Clearly (c) and (d) together imply (b), and (a) and (b) together imply Theo-

rem 1 (MS) stated in Section 1.

We first prove (c). Let F be a minimal closed support for a Borel measure µ

defined on a metric space X. Since F is a minimal closed support for µ, whenever G

is an open set with G ∩ F 6= Ø, we must have µ (G) > 0, otherwise F\G would be a

closed support for µ strictly contained in F . For each n ≥ 1, choose a maximal set

Dn of points in F with the distances between the points at least 2/n. Then the closed

balls with radii 2/n centred on the points of Dn cover F . Further, the open balls with

radii 1/n centred at the points of Dn are disjoint, and each meets F at a point of Dn,

and so has positive µ-measure. Thus Dn is countable, for each n ≥ 1, and
∞
⋃

n=1
Dn is a

countable dense set in F . Thus F is separable.

We now outline the proof of (d). Let µ be a Borel measure on a metric space X

that has a dense subset having a cardinal of measure zero. Choose in X a transfinite

sequence {xα : 0 ≤ α < γ} that is dense in X, with γ an ordinal whose cardinal is of

measure zero. We ignore the case when γ is finite. Since X is metric and γ is infinite

we can choose a family {Bα : 0 ≤ α < γ} of open sets forming a base for the topology

of X. Let A be the set of ordinals α, 0 ≤ α < γ, for which

µ (Bα) = 0.

Let {Nα : 0 ≤ α < β}, with β ≤ γ, be a wellordering of the sets {Bα : α ∈ A}. Write

N =
⋃

{Nα : 0 ≤ α < β} .

We note that if an open set G in X meets X\N , then G contains a basic open set, B

say, that meets X\N and so is not one of the sets {Nα : 0 ≤ α < β}. This ensures that

µ (G) ≥ µ (B) > 0.

We now use, and later prove the following simple lemma of Montgomery [28],

Lemma 1.

(e) Let {Oα : 0 ≤ α < β} be a transfinite sequence of open sets in a metric space.

Write

Dα = Oα\
⋃

{Oγ : 0 ≤ γ < α}

for 0 ≤ α < β and let Hα be a relatively closed subset of Dα for 0 ≤ α < β. Then
⋃

{Hα : 0 ≤ α < β}

is an Fσ-set.
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We apply this result to the family Oα = Nα, 0 ≤ α < β. For Θ any subset of

the ordinal β we take

Hα = Dα, if α ∈ Θ,

Hα = Ø, if α /∈ Θ.

Then, for each Θ the set
⋃

{Hθ : θ ∈ Θ}

is an Fσ-set. We regard the ordinals δ with 0 ≤ δ < β as a discrete set ∆. It is easy to

verify that the formula

ν (Θ) = µ
(

⋃

{Hδ : δ ∈ Θ}
)

for all subsets Θ of ∆, defines a Borel measure on ∆. Further, for each δ in ∆,

ν ({δ}) = µ (Hδ) ≤ µ (Nδ) = 0.

The cardinal of ∆ is at most that of γ and so is of measure zero. Hence

µ (N) = ν (∆) = 0.

Now F = X\N is a closed set in X with

µ (X\F ) = 0, µ (F ) = µ (X) .

Thus F is a closed support for µ. If F ′ were any proper closed subset of F , then

G = X\F ′ would be an open set meeting F = X\N so that µ (G) would be positive

and µ (F ′) would be less than µ (F ). Hence F is a minimal closed support for µ.

To prove the result (e). For each n ≥ 1 and 0 ≤ α < β let H
(n)
α be the set

of points of Hα whose distance from X\Oα is at least 1/n. Hence each set H
(n)
α is a

relatively closed subset of Dα. Further, if 0 ≤ γ < δ < β, the distance between the

points of H
(n)
γ and X\Oγ is at least 1/n. Since H

(n)
δ ⊂ X\Oγ the distance between the

Fσ-sets H
(n)
γ and H

(n)
δ is at least 1/n. Thus the family

{

H(n)
α : 0 ≤ α < β

}

is a discrete family of Fσ-sets with Fσ-union. Hence

⋃

{Hα : 0 ≤ α < β} =
∞
⋃

n=1

⋃

{

H(n)
α : 0 ≤ α < β

}
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is an Fσ-set in X.

P r o o f o f C o r o l l a r y 2 (MS). Let µ be a Borel measure on (E,weak).

When the Borel sets of (E,weak) coincide with those on (E,norm), the measure µ is a

Borel measure on (E,norm) and so is a Radon measure on (E,norm) by the theorem.

Since each norm compact set is weakly compact, it follows that µ is a Radon measure

on (E,weak).

In order to apply Corollary 2 (MS) to Banach spaces with locally uniformly

convex norms or with Kadec norms we prove that the weak and the norm Borel sets of

E coincide when E has a Kadec norm. We follow the proof of Edgar [7], Theorem 1.1,

but we give more details and show that each norm open set is a countable union of

differences of weakly closed sets. Another proof of the equality of the two Borel families,

due to W. Schachermayer, is given by Edgar in [8].

We suppose that ‖·‖ is a Kadec norm on the Banach space E. It will be

convenient to use

I (y; r) = {x : ‖x− y‖ < r} ,

B (y; r) = {x : ‖x− y‖ ≤ r} ,

S (y; r) = {x : ‖x− y‖ = r} ,

to denote the open ball, the closed ball and the sphere with centre y and radius r > 0

in E.

Our first objective is to prove that, if y is any point of E with ‖y‖ = 1 and

ε > 0, then y does not belong to the weak closure

clw {B (0; 1) \B (y; ε)} .

Now

S (0; 1)
⋂

I

(

y;
1

2
ε

)

is an open subset of S(0; 1) in the norm topology on S(0; 1) and so also in the weak

topology on S(0; 1). Hence we can choose a weakly open neighbourhood V of 0 in E

so that

S(0; 1) ∩ (V + y) ⊂ S(0; 1) ∩ I(y;
1

2
ε).

Since the weakly open sets that are convex and symmetrical in 0 form a base for the

weak neighbourhoods of 0, we may take V to be such a convex symmetrical weakly
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open neighbourhood of 0. Now we can choose a δ > 0 with δ <
1

2
ε and

B (0; δ) ⊂
1

2
V.

Since ‖y‖ = 1, the point y is not in the weakly closed set B (0; 1 − δ). Hence

W =

(

y +
1

2
V

)

\B (0; 1 − δ)

is weakly open set containing y. We show that all points x of

W ∩B (0; 1)

lie in B (y; ε). For x in W ∩B (0; 1) we have

1 − δ < ‖x‖ ≤ 1 and x− y ∈
1

2
V.

Write

x′ = x/ ‖x‖ .

Then

∥

∥x− x′
∥

∥ =

∥

∥

∥

∥

x−
x

‖x‖

∥

∥

∥

∥

= ‖x‖−1 ‖(‖x‖ − 1) x‖

= |‖x‖ − 1|

< δ.

Thus

x′ =
(

x′ − x
)

+ (x− y) + y ∈ B (0; δ) +
1

2
V + y ⊂

1

2
V +

1

2
V + y = V + y.

Hence

x′ ∈ (V + y) ∩ S (0; 1) ⊂ I

(

y;
1

2
ε

)

.

Since x− x′ ∈ B (0; δ) < B

(

0;
1

2
ε

)

, this yields x ∈ B (y; ε). Thus

x ∈ B (y; ε) .

Hence W is a weakly open set containing y and not meeting

B (0; 1) \B (y; ε) .
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Thus, when ‖y‖ = 1 and ε > 0, the point y is not in

clw {B (0; 1) \B (y; ε)} .

Consider any weak open set U in E. Then U is also norm open. It follows that

every weak Borel set in E is a norm Borel set in E.

On the other hand let U be a norm open subset of E. We prove that U is a

countable union of differences of weakly closed subsets of E. Once proved this will

show that each norm Borel set in E is also a weak Borel set. The case when U = E is

trivial. So we may suppose that U is a proper subset of E. Further, after a translation,

we may suppose that 0 /∈ U . Consider the set

U ′ = ∪{B (0; r) ∩ intw (U ∪ E\B (0; r)) : r > 0, r rational} ,

where we use intw to denote the weak interior of a set. Clearly U ′ is a countable union

of differences of weakly closed sets. Further U ′ ⊂ U. We verify that in fact U ′ = U .

Consider any point y in U . Then we can choose ε > 0 so that

B (y; ε) ⊂ U.

Since ‖y‖ 6= 0, the result of the main paragraph implies that

y /∈ clw

{

B (0; ‖y‖) \B

(

y;
1

2
ε

)}

and so

y ∈ A = intw

{

B

(

y;
1

2
ε

)

∪ {E\B (0; ‖y‖)}

}

.

Since A is weakly open, for some rational r > ‖y‖ we have

y ∈ (r/ ‖y‖)A,

and

(r/ ‖y‖)B

(

y;
1

2
ε

)

⊂ B (y; ε) ⊂ U.

Thus

y ∈ (r/ ‖y‖)A = intw

{

(r/ ‖y‖)B

(

y;
1

2
ε

)

∪ {E\B (0; r)}

}

.

Since ‖y‖ < r we have y ∈ B (0; r) and so y ∈ U ′. Hence U = U ′, as required.
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We now turn our attention to Theorem 3 (PG). Let E be a Banach space and

let µ be a Radon measure on (E,weak). Then we can choose an increasing sequence

K0 = Ø,K1,K2, . . . of weakly compact sets with

lim
n→∞

µ (Kn) = µ (E) .

For each i ≥ 1, define set function µi on the weakly Borel sets B, by the formula

µi (B) = µ (B ∩Ki\Ki−1) .

Then µi is a Radon measure on (E,weak) supported by the weakly compact set Ki for

each i ≥ 1.

We next prove the following weak version of Theorem 3 (PG).

(f) If µ is a Radon measure on (E,weak) that is supported by a weakly compact set,

then µ extends from the weak Borel sets to form a Radon measure on (E,norm).

Consider a Radon measure µ on (E,weak) that is supported by a weakly com-

pact set K. Let F be the norm closure in E of the linear span of K. Then F is a Banach

subspace of E that inherits both its norm and its weak topologies from E. Since F is

weakly compactly generated, it has an equivalent Kadec norm and, consequently, the

weak and norm Borel sets coincide on F . Thus µ is already defined on the norm Borel

sets of F and can be extended to a norm Borel measure on E by taking

µ̂ (B) = µ (B ∩ F ) ,

for each norm Borel subset B of E.

Being a Radon measure on (F,weak), µ has a minimal weakly closed support,

say L. Then L is necessarily contained in the weakly compact set K, and so is weakly

compact. Now, we have µ (L ∩G) > 0 whenever G is a weakly open set that meets L.

Now L is fragmented by the norm, see, for example, Namioka [30] and [29]. This means

that for each δ > 0, each non-empty subset of L has a non-empty relatively weakly

open subset of diameter less than δ. In particular, we can choose a weakly open set

G with L ∩G a non-empty set of diameter less than δ. Let H be the weak closure of

L ∩G. Then the diameter of H, being equal to that of L ∩G, is less than δ. Further,

H, being a subset of K, is weakly compact. Now

µ(H) ≥ µ(L ∩G) > 0.
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Having established the existence of at least one weakly compact subset of H

with positive µ-measure and diameter less than δ, we may consider a maximal disjoint

family H of such weakly compact sets H contained in L with positive µ-measure and

diameter less than δ. Write

J =
⋃

{H : H ∈ H} .

Since µ is a finite measure, H is necessarily countable and so J is a weak Borel set. We

prove that

µ (J) = µ (L) .

Clearly µ (J) ≤ µ (L). If we had µ(J) < µ(L) then L\J would be a weak Borel set

of positive µ-measure, and so would contain a weakly compact set, say M , of positive

µ-measure. Applying to the restriction µ|M of µ to M , the argument we have applied

to µ on K, we could find within M , which is within L\J , a weakly compact set of

positive µ-measure and diameter less than δ. This would contradict the maximality of

the family H. Thus

µ (J) = µ (L)

as required.

Now, for each integer n ≥ 1, we can choose a set Jn that is a countable union

of weakly compact sets each of diameter less than 1/n with

Jn ⊂ L and µ (Jn) = µ (K) .

Now

C =
∞
⋂

n=1

Jn

is weak Borel set with a countable dense set and with µ (C) = µ (K). Thus the norm

closure of C is a complete separable metric space supporting the norm Borel measure

µ̂. By the result (a) obtained above, µ̂ is a Radon measure on (E,norm).

Applying this result to the measures µi introduced above we verify that

µ̂ =
∞
∑

i=1

µ̂i

is the extension of µ to form a Radon measure on (E,norm).

We now consider Theorem 4 (C), which is a simplified version of Choquet’s

capacitability theorem. Let X be a K-analytic space. Let µ be an inner regular Borel
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measure on X and let ε > 0 be given. Then X is a Hausdorff space and

X = K (M) ,

with K a compact valued upper semi-continuous set-valued map from a complete sepa-

rable metric space M . For each n ≥ 1, we can choose a sequence F (n,m), m = 1, 2, . . .

of closed subsets of M of diameter less than 1/n, covering M . Now

K

(

m
⋃

k=1

F (n, k)

)

, m = 1, 2, . . .

is an increasing sequence of K-analytic sets with union X. Since K-analytic sets are

µ-measurable, see, for example [25], Theorem 2.5.2 and Corollary 2.9.3, we can choose

m (n) so large that, on writing

Fn =

m(n)
⋃

k=1

F (n, k) ,

we have

µ (X\K (Fn)) < ε2−n.

Since each set Fn is a finite union of closed sets of diameter less than 1/n, the set

F =
∞
⋂

n=1

Fn

is a totally bounded complete metric space and so is compact. So K (F ), being the

upper semi-continuous image in X of a compact subset of M , is compact in X. Now

µ (X\K (F )) ≤
∞
∑

n=1

µ (X\K (Fn)) < ε.

This shows that µ is a Radon measure on X.

Now suppose that E is a Banach space that is K-analytic in its weak topology,

and that µ is an inner regular Borel measure on (E,weak). Theorem 4 (C) tells us

that µ is a Radon measure on (E,weak). Further, E has a Kadec norm so that the

weak and norm Borel sets on E coincide. By Theorem 3 (PG), µ is a Radon measure

on (E,norm). This yields Corollary 5 (C).
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To amplify our remarks concerning c0 (Γ) we note that c0 (Γ) is the space of all

bounded real-valued functions f on Γ such that for each ε > 0, {γ : |f(γ)|} is finite,

with the supremum norm

‖f‖ = sup {f (γ) : γ ∈ Γ} .

Let χγ be the function of c0 (Γ) defined by

χγ (γ) = 1,

χγ (δ) = 0, if δ ∈ Γ, δ 6= γ.

It is easy to verify that the set {χγ : γ ∈ Γ} is weakly discrete, norm discrete and norm

closed. However, as we remarked c0 (Γ) is weakly K-analytic and so weakly Lindelöf

and so can contain no weakly closed uncountable weakly discrete space.

4. The topology of pointwise convergence. In 1939 Dieudonné [5] showed

that the ordinal interval [0, ω1) with its order topology provided an example of a normal

space that admits no complete uniform structure. In particular, he showed that if A

and B are disjoint closed subsets of [0, ω1), then at least one of the sets A and B is

bounded in the order topology. Starting from this observation, Halmos [15], Exercise

10 on page 231 (see also his references on page 292 and his acknowledgments on page

vii, where Halmos attributes this exercise to Dieudonné), observed that the family H

of all closed unbounded subsets of [0, ω1) is closed under countable intersections, and

deduced that, if B is any Borel set in [0, ω1), then either B contains some set H of H

or [0, ω1)\B contains such a set (but of course not both). It is easy to check that the

measure ν defined for each Borel set B by

ν(B) = 1, if H ⊂ B for some H ∈ H,

ν(B) = 0, if H ⊂ [0, ω1)\B for some H ∈ H.

As an introduction to the use of Talagrand’s methods to prove Theorems 6 to

10, we prove Theorem 11, stated in the introduction, by showing how the construction

of the above measure can be lifted from [0, ω1) to ℓ∞c (Γ), when Γ is an uncountable

discrete set.

P r o o f o f T h e o r em 11. With a minor abuse of notation, let Γ also denote

the least ordinal with cardinal equal to that of the discrete set Γ. Let F be the subset

of ℓ∞c (Γ) consisting of all bounded functions f on Γ satisfying the conditions:
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(a) f(γ) = 0 or 1 for 0 ≤ γ < Γ; and

(b) if f(γ) = 1, then f(δ) = 1 when 0 ≤ δ < γ < Γ.

Here the condition (b) can be rewritten in the form

(b′) (f(δ), f(γ)) = (0, 0), (1, 0) or (1, 1) when 0 ≤ δ < γ < Γ.

It is now clear that F is a closed subset of the space X taken to be ℓ∞c (Γ) with the

topology of pointwise convergence on Γ. Further, these conditions, together with the

condition of countable support, ensure that we have

f(γ) = 0 for ω1 ≤ γ < Γ,

for all f in F .

It will be convenient to index the functions f in F by the ordinals γ less than

ω1. For each γ with 0 ≤ γ < ω1 we use f (γ) to denote the function f in F uniquely

defined by

f(δ) = 1 for 0 ≤ δ < γ,

f(δ) = 0 for γ ≤ δ < Γ.

Note that, for 0 ≤ γ < ω1, the function f (γ) defined in this way is a bounded function

with countable support, satisfying the conditions (a) and (b), and so belongs to F . On

the other hand, if f is any function in F , the condition of countable support ensures

that f(δ) = 0 for some δ with 0 ≤ δ < ω1, the conditions (a) and (b) then ensure that

f = f (γ) with γ the least ordinal δ with f(γ) = 0. Thus we have a one-to-one mapping

γ ↔ f (γ) between the countable ordinals and the functions of F .

It will be convenient to say that a subset H of F has no countable bound if,

for each γ with 0 ≤ γ < ω1, there is a function f (δ) in H with γ < δ. Following the

construction method outlined above, we study the family H of all subsets H of F that

are closed (i.e. pointwise closed) and without any countable bound.

We note that if γ(1), γ(2), . . . is any strictly increasing sequence of ordinals

converging to a countable ordinal γ, then f (γ) belongs to the closure of the set

{fγ(n)) : n ≥ 1}.

To verify this, first note that the condition that γ(1), γ(2), . . . is a strictly increasing

sequence ensures that γ is a limit ordinal. Thus f (γ) has

f(δ) = 1 for 0 ≤ δ < γ,

f(δ) = 0 for γ ≤ δ < Γ.
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Now any open neighbourhood of f (γ) contains a basic open neighbourhood of f (γ). The

condition that a function f of F lies in such a basic open neighbourhood is of the form

f(ρ) = 1 for a finite number of ordinals ρ all less than γ,

f(ρ) = 0 for a finite number of ordinals ρ all at least γ.

This condition is satisfied by all the functions f (γ(n)) with n so large that γ(n) exceeds

all the ρ < γ with f(ρ) restricted to take the value 1. Thus f (γ) belongs to the closure

of the set {f (γ(n)) : n ≥ 1}, as required.

We now show that the family H is closed under the operation of countable

intersection. Let H1,H2, . . . be any countable sequence of sets in H. Let β be a given

countable ordinal. Since none of the sets has a countable bound we can find a strictly

increasing sequence δ(1), δ(2), . . . of ordinals all exceeding β and all countable so that

f (δ(ℓ)) ∈ Hm with ℓ = 2n(2m− 1).

The supremum λ of the sequence δ(1), δ(2), . . . is the limit of each of the sequences

δ(2n(2m− 1)), n = 0, 1, . . .

for each m ≥ 1. Hence the function f (λ), with λ > β, is a common point of all the sets

Hm,m ≥ 1. Thus
∞
⋂

m=1

Hm ∈ H.

We next observe that, if M is any closed subset of F , either M has no countable

bound and M ∈ H, or M has a countable bound, say β, and F\M contains the set

{f (γ) : β ≤ γ < ω1}

which belongs to H.

Take M to be the family of all subsets M of F such that either M contains a set

in H or F\M contains a set in H. By the remark of the last paragraph, M contains all

closed sets in F . Directly from the definition, M is closed under complementation. If

M1,M2, . . . is any sequence of sets of M, either one at least of the sets contains a set of

H in which case
⋃∞

n=1Mn contains such a set, or each complementary set F\Mn, n ≥ 1,

contains a set of H in which case

∞
⋂

n=1

(F\Mn) = F\
∞
⋃

n=1

Mn
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contains a set of H. Thus M is closed under countable unions. Hence M contains all

Borel subsets of F .

We now define a set function µ on the Borel sets B of

X = (ℓ∞c (Γ), pointwise)

by taking

µ(B) = 1, if F ∩B contains a set of H,

µ(B) = 0, otherwise.

Clearly µ takes only the values 0 and 1, takes the value 0 on each one-point set, and

takes the value 1 on F and so also on X. We verify that µ is additive over countable

disjoint unions of Borel sets. Let B1, B2, . . . be any sequence of disjoint Borel sets in

X. Perhaps µ(Bi) = 0 for i ≥ 1. In this case F ∩ Bi contains no set of H, so F\Bi

and contains a set of H for i ≥ 1, and F\
⋃

Bi contains a set of H, so that F ∩
⋃

Bi

contains no set of H and µ(
⋃

Bi) = 0. On the other hand if µ(Bi) = 1 for some i ≥ 1,

say for i∗, then F ∩ Bi∗ contains a set of H but the sets F ∩Bi, i ≥ i∗, being disjoint

from F ∩Bi∗ , can contain no set of H. Thus

µ(Bi∗) = 1, µ(Bi) = 0 for i 6= i∗,

and

µ(
∞
⋃

i=1

Bi) = 1 =
∞
∑

i=1

µ(Bi).

This shows that µ is a Borel measure on X. However µ can have no minimal closed

support and so is not a Radon measure.

Much of this proof of Theorem 11 would work for the space (ℓ∞c (Γ), weak).

However, the set F turns out to be discrete in the weak topology, causing a fundamental

breakdown.

We remark that if [0, ω1] is the space of ordinals with the order topology and

C1([0, ω1]) is the Banach space of bounded Baire first class functions (i.e. pointwise

limits of sequences of continuous functions) on [0, ω1] with the supremum norm, then

essentially the same proof yields a Borel measure on (C1([0, ω1]), pointwise) that is not

a Radon measure.

5. A Reduction. The conditions (a) and (b) in Theorem 8, which is our

main theorem, come from the work of de Maria and Rodriguez-Salinas [3]. They are
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relatively easy to check, but are not in a form really suited to our purpose. For this

reason we prove a lemma showing that these conditions ensure the existence of a family

C of clopen sets. Note that a set C of C can be regarded as bounded by the ordinal

γ if C ⊂ Dγ . The existence of such a family C of clopen sets in ℓ∞c (Γ), when Γ is an

uncountable discrete set, is the basis of Talagrand’s proof of his Theorem 6, stated in

the introduction.

Lemma 12. Let K be a compact Hausdorff space with a non-empty family D of

non-empty proper clopen subsets with the properties (a) and (b) of Theorem 8. Then,

for some ordinal Γ, of uncountable cofinality, there is a maximal strictly increasing

sequence
{

D(γ) : 0 ≤ γ < Γ
}

of sets chosen from D. Further, the family C of all clopen subsets C of K, satisfying

C ⊂ D(γ) for some γ with 0 ≤ γ < Γ,

has the following properties.

(c) If C1 and C2 belong to C, then so do C1 ∪ C2, C2 ∩ C2 and C2\C1.

(d) If C1, C2, . . . and C ′
1, C

′
2, . . . are increasing sequences of sets of C with

Cn ∩ C ′
n = Ø, for n ≥ 1,

then there are disjoint sets C0 and C ′
0 in C with

Cn ⊂ C0 and C ′
n ⊂ C ′

0, for n ≥ 1.

In particular C0, can be chosen when C ′
0 = C ′

1 = C ′
2 = . . . = Ø.

(e) No countable union of sets from C coincides with

⋃

{C : C ∈ C} .

(f) If µ is any Radon measure on K, there is a C in C with the property that

µ (I) = µ (J)

whenever I and J are clopen sets in C with

C ∩ I = C ∩ J.
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P r o o f. Since D is a non-empty family we can choose a set D(0) in D. By trans-

finite induction we can choose a maximal strictly increasing sequence (finite, infinite or

transfinite)

{D(γ) : 0 ≤ γ < Γ}

of sets of D. By the maximality, the set

D(Γ) =
⋃

{

D(γ) : 0 ≤ γ < Γ
}

is properly contained in no element of D. If Γ were of countable cofinality, there would

be an increasing sequence α (n), n ≥ 1, with 0 ≤ α (n) < Γ, and

⋃

{

D(α(n)) : n ≥ 1
}

= D(Γ).

By condition (a) this set is properly contained in a set of D, providing a contradiction.

Thus Γ is of uncountable cofinality.

We now define C to be the family of all clopen subsets C of K, for which there

is a γ, with 0 ≤ γ < Γ and

C ⊂ D(γ).

This ensures that each C in C is a proper subset of K.

If C1 and C2 are sets of C, we can choose γ1 and γ2 with 0 ≤ γ1 < Γ and

0 ≤ γ2 < Γ, so that

C1 ⊂ D(γ1) and C2 ⊂ D(γ2).

Taking γ3 = max {γ1, γ2} we have 0 ≤ γ3 < Γ and C1 ∪ C2, C1 ∩ C2 and C2\C1 are

clopen sets of K contained in D(γ3) and so belong to C. Thus condition (c) is satisfied.

Now suppose that C1, C2, . . . and C ′
1, C

′
2, . . . are increasing sequences of sets of

C with

Cn ∩C ′
n = Ø, for n ≥ 1.

Since Cn ∪ C ′
n ∈ C, we can choose α (n) with 0 ≤ α (n) < Γ and

Cn ∪ C ′
n ⊂ D(α(n)), for n ≥ 1.

Since Γ is of uncountable cofinality, we can choose γ with 0 ≤ α (n) ≤ γ < Γ, for n ≥ 1.

By condition (b) there are disjoint clopen sets S0 and S′
0 in K with

Cn ⊂ S0 and C ′
n ⊂ S′

0, for n ≥ 1.
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Now

C0 = S0 ∩D
(γ) and C ′

0 = S′
0 ∩D

(γ)

are disjoint clopen sets in C with

Cn ⊂ C0 and C ′
n ⊂ C ′

0, for n ≥ 1.

Thus condition (d) is satisfied.

If C1, C2, . . . is any sequence of sets of C, the argument of the last paragraph

shows that there is a γ with 0 ≤ γ < Γ and

Cn ⊂ D(γ), for n ≥ 1.

Thus
⋃

{Cn : n ≥ 1} ⊂ D(γ)

and D(γ) is a proper subset of D(γ+1) which is contained in

⋃

{C : C ∈ C} .

Hence condition (e) is satisfied.

Now let µ be a Radon measure on K. Then µ is τ -additive. Since the family

{

D(γ) : 0 ≤ γ < Γ
}

is a nested family of open subset of K,

sup
{

µ
(

D(γ)
)

: 0 ≤ γ < Γ
}

= µ
(

⋃

{

D(γ) : 0 ≤ γ < Γ
})

.

Hence we can choose a sequence α (n), n ≥ 1, of ordinals with 0 ≤ α (n) < Γ, and

lim
n→∞

µ
(

D(α(n))
)

= µ
(

D(Γ)
)

with D(Γ) the open set

D(Γ) =
⋃

{

D(γ) : 0 ≤ γ < Γ
}

.

Since Γ is of uncountable cofinality, we can choose γ with α (n) < γ < Γ for n ≥ 1.

Now

µ
(

D(Γ)
)

= lim
n→∞

µ
(

D(α(n))
)

≤ µ
(

D(γ)
)

≤ µ
(

D(Γ)
)

.
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Thus

µ
(

D(γ)
)

= µ
(

D(Γ)
)

.

Write C = D(γ). Now when I and J are sets in C with

C ∩ I = C ∩ J

we have

I ∪ J ⊂ D(Γ)

and

I△J = (I\J) ∪ (J\I) ⊂ D(Γ)\D(γ),

so that

µ (I△J) ≤ µ
(

D(Γ)\D(γ)
)

= 0,

and

µ (I) = µ (J) .

Thus condition (f) holds, as required.

6. The Main Theorem. In this section we assume that K is a compact

Hausdorff space with a non-empty family D of non-empty proper clopen subsets with

the properties (a) and (b) of Theorem 8. We assume, as we may, that the sequence

{

D(γ) : 0 ≤ γ < Γ
}

and the family C are those provided by Lemma 12. We prove a sequence of lemmas

that enable us to prove Theorem 8. We shall make use of methods used by Talagrand

and by de Maria and Rodriguez-Salinas in their considerations of their special spaces.

We shall mainly work within the set

I = {χC : C ∈ C}

of characteristic functions of sets in C. Since each set in C is clopen in K, the set I is

a subset of the space C (K) of continuous functions on K.

The reader who looks forward to the proof of Theorem 8 and the statement of

Lemma 18 will see that once the family H of subsets of I, satisfying the conditions 1-4

of Lemma 18, has been constructed the proof of Theorem 8 follows the simple pattern

of the proof of Theorem 11. The main difficulty being the construction of the family

H.
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We need to introduce and to study some families of sets in C (K). For each C

in C we introduce the sets

FC = {f ∈ I : f(x) = 1 for all x ∈ C},

GC = {f ∈ I : f(x) = 0 for all x ∈ C}.

We use E1 to denote the unit ball of C (K) with its weak topology, and E∗ and

E∗
1 to denote the dual Banach space of C (K) and its unit ball, both taken with the

weak∗ topology.

We next introduce some families of open subsets of I taken with its weak topol-

ogy; we can think of these open sets as ‘thick’ or ‘coarse’. For each integer p ≥ 1, we

introduce the family Vp of all sets of the form

V (p,y∗, z) = {f ∈ I : |y∗i (f) − zi| < 1/p, 1 ≤ i ≤ p} ,

where

y∗ = (y∗1 , y
∗
2, . . . , y

∗
p) ∈ (E∗

1)p,

z = (z1, z2, . . . , zp) ∈ (R1)
p,

with R1 = [−1, 1]. If N is any neighbourhood in I of a point g in I, it is possible to find

a set V (p, y∗, z) containing g and contained in N , by taking p to be sufficiently large,

taking y∗1, y
∗
2 , . . . , y

∗
p to be suitable points of E∗

1 and then taking zi = y∗i (g) = 〈g, y∗i 〉,

for 1 ≤ i ≤ p. Note that the conditions ‖g‖ ≤ 1, ‖y∗i ‖ ≤ 1 for 1 ≤ i ≤ p, ensure that

the requirement that zi ∈ R1 is satisfied for 1 ≤ i ≤ p. Thus the family

V =
∞
⋃

p=1

Vp

is a base for the open sets of I.

We take Qp to be the family of all (arbitrary) unions of sets taken from Vp, and

write

Q =
∞
⋃

p=1

Qp.

Thus the family Q is a family of (coarse) open subsets of I, and each open subset G of

I has the form

G =
∞
⋃

p=1

⋃

{V ∈ Vp : V ⊂ G}
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and so is a countable union of sets of Q.

We can now introduce the families of sets that we really have to study. Write

L1 = {Q ∈ Q : Q ∩ FC 6= Ø for all C in C} ,

L2 = {I\Q : Q ∈ Q and Q /∈ L1} ,

L = L1 ∪ L2.

Here the sets in L1 are ‘large’ since they are ‘course’ open sets that meet all sets

FC with C ∈ C. The sets in L2 are ‘large’, since they are complements of sets that are

not ‘large’. The family H will later be taken to be the set of all countable intersections

of members of L.

We now prove

Lemma 13. The families Q and L satisfy the following conditions.

(α) Each open set in I is a countable union of sets from Q.

(β) For each Q in Q, either Q ∈ L or I\Q ∈ L.

(γ) The intersection of all the sets of L is empty.

P r o o f. We have already noted the condition (α). The result (β) follows from

the definition of L; the question of whether Q ∈ L or I\Q ∈ L depending on whether

or not Q ∈ L1.

To prove (γ) we consider the sets

Mx = {g ∈ I : g (x) > 0} ,

where x ∈ C ∈ C. For each such x, Mx is an open set in I that is of the form

{g ∈ I : |g (x) − 1| < 1} ,

and so belongs to V1 ⊂ Q1. Further, for any C ′ ∈ C and x ∈ C ∈ C, we have

χC∪C′ ∈Mx ∩ FC′ ,

so that Mx ∩FC′ 6= Ø. Thus Mx ∈ L1. However, the only point of I that could belong

to
⋂

{Mx : x ∈ C ∈ C}

is the characteristic function of

⋃

{C ∈ C} = D(Γ).
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Since, by the construction of the sequence

{

D(γ) : 0 ≤ γ < Γ
}

,

we have

D(Γ) /∈ C,

the characteristic function does not belong to I. Thus

⋂

{Mx : x ∈ C ∈ C} = Ø

and so
⋂

{L : L ∈ L1} = Ø,

as required.

Our next objective is to establish the result.

(δ) The intersection of any countable sequence of sets from L is non-empty.

We first prove

Lemma 14. Let L1, L2, . . . be any countable sequence of sets chosen from L2.

Then there is a set C in C with

FC ⊂
∞
⋂

n=1

Ln.

P r o o f. By the definition of L2, for each n ≥ 1, we have

Ln = I\Qn

with Qn ∈ Q\L1. By the definition of L1, we can choose C (n) in C with

Qn ∩ FC(n) = Ø, n ≥ 1.

Thus

FC(n) ⊂ Ln, n ≥ 1.

By condition (d) we can choose C in C with

∞
⋃

n=1

C (n) ⊂ C.
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This ensures that

FC ⊂
∞
⋂

n=1

FC(n) ⊂
∞
⋂

n=1

Ln,

as required.

Our next lemma is also simple.

Lemma 15. Suppose that L in L1 is of the form

L =
∞
⋃

n=1

Qn

with each set Qn in Q. Then for at least one n ≥ 1 we have

Qn ∈ L1.

P r o o f. For each γ with 0 ≤ γ < Γ, we have

L ∩ FD(γ) 6= Ø,

so that

Qn ∩ FD(γ) 6= Ø,

for at least one n = n (γ). Let Γ (n) be the set of all γ with 0 ≤ γ < Γ and

Qn ∩ FD(γ) 6= Ø.

Then
∞
⋃

n=1

Γ (n) = {γ : 0 ≤ γ < Γ} .

Since Γ is of uncountable cofinality, at least one of the sets Γ (n), say Γ (n∗), is cofinal

in Γ. Now, for each C in C, there is a γ∗ in Γ (n∗) with C ⊂ D(γ∗), so that

Ø 6= Qn∗ ∩ FD(γ∗) ⊂ Qn∗ ∩ Fc.

Thus Qn∗ ∈ L1, as required.

We recall that the sets FC and GC for C in C are defined by

FC = {f ∈ I : f(x) = 1 for all x ∈ C},
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GC = {f ∈ I : f(x) = 0 for all x ∈ C}.

The next lemma is the most difficult step in the proof. It is the key to the proof

that the intersection of any countable sequence of sets from L is non-empty. It depends

essentially on the introduction of the ‘course’ open sets and uses, for the first time, the

condition (f) of Lemma 12, in order to make the choice of the sets U0 and U1 possible.

Notice that any set of the form

FU1 ∩GU0 ,

with U0, U1 dispoint sets in C, is necessarily ‘large’ in a new sense, since the condition

f ∈ FU1 ∩GU0 restricts the values of f only on the set U0 ∩ U1.

Lemma 16. Let L be a set in L1. Then there is a set A in C such that for

any sets R,S in C with

A ⊂ R ⊂ S,

there are sets U0 and U1 in C with

R ⊂ U1, S\R ⊂ U0,

U0 ∩ U1 = Ø,

and

FU1 ∩GU0 ⊂ L.

P r o o f. Since L ∈ L1 we have L = Q where

Q ∈ Qp,

for some p ≥ 1, and Q is of the form

Q =
⋃

{V (p,y∗, z) : (y∗, z) ∈ Z}

with

Z ⊂ (E∗
1)p × (R1)

p ,

and, for each set C of C,

Q ∩ FC 6= Ø.

For each (y∗, z) in Z, we can write

V (p,y∗, z) =
⋃

q>p

W (p, q,y∗, z) ,
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with

W (p, q,y∗, z) =
{

f ∈ I : |y∗i (f) − zi| < p−1 − q−1, 1 ≤ i ≤ p
}

.

Thus

Q =
⋃

q>p

Qq

with

Qq =
⋃

{W (p, q,y∗, z) : (y∗, z) ∈ Z} .

Clearly each set Qq, q > p, belongs to Q. Hence, by Lemma 15, we can choose a fixed

q > p so that

Qq ∈ L1.

Now for each γ with 0 ≤ γ < Γ,

Qq ∩ FD(γ) 6= Ø,

and so we can choose
(

y∗
γ , zγ

)

in Z with

W
(

p, q,y∗
γ , zγ

)

∩ FD(γ) 6= Ø.

Since E∗
1 is the unit ball of the dual space of C (K) taken with its weak topology and

R1 is the unit interval [−1, 1], the set (E∗
1)p × (R1)

p is compact. Hence the transfinite

sequence
(

y∗
γ , zγ

)

, 0 ≤ γ < Γ,

has a cluster point, (η∗, ζ) say, in (E∗
1)p×(R1)

p, that is a point (η∗, ζ) with the property

that for any open neighbourhood N of (η∗, ζ) in (E∗
1)p × (R1)

p the set of ordinals γ

with
(

y∗
γ , zγ

)

∈ N

is cofinal in Γ.

Now η∗i =
(

η∗1 , η
∗
2 , . . . , n

∗
p

)

where each element η∗i , 1 ≤ i ≤ p, of E∗
1 takes the

form

〈f, η∗i 〉 =

∫

fdµi

where µi is the difference of two Radon measures on K. By the conditions (f) and (c)

of Lemma 12 we can choose a set A in C so that
∫

fdµi =

∫

gdµi, 1 ≤ i ≤ p,
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for all pairs f , g of continuous characteristic functions that coincide on A. Thus

〈f, η∗i 〉 = 〈g, η∗i 〉 , 1 ≤ i ≤ p,

whenever f and g functions of I that coincide on A.

The set A having been chosen in this way, we show that it satisfies the requirement

of the lemma. We suppose that R and S are any sets in C with

A ⊂ R ⊂ S.

Then S\R ∈ C and so χS\R ∈ I. We consider the neighbourhood N of (η∗, ζ) in

(E∗
1)p × (R1)

p defined to be the set of points (y∗, z) with

∣

∣

∣y∗i (χS\R) − η∗i (χS\R)
∣

∣

∣ < (2q)−1, 1 ≤ i ≤ p,

|zi − ζi| < (2q)−1, 1 ≤ i ≤ p.

Since (η∗, ζ) is a cluster point of the sequence

(

y∗
γ , zγ

)

, 0 ≤ γ < Γ,

we can choose γ with 0 ≤ γ < Γ,

S ⊂ D(γ),

and
(

y∗
γ , zγ

)

∈ N.

By the choice of
(

y∗
γ , zγ

)

, we have

W
(

p, q,y∗
γ , zγ

)

∩ FD(γ) 6= Ø,

and so we can choose h = χT for some set T in C with

S ⊂ D(γ) ⊂ T,

and

χT ∈W
(

p, q,y∗
γ , zγ

)

.

By the definition of W
(

p, q,y∗
γ , zγ

)

, we have

∣

∣

∣y∗γ,i (χT ) − zγ,i

∣

∣

∣ ≤ p−1 − q−1, 1 ≤ i ≤ p.
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Now

(S\R) ∩A = Ø,

so that χS\R vanishes on A and

η∗i

(

χS\R

)

= 0, 1 ≤ i ≤ p.

Since
(

y∗
γ , zγ

)

∈ N , we have

∣

∣

∣y∗γ,i

(

χS\R

)

− η∗i

(

χS\R

)∣

∣

∣ < (2q)−1 , 1 ≤ i ≤ p,

∣

∣zγ,i − ζi
∣

∣ < (2q)−1 , 1 ≤ i ≤ p.

Thus
∣

∣

∣y∗γ,i

(

χS\R

)
∣

∣

∣ < (2q)−1 , 1 ≤ i ≤ p.

Since
∣

∣

∣y∗γ,i (χT ) − zγ,i

∣

∣

∣ < p−1 − q−1, 1 ≤ i ≤ p,

these inequalities imply that

χT − χS\R ∈ V
(

p,y∗
γ , zγ

)

.

Using the conditions (f) and (c) again we can choose U in C with T ⊂ U so that

y∗γ,i (χC) = y∗γ,i (χC′) , 1 ≤ i ≤ p,

whenever C,C ′ in C satisfy

U ∩ C = U ∩C ′.

It follows that if Θ is any set in C and χΘ coincides with χT − χS\R on U , then

χΘ ∈ V (p, y∗γ , zγ).

Recall the inclusions

A ⊂ B ⊂ R ⊂ S ⊂ T ⊂ U

and note their alphabetical nature. Take

U1 = R ∪ (T\S),
U0 = (S\R) ∪ (U\T ).

Then U0, U1 belong to C and

U0 ∩ U1 = Ø, U0 ∪ U1 = U,
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R ⊂ U1 and S\R ⊂ U0.

Consider any function f in fU1 ∩GU0 . Then f = χΘ with Θ a set of C with

U1 ⊂ Θ, U0 ∩ Θ = Ø.

Write

Φ = Θ\U.

Then Φ ∈ C and it is easy to check that

χΘ = χT − χS\R + χΦ.

Thus the functions χΘ and χT − χS\R coincide on U , and so

χΘ ∈ V (p, y∗γ , zγ) ⊂ L.

Hence

FU1 ∩GU0 ⊂ L,

as required.

Our next lemma uses condition (d) of Lemma 12 to prove that the intersection

of the ‘large’ sets

FU1(n) ∩GU0(n), n ≥ 1,

contained in the sets

L(1)
n , n ≥ 1,

contains the ‘large’ set

FU1 ∩GU0

contained in
⋂∞

n=1 L
(2)
n .

Lemma 17. Let H be the intersection of a countable sequence of sets of L.

Then for some disjoint sets U1, U0 in C, we have

Ø 6= FU1 ∩GU0 ⊂ H.

P r o o f. We write

H =

(

∞
⋂

n=1

L(1)
n

)

∩

(

∞
⋂

n=1

L(2)
n

)

,
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with L
(1)
n , n ≥ 1, a sequence of sets of L1 and L

(2)
n , n ≥ 1, a sequence of sets of L2. By

Lemma 14 we can choose a set A(0) in C with

FA(0) ⊂
∞
⋂

n=1

L(2)
n .

By Lemma 16, for each n ≥ 1, there is a set A (n) in C, such that the conclusion

of Lemma 16 holds when A = A (n) and L = L
(1)
n . Using the conditions (d) and (c) of

Lemma 12 we can choose B in C, independent of n, with

A (n) ⊂ B, for n ≥ 0.

This ensures, in the first place, that

FB ⊂ FA(0) ⊂
∞
⋂

n=1

L(2)
n .

Secondly, for each n ≥ 1, for any sets R, S in C with

B ⊂ R ⊂ S,

we have A(n) ⊂ R ⊂ S, and there are sets U1 (n) and U0 (n) in C with

R ⊂ U1 (n) , S\R ⊂ U0 (n) ,

U0 (n) ∩ U1 (n) = Ø,

and

FU1(n) ∩GU0(n) ⊂ L(1)
n .

By a suitable inductive choice of R (n) and S (n), we shall ensure the existence

of such sets

U0 (n) , U1(n), n = 1, 2, . . . with

U0 (1) ⊂ U0 (2) ⊂ . . . ,

U1 (1) ⊂ U1 (2) ⊂ . . . .

We start the inductive process by taking R(1) = S(1) = B, and choosing U0(1),

U1(1) in C with

R(1) ⊂ U1(1), U0(1) ∩ U1(1) = Ø,
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and

FU1(1) ∩GU0(1) ⊂ L(1)
n .

When n ≥ 1, and R (n), S (n), U0 (n) and U1 (n) have been chosen in C with

B ⊂ R (n) ⊂ S (n) ,

R (n) ⊂ U1 (n) , S (n) \R (n) ⊂ U0 (n) ,

U0 (n) ∩ U1 (n) = Ø,

we take R (n+ 1) = U1 (n), and S (n+ 1) = U0 (n) ∪ U1 (n), so that

R(n+ 1) and S(n+ 1)

are sets of C with

B ⊂ U1 (n) = R (n+ 1) ,

R (n+ 1) ⊂ U0 (n) ∪ U1 (n) = S (n+ 1) .

This ensures that

U0 (n) = S (n+ 1) \R (n+ 1) .

By our condition, we can then choose U0 (n+ 1) and U1 (n+ 1) in C with

U1 (n) = R (n+ 1) ⊂ U1 (n+ 1) ,

U0 (n) = S (n+ 1) \R (n+ 1) ⊂ U0 (n+ 1) ,

U0 (n+ 1) ∩ U1 (n+ 1) = Ø,

and

FU1(n+1) ∩GU0(n+1) ⊂ L
(1)
n+1.

In this way we construct increasing sequences of sets of C,

B ⊂ U1 (1) ⊂ U1 (2) ⊂ . . . ⊂ U1 (n) ⊂ . . . ,

U0 (1) ⊂ U0 (2) ⊂ . . . ⊂ U1 (n) ⊂ . . . ,

with

U0 (n) ∩ U1 (n) = Ø,

FU1(n) ∩GU0(n) ⊂ L(1)
n ,
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for n ≥ 1. By condition (d) we can choose sets U0 and U1 in C with

U0 (n) ⊂ U0, n ≥ 1,

U1 (n) ⊂ U1, n ≥ 1,

U0 ∩ U1 = Ø.

Since U0, U1 are disjoint sets of C

FU1 ∩GU0 6= Ø.

Now

FU1 ∩GU0 ⊂ FA(0) ⊂
∞
⋂

n=1

L(2)
n ,

FU1 ∩GU0 ⊂ FU1(n) ∩GU0(n) ⊂ L(1)
n , n ≥ 1,

so that

Ø 6= FU1 ∩GU0 ⊂

(

∞
⋂

n=1

L(1)
n

)

∩

(

∞
⋂

n=1

L(2)
n

)

= H

as required.

We have now verified that the families Q and L satisfy the conditions (α), (β),

(γ) of Lemma 13 and the condition (δ) stated just before Lemma 14.

Lema 18. The family H of all countable intersections of sets from L has the

following properties.

1. The family H of subsets of I is closed under countable intersections.

2. The intersection of all the sets in H is empty.

3. Each set H in H is uncountable.

4. For each Borel subset B of I, either B or I\B contains a set H of H.

P r o o f. The property (1) is immediate from the definition of H. The property

(2) follows immediately from condition (γ) of Lemma 13.

If H ∈ H, then Lemma 17 ensures the existence of disjoint sets U1, U0 in C with

FU1 ∩GU0 ⊂ H.
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We can choose γ with 0 ≤ γ < Γ and

U0 ∪ U1 ⊂ D(γ).

Now there are uncountably many disjoint clopen sets in C of the form

D(δ+1)\D(δ), γ < δ < Γ,

all being non-empty. So the characteristic functions of the sets

U1 ∪
(

D(δ+1)\D(δ)
)

, γ < δ < Γ

form an uncountable system of distinct points in

FU1 ∩GU0 .

Hence H is uncountable and H has the property (3).

Now consider the family A of all subsets A of I, with the property:

either A contains a set of H,

or I\A contains a set of H.

By condition (β) of Lemma 13, the family Q is contained in A. By the defining property

A is closed under the operation of complementation with respect to I. Now suppose

that A1, A2, . . . is any sequence of sets in A. If any one of the sets Ai, i ≥ 1, contains

a set of H, then so does their union. If none of the sets Ai, i ≥ 1, contain a set of H,

then for each i ≥ 1, the set I\Ai contains a set, Hi say, of H and

I\
∞
⋃

i=1

Ai ⊃
∞
⋂

i=1

Hi ∈ H.

Thus, in each case,
∞
⋃

i=1

Ai ∈ A.

Thus A is closed under countable unions. Since each open subset of I is a countable

union of sets of Q, each open subset of I belongs to A. Hence A contains all the Borel

subsets of I and H has the property (4), as required.

P r o o f o f T h e o r e m 8. Let K be a compact Hausdorff space satisfying the

conditions of Theorem 8. Then Lemmas 12 to 18 ensure the existence of a family H of

subsets of C (K) with the properties (1) to (4) of Lemma 18.



Radon Measures on Banach Spaces with their Weak Topologies 321

We define a set function ν on the Borel sets B of (C(K), weak) by taking

ν (B) = 0 if B ∈ B and B ∩ I contains no set H in H,

ν (B) = 1 if B ∈ B and B ∩ I contains some set H in H.

Then ν is a set-function defined on B taking only the values 0 or 1. By the property

(3), no countable set can contain a set of H, and so all countable sets are assigned the

value 0. By property (4), since I\I = Ø contains no set of H, I itself must contain a

set of H and so ν (I) = 1.

Now consider any disjoint sequence B1, B2, . . . of sets of B. If for some i we

have ν (Bi) = 1, then Bi ∩ I contains some set H of H. Hence

B0 =
∞
⋃

k=1

Bk

contains H and ν (B0) = 1. However, for j 6= i,

Bj ∩ I ⊂ I\Bi

and Bj ∩ I can contain no set of H. Thus ν (Bj) = 0 for j 6= i. Hence

1 = ν (B0) = ν (Bi) =
∞
∑

k=1

ν (Bk) .

On the other hand, if for no i ≥ 1, do we have ν (Bi) = 1, then each I\Bi contains a

set, Hi say, of H, so that
∞
⋂

i=1

I\Bi ⊃
∞
⋂

i=1

Hi ∈ H

and

ν

(

I\
∞
⋃

i=1

Bi

)

= 1.

In this case

ν

(

∞
⋃

i=1

Bi

)

= 0 =
∞
∑

i=1

ν (Bi) .

Thus ν is countably additive on B and ν is a countably additive Borel measure on

(C(K), weak) taking only the values 0 and 1 and taking the value 0 on each point of I

and the value 1 on I.
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To prove that ν is non-τ -additive we consider two cases. First suppose that

each point f of C (K) has a weak neighbourhood, Gf say, of ν-measure zero. Then for

all countable sequences f1, f2, . . . in C (K)

ν

(

∞
⋃

i=1

Gfi

)

= 0,

but

ν
(

⋃

{Gf : f ∈ C (K)}
)

= ν (C (K)) = 1.

Thus, in this case ν is non-τ -additive. Secondly suppose that there is a point f of C (K)

that has no weak neighbourhood of measure zero. Since (C(K), weak) is Hausdorff, for

each point g 6= f of I we can choose disjoint weak neighbourhoods Ng of f and Gg of

g. Then

ν (Ng ∩ I) = 1

so that

ν(Gg ∩ I) = 0,

for all g 6= f . Now, for any sequence g1, g2, . . . of functions of C (K) distinct from f we

have

ν

(

∞
⋃

i=1

Ggi
∩ I

)

= 0.

However

ν
(

⋃

{Gg ∩ I : g 6= f, g ∈ I}
)

= ν (I\ {f}) = 1.

Thus we again conclude that ν is non-τ -additive. Thus ν is not a Radon measure.

Of course, this last argument is well-known and works in any Hausdorff space;

it is only included for completeness.

7. Talagrand’s Theorem. In this section we deduce Talagrand’s theorem as

a consequence of Theorem 8. However, we cannot apply Theorem 8 directly to the

space ℓ∞c (Γ) of bounded real-valued functions of countable support on the uncountable

discrete space Γ. We take X = X(Γ) = Γ ∪ {∞}, with ∞ /∈ Γ, topologized by taking

the points of Γ to be open sets in X and taking the neighbourhoods of ∞ to be the

sets of the form

Θ ∪ {∞}

with Θ ⊂ Γ and Γ\Θ countable. The space X obtained in this way is completely regular

and we take K = K(Γ) to be the Stone-Čech compactification of X(Γ).
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We first use Theorem 8 to prove a result that Talagrand gives in [33] together

with an outline proof.

Proposition 19. (T) Let Γ be an uncountable discrete space and let K (Γ) be

the space defined above. Then (C(K(Γ)), weak) admits a Borel measure that is not a

Radon measure, and takes only the values 0 or 1.

P r o o f. We study the family D of all closures ∆ in K = βX of the non-empty

countable subsets ∆ of Γ. Since ∆ is clopen inX the extension toK of the characteristic

function of ∆, as a subset of X, is a continuous function taking only the values 0 and

1. Thus the closures △ and X\∆ of ∆ and X\∆ in K are complementary clopen sets

in K, and ∞ ∈ X\∆. On the other hand, if F is any clopen set in K that does not

contain the point ∞, then F ∩X is a clopen set in X that does not contain ∞ and so is

a countable subset, ∆ say, of Γ. As above the closures ∆ and X\∆ are complementary

clopen sets in K, the first contained in F and the second contained in K\F . Thus

F = ∆ and so F ∈ D. This shows that D is just the family of all non-empty clopen

subset of K that do not contain ∞.

We now know that D is a non-empty family of non-empty proper clopen subsets

of K, as required in the hypothesis of Theorem 8.

Suppose that D1,D2, . . . is an increasing sequence of member of D. Then the

sets D1 ∩ Γ, D2 ∩ Γ, . . . form an increasing sequence of countable subsets of Γ. Take

∆ to be any countable set in Γ properly containing the union

⋃

{Di ∩ Γ : i ≥ 1} ;

this being possible as Γ is uncountable. Now

⋃

{Di : i ≥ 1}

is properly contained in ∆, which belongs to D. Thus the condition (a) of Theorem 8

is satisfied.

Now suppose that

D1,D2, . . . and D′
1,D

′
2, . . .

are two increasing sequences of clopen sets in K all contained in a fixed set D of D,

and with

Dn ∩D′
n = Ø, for n ≥ 1.
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Then

D1 ∩ Γ,D2 ∩ Γ, . . . , and D′
1 ∩ Γ,D′

2 ∩ Γ, . . . ,

are two increasing sequences of countable subsets of Γ, with

(Dn ∩ Γ) ∩
(

D′
n ∩ Γ

)

= Ø, for n ≥ 1.

Thus

∆ =
⋃

{Di ∩ Γ : i ≥ 1} , and ∆′ =
⋃

{

D′
i ∩ Γ : i ≥ 1

}

are disjoint countable subsets of Γ and

∆ and ∆
′

are disjoint clopen sets in K, both in D with

Dn ⊂ ∆, D′
n ⊂ ∆

′
, for n ≥ 1.

This shows that the condition (b) of Theorem 8 is satisfied.

Now Theorem 8 shows that (C (K) , weak) admits a Borel measure that is not

a Radon measure. By the proof of Theorem 8, the measure can be taken to have only

the values 0 or 1.

Our next lemma concerns linear subspaces of codimension one of a Banach

space; is relevant to our work since, as we shall see, ℓ∞c (Γ) is a subspace of C (K (Γ))

of codimension one.

Lemma 20. Let L be a linear subspace of codimension 1 in a Banach space

E. If E admits a weak zero-one Borel measure that is not a Radon measure, then so

does L.

P r o o f. We may suppose that ν is a weak zero-one Borel measure on E that is

not a Radon measure, and also that L is the linear subspace defined by

〈x, x∗〉 = 0

for some x∗ 6= 0 in E∗. If a ≤ b, let E ([a, b]) denote the set

{x : 〈x, x∗〉 ∈ [a, b]} .

Since ν takes only the values 0 and 1, we can choose an integer m ≥ 0 so that

ν (E ([−m,m])) = 1.



Radon Measures on Banach Spaces with their Weak Topologies 325

Now, if [a, b] with a < b is any real interval with

ν (E ([a, b])) = 1,

then either

ν

(

E

([

1

2
a+

1

2
b,

1

2
a+

1

2
b

]))

= 1

or just one of the sets

E

([

a,
1

2
a+

1

2
b

])

or E

([

1

2
a+

1

2
b, b

])

has measure 1. Hence we can choose a nested sequence of intervals

[a1, b1] , [a2, b2] , . . . ,

all of ν-measure 1, so that either the sequence terminates with a degenerate interval,

[c, c] say, or it is infinite with a single point of intersection, c say. Since ν is σ-additive,

we must have

ν (E ([c, c])) = 1

in each case. In particular, E ([c, c]) 6= Ø, and we can choose x0 in this set. Let µ be

the measure on L defined from ν by translating x0 to the origin, or more formally by

taking

µ (B) = ν (B + x0)

for all weak Borel subsets of L. Then ν is a measure on L satisfying our requirements.

P r o o f o f T h e o r em 6 (T). By Proposition 19 (T), there is a Borel measure

ν on (C(K), weak), taking only the values 0 or 1, that is not a Radon measure on

(C(K), weak).

Recall that K = K (Γ) is the Stone-Čech compactification of the space

Γ ∪ {∞}

topologized by taking the points of Γ to be open and the neighbourhoods of ∞ to be

the sets of the form

Θ ∪ {∞}

with Θ ⊂ Γ and Γ\Θ countable. If y is any function in C (K) with y (∞) = 0, let yΓ

denote the restriction of y to Γ. By the continuity of y at ∞, for each ε > 0, the set of

γ in Γ with

|yΓ (γ)| ≥ ε
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is a countable subset of Γ. Thus yΓ has countable support, and being bounded, belongs

to ℓ∞c (Γ). Indeed we can identify ℓ∞c (Γ) with the closed linear subspace

{yΓ : y (∞) = 0, y ∈ C (K)}

of C (K).

It follows from Lemma 20 that ℓ∞c (Γ) admits a weak zero-one Borel measure

that is not a Radon measure.

8. Theorem 9 and the Theorem of de Maria and Rodriguez-Salinas.

We first prove Theorem 9.

P r o o f o f Th e o r e m 9. Let K be an infinite compact Hausdorff space that

is a totally disconnected F -space with the property that each non-empty zero set in

K contains an infinite open subset. Let D be the family of non-empty clopen proper

subsets of K. Since K is infinite compact and totally disconnected the family D is not

empty. We verify that D satisfies the following hypothesis of Theorem 8.

(a) The union of any increasing sequence of members of D is properly contained in a

member of D.

(b) If S1, S2, . . . and T1, T2, . . . are two increasing sequences of clopen sets in K, all

contained in a fixed set of D, with

Sn ∩ Tn = Ø, for n ≥ 1,

then there disjoint clopen sets S0 and T0 with

Sn ⊂ S0 and Tn ⊂ T0, for n ≥ 1.

Consider any increasing sequence D1,D2, . . . of sets of D. Then

K\Di, i = 1, 2, . . . ,

is a decreasing sequence of non-empty compact sets, and

∞
⋂

i=1

K\Di

is a non-empty compact set. Since each set Di, i ≥ 1, is a cozero set,
∞
⋃

i=1
Di is also a

cozero set and
∞
⋂

i=1

K\Di
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is a non-empty zero set. By our hypotheses this set contains an infinite open set G.

Take any point g in G. SinceK is compact and totally disconnected we can choose a

clopen set H containing g and properly contained in G. Now D0 = K\H is a non-empty

clopen proper subset of K properly containing

∞
⋃

i=1

Di,

as required.

Let S1, S2, . . . and T1, T2, . . . be two increasing sequences of clopen sets in K

with

Sn ∩ Tn = Ø, for n ≥ 1.

Then
∞
⋃

n=1

Sn and
∞
⋃

n=1

Tn

are disjoint cozero sets in K. SinceK is an F -space these two sets have disjoint closures.

Since K is compact and totally disconnected there is a clopen set S0 with

∞
⋃

n=1

Sn ⊂ S0 and S0 ∩
∞
⋃

n=1

Tn = Ø.

Now S0 and T0 = K\S0 satisfy our requirements. (Note that this result of this para-

graph is proved in this way in the proof of Proposition 2.23 of R. C. Walker [38]).

Now K satisfies the hypotheses of Theorem 8 and so Theorem 9 follows from

Theorem 8.

We now consider the case when K = βN\N. For a proof that K is a compact

F -space and that each non-empty Gδ-subset of K contains an infinite open set see, for

example, van Mill [36] Theorem 1.2.5. Since N is strongly zero-dimensional βN is also

strongly zero-dimensional, see, for example, Engelking [9] Theorem 6.2.12. This implies

that βN\N is totally disconnected. Thus the conditions of Theorem 9 are satisfied and

the result of de Maria and Rodriguez-Salinas follows.

9. Locally Compact Hausdorff Spaces that are not Pseudocompact.

In this section we establish Theorem 10. We start with a construction in any locally

compact Hausdorff space that is not pseudocompact. We prove three lemmas.
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Lemma 21. Let X be a locally compact Hausdorff space that is not pseudo-

compact. Then X is completely regular and it is possible to choose a discrete family

{Ki : i ≥ 1} of compact sets, each having non-empty interior.

P r o o f. Since X is not pseudocompact we can choose a function k that is

continuous on X but unbounded on X. We suppose that k (x) ≥ 0 for all x in X. We

choose y1 arbitrarily in X and then choose y2, y3, . . . inductively in X so that

k (yi+1) > k (yi) + 1, for i ≥ 1.

For each i ≥ 1 write

Di =

{

x : |k (x) − k (yi)| <
1

3

}

.

Then D1,D2, . . . are disjoint open sets in X with

yi ∈ Di, i ≥ 1.

Since X is locally compact, for each i ≥ 1, we can choose a compact set Ki with

yi ∈ int Ki and Ki ⊂ Di.

Then K1,K2, . . . is a disjoint sequence of compact sets with non-empty interiors.

It remains to prove that the family {Ki : i ≥ 1} is discrete in X. If η is any

point of X with

k(η) < k(y1) +
1

2
,

the set

{x : |k(x) − k(η)| <
1

6
}

is an open neighbourhood of η that may meet the set K1 but can meet no set ki with

i ≥ 2. Otherwise if

k(η) ≥ k(y1) +
1

2

we can choose i ≥ 2 so that

k(yi−1) +
1

2
≤ k(η) ≤ k(yi) +

1

2
< k(yi=1) −

1

2
.

In this case

{x : |k(x) − k(η)| <
1

6
}

is an open neighbourhood of η that may meet the set Ki but can meet no set Kj with

j 6= i. Thus the family {Ki : i ≥ 1} is discrete in X.
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Lemma 22. Let X be a completely regular Hausdorff space that contains a

discrete family {Ki : i ≥ 1} of compact sets, each with a non-empty interior. Then it is

possible to choose a sequence y1, y2, . . . of points and a sequence h1, h2, . . . of continuous

functions satisfying the following conditions.

(a) yi ∈int Ki, i ≥ 1.

(b) 0 ≤ hi (x) ≤ 1 for x ∈ X, i ≥ 1.

(c) hi (yi) = 1, for i ≥ 1.

(d) hi (x) = 0, for x /∈ Ki, i ≥ 1.

(e) The set Y = {yi : i ≥ 1} is a discrete subset of X that is C∗ embedded in X.

(f) The closure Y of Y in βX is homeomorphic to βN and in the homeomorphism

Y corresponds to N and Y \Y corresponds to βN\N.

P r o o f. Since each set Ki has a non-empty interior we can choose the points

yi to satisfy condition (a). Since X is completely regular we can choose the continuous

function hi to satisfy

0 ≤ hi (x) ≤ 1, x ∈ X,

hi (yi) = 1,

hi (x) = 0, for x /∈ int Ki.

Thus conditions (b) to (d) are satisfied.

Since the family {Ki : i ≥ 1} is discrete in X the set of points Y = {yi :

i ≥ 1} is discrete in X. Since Y is closed in X it is C∗-embedded in βX (that is, all

continuous real-valued functions on Y extend to continuous real-valued functions on

βX. By a property of the Stone-Čech compactification, see, for example, Gillman and

Jerison [14] Section 6.9, the closure Y of Y in βX is homeomorphic to βY and in the

homeomorphism Y is fixed and Y \Y corresponds to βY \Y . Since Y is countably infinite

and discrete, the closure Y of Y is homeomorphic to βN and in the homeomorphism

Y corresponds to N and Y \Y corresponds to βN\N. This completes the proof of the

lemma.

Lemma 23. Under the conditions of Lemma 21, there is an isometric linear

injective map of C (βN\N) into C (βX\X).



330 J. E. Jayne, C. A. Rogers

P r o o f. We suppose that X is a locally compact Hausdorff space that is not

pseudocompact. We further suppose that the sequence y1, y2, . . . of points, the sequence

K1,K2, . . . of compact sets, the sequence h1, h2, . . . of continuous functions on X, the

set Y = {yi : i ≥ 1} and the closure Y of Y in βX, satisfy the conditions (a) to (f) of

Lemmas 22.

By condition (f) we may, and we do, identify N with Y , βN with Y and conse-

quently βN\N with Y \Y . Each function f of C (βN\N) identified with C
(

Y \Y
)

has

a continuous extension, f̂ say, to Y . Note that the choice of f̂ is not unique, but, if ĝ

is any other continuous extension of g to Y , one necessarily has

ĝ (yi) − f̂ (yi) → 0 as i→ ∞.

We insist, as we may, that the extension f̂ satisfies

∥

∥

∥f̂
∥

∥

∥ = ‖f‖ ,

and also that when f and g are proportion to each other on Y \Y then f̂ and ĝ are

proportional to each other on Y .

We now extend f̂ to X by taking h = η (f) where

h =
∞
∑

i=1

f̂ (yi)hi.

Since the closed supports of the functions hi, i ≥ 1, form a discrete family in X, the

function h is continuous on X. Note also that

|h (x)| =

∣

∣

∣

∣

∣

∞
∑

i=1

f̂(yi)hi(x)

∣

∣

∣

∣

∣

= max
{
∣

∣

∣f̂(yi)hi(x)
∣

∣

∣ : i ≥ 1
}

≤
∥

∥

∥f̂
∥

∥

∥max {|hi(x)| : i ≥ 1}

≤ ‖f‖ ,

for all x in X. Hence ‖h‖ ≤ ‖f‖.

Now h, being continuous on X, has a unique continuous extension ĥ = η̂ (f) to

βX. Let ψ denote the map from C (βN\N) to C (βX\X) defined by taking ψ (f) to

be the restriction to βX\X of ĥ = η̂ (f), for each f in C (βN\N). Since
∥

∥

∥ĥ
∥

∥

∥ = ‖h‖,

we have ‖ψ (f)‖ =
∥

∥

∥ĥ
∥

∥

∥ = ‖h‖ ≤ ‖f‖ for all f in C (βN\N). Since h coincides with f̂
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on Y , the extension ĥ of h to βX coincides with f̂ on Y . Hence
∥

∥

∥ĥ
∥

∥

∥ = ‖f‖ and ψ is

norm-preserving.

It is now necessary to prove that ψ is linear. We first note that our construction

ensures that ψ (λf) = λψ (f) for any real λ. Let f1, f2 be two functions of C (βN\N)

and consider the third function

f3 = f1 + f2.

Although we will not, in general, have

f̂3 = f̂1 + f̂2

on Y , the function f̂1 + f̂2 is a continuous extension to Y of the function f3 = f1 + f2

on Y \Y , and so

lim
i→∞

(

f̂3 (yi) − f̂1 (yi) − f̂2 (yi)
)

= 0.

Consider any point ξ of βX\X and any ε > 0. Then we can choose n ≥ 1 so that

∣

∣

∣f̂3 (yi) − f̂1 (yi) − f̂2 (yi)
∣

∣

∣ < ε for i ≥ n.

Now
⋃

{Ki : i < n}

is a compact set in X, ensuring that

G = βX\
⋃

{Ki : i < n}

is an open set containing ξ. Now for all x in G

∣

∣

∣ĥ3 (x) − ĥ1 (x) − ĥ2 (x)
∣

∣

∣ ≤ max
{∣

∣

∣f̂3 (yi) − f̂1 (yi) − f̂2 (yi)
∣

∣

∣ |hi (x)| : i ≥ n
}

≤ ε.

Hence

ĥ3 (ξ) = ĥ1 (ξ) + ĥ2 (ξ) .

Thus ψ is a linear isomorphic injection of C (βN\N) into C (βX\X), as required.

P r o o f o f T h e o r e m 10. Let X be a locally compact Hausdorff space that

is not pseudocompact. By Lemmas 21, 22 and 23, there is a linear injective isometric

map ψ of C (βN\N) into C (βX\X). Thus ψ embeds C (βN\N) isometrically as a norm

closed linear subspace, say L, of C (βX\X). The restriction of the weak topology of

C (βX\X) to L coincides with the topology on L inherited from the weak topology

on C (βN\N). By the theorem of de Maria and Rodriguez-Salinas, L with the weak
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topology of C (βX\X) carries a non-τ -additive countably additive Borel measure µ

taking only the values 0 and 1 and taking the value 0 on each point. Since L is weakly

closed in C (βX\X) the space C (βX\X) with its weak topology also carries the similar

measure ν defined by

ν (B) = µ (B ∩ L)

for all weak Borel sets B in C (βX\X).

Corollary 24. Let X be a completely regular Hausdorff space that con-

tains a discrete family {Ki : i ≥ 1} of compact sets, each with a non-empty interior.

Then C (βN\N) embeds isometrically as a closed linear subspace of C (βX\X) and

so C (βX\X) with its weak topology carries a non-τ -additive countably additive Borel

measure taking only the values 0 and 1 and taking the value 0 on each point.
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