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ABSTRACT. Let M be a complete C!—Finsler manifold without boundary and
f: M — R be a locally Lipschitz function. The classical proof of the well known
deformation lemma can not be extended in this case because integral lines may
not exist. In this paper we establish existence of deformations generalizing the
classical result. This allows us to prove some known results in a more general
setting (minimax theorem, a theorem of Ljusternik-Schnirelmann type, mountain
pass theorem). This approach enables us to drop the compactness assumptions
characteristic for recent papers in the field using the Ekeland’s variational principle
as the main tool.

1. Introduction. In [9] R. S. Palais proved the following

Theorem 1.1. Let M be a complete C%— Finsler manifold (without boundary)
of category k and f : M — R be a C'—function which is bounded below. If f satisfies

the Palais-Smale condition then f has at least k distinct critical points.
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As A. Szulkin points out in [13], Ivar Ekeland posed the question whether this
theorem is still valid for a C''—Finsler manifold M of category k. The classical proof can
not be extended to this case bacause integral lines (along which important deformations
are constructed) may not exist. A. Szulkin in [13] proved the result of Palais when M
is a C''—Finsler manifold containing a nonempty compact subset of category k, using
the Ekeland’s variational principle instead of the classical deformation lemma (see [1],
[14]). In this paper we answer the Ekeland’s question positively. We do it by proving
and applying a suitable deformation lemma.

Another motivation for establishing existence of deformations of a C''—Finsler
manifold M is the series of results known as “mountain pass theorem”. As far as
we know one of the most general results in this series (concerning C!'—functions f :
M — R) is the “min-max principle” of N. Ghoussoub (Theorem 1 and its quantitative
version Theorem 1.ter in [5]). It is proved by using the Ekeland’s variational principle
as the main tool. Our deformation lemma allows us to prove this theorem dropping the
compactness assumption on the elements of the deformation stable family F appearing
in its formulation (see Theorem 1 in [5], theorem 1 in [7] and section 5 below). Moreover,
we relax the smoothness condition on the function f : M — R, assuming it locally
Lipschitz.

The first to consider locally Lipschitz functions (instead of C! ones) in the
mountain pass setting was K. C. Chang (see [2]). The fact that ”the separating moun-
tain range has positive altitude” is crucial for the proof of his result (as well as for
the proof of the classical mountain pass theorem, see [1]). In [7] N. Ghoussoub and D.
Preiss established a general mountain pass principle for smooth functions (Géateaux-
differentiable with strong to weak* continuous derivative) in the case of “zero altitude
mountain range”, replacing the deformations by the Ekeland’s variational principle and
initiating new perturbation methods. In [11] we generalize the both above mentioned
results using deformations. Independently M. Choulli, R. Deville and A. Rhandi ap-
plying again the Ekeland’s variational principle, obtained in [3] the main result of [11]
proving that it includes the general mountain pass principle of [7]. Now it can be
considered as a corollary of Theorem 5.2 below.

We would like to express our gratitude to Prof. R. Lucchetti and to the referee

for their kind attention to this work. They found a gap in the proof of Theorem 4.2 so
helping us very much. We thank the referee for this and for the fast refereeing process.

The paper is organized as follows. In Section 2 we introduce some basic notions
of the theory of the Clarke subdifferential for the case of locally Lipschitz functions on
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C!'—manifolds. In Section 3 we prove the main tool for our subsequent investigation —
the deformation lemma. Section 4 is devoted to the Ljusternik-Schnirelmann theory for
locally Lipschitz functions on C!—Finsler manifolds and Section 5 — to the “min-max
principle” of N. Ghoussoub and the mountain pass theorem in the same setting.

2. Preliminaries. In this section we introduce the necessary notions and the
basic relations between them.

Let M be a C'—Banach manifold modelled on a Banach space E. For xo € M,
we denote by T, (M) the tangent space to M at xg.

Definition 2.1. The function f : M — R s called locally Lipschitz iff
foe i p(O,) — R is locally Lipschitz for every chart (O, ).

Definition 2.2. Let xg € M, the chart (O, ¢) be such that xo € Oy, F,(y) :=
fle™(y)) and OF,(p(x0)) be the Clarke subdifferential (cf. [4], Section 2.1.1) of F,
at p(xg) € E. The set

{a" € Tpy(M)* : 2™ = ¢"(20)(y*) for some y* € IF,(p(x0))}

where *(xg) € L(E*, Ty, (M)*) is the mapping adjoint to the differential @.(xg) €
L(Ty, (M), E) of ¢ at xg, is called Clarke subdifferential of f at ¢ and is denoted by
Af (xo).
Lemma 2.1. The set Of(xg) does not depend on the chart (O, ).
Proof. Let (O, ) and (Oy,1) be two charts with zo9 € O, N O¢ Let 2* =
(¥~ 1) (¢ (w0))(2*) where z* = p* (20 ) (y*) for some y* € IF (¢ (o)) and (¥~ 1)*(b(z0)) €
L(T,,(M)*, E*) is the mapping adjoint to the differential (¢~ 1), (¥(x0)) € L(E, Ty, (M))
of 9~! at (xg). Then
2= () (W (o) le" (o) (y*)] = (0™ (W(20)]" © [0 (x0)]*(y") =
= [pu(@0) o (Y)W (o))" (y") = [(@ 0 ™ 1)u(¥(0))]* (v)-
Let us define g : ¥(0O,NO0y) — ¢(0,N0y) by g = potp~t. Then 2* = [g. (¢ (x0))]* (v*),
ie. 2* =y* o g.(p(xg)). For z € (O, N Oy) we have
Fy(2) = f(71(2)) = f¢™ e (2))) = Fy(9(2))-
Since g € C[p(0,NOy), p(0O,NOy )], it is strongly differentiable. Moreover g.(¢(z¢)) =
g (1h(xz0)) € L(E, E) is surjective. Therefore according to theorem 2.3.10 in [4]
OFy(¥(20)) = 0(F, 0 9)(g~ " (p(x0))) = OF,(9(g~ " ((0)))) © g (97" (o(0))
= OF,(p(20)) © g (¥(w0)) = DF,(p(w0)) © gu (o))
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Hence
2" =y (g:(¥(20)) € OFp(p(20)) © g4(¥(0)) = OFy (1(20))-

Since x* = 1*(x)(z*), the lemma is proved. O
Definition 2.3. Letxg € M, f : M — R be locally Lipschitz and hy € Ty, (M).

The number
sup{< ™, hg >: 2" € df(z0)}

is called Clarke derivative of f at xqo in direction hg and is denoted by f°(zo, ho).

Remark 2.1. Since 0F,(p(x)) is weak® compact in E* and ¢*(xg) : E* —
Tyo (M)* is weak™ to weak® continuous, df(x¢) is weak* compact in Ty, (M)*. Conse-
quently in Definition 2.3 we could have written “max” instead of “sup”.

Lemma 2.2. Let xg € M,(Oy,¢) be a chart with xo € Oy, ho € Tyo (M) and
f:M — R be a locally Lipschitz function. Then

#%(z0, ho) = limsup Fle™ y + tes(20) (ho))) — f~ ' ()
y—¢(z0) 10 t

Proof. We have that

f2(x0, ho) = max{< z*,hg >: 2% € df(x0)} =
= max{< z* hy >: z* = ©*(z0)(y*) for some y* € I(f o 1) (p(x0))} =
= max{< ¢ (20)(y*), ho >: y* € O(f o ") (p(w0))} =
= max{< y", ¢:(x0)(ho) >: y* € I(f 0 o™ )(p(x0))} =

" _ 1
_ (f ° 90_1)0(90(55‘0)7 (P*(xO)(hO)) = limsup f(SD (y + t@*( O)t(h‘()))) f(SD (y))
y—(zo) t10

where the last equality is the definition of the Clarke derivative of the Lipschitz function
fop !l E — R at the point ¢(xg) € E in direction ¢«(z9)(ho) € E ([4], 3.2.1). This
completes the proof. O

We proceed with recalling a basic notion for the present paper: the C'-Finsler
manifold (cf. [9], [7], [6]).

Definition 2.4.  Let M be a C'—Banach manifold with T(M) as tangent
bundle and T, (M) as tangent space at the point x. A Finsler structure on T'(M) is a
continuous function |.|| : T(M) — [0,400) such that:

(a) for each x € M the restriction ||.||z of ||.|| to Tz(M) is a norm on the latter;
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(b) for each xog € M and k > 1 there is a neighbourhood U of x¢ such that

1
2o < -llao < Kl [l2

forallx e U.

The C'—Banach manifold M equipped with a Finsler structure is called C'—Fin-
sler manifold. If now o : [a,b] — M is a C'—path, the length of o is defined by
L(o) = f; |lo(t)||dt. The distance p(x,y) between two points = and y in the same
connected component of M is defined as the infimum of L(c) over all ¢ joining z and
y. The function p is then a metric on each component of M (called the Finsler metric),
and it generates the original topology of M.

The C'—Banach manifold being endowed with a Finsler structure, it is natural
to ask whether Definition 2.1 is consistent with the usual Lipschitz property on a metric
space. The answer is “yes” and it is provided by the following

Lemma 2.3. Let M be a C'—Finsler manifold without boundary. Then
f: M — R is locally Lipschitz according to Definition 2.1 iff for every xg € M there
exists an open neighbourhood U of xo and a positive Ky such that

|f(x) = f(y)] < Ku . p(z,y)

for every x,y from U.

Proof. Let f: M — R has the property from the formulation of this lemma.
Let (O, ¢) be an arbitrary chart with 9 € O, and £ > 1. Let U; C O, be an
open neighbourhood of zy with the propery (b) of Definition 2.4. Let Uy C Uy NU
be an open neighbourhood of xy such that ¢(Us) is convex in E. Let us fix = and y
in Uy and let s(t) = ¢ (p(z) + t(p(y) — ¢(x))) for t € [0,1]. Since s(t) C Uy and
(1) = o2 (9(s() (9 () — () we have

1f (e M) = fle el = If(z) = f)| < Ku . plz,y) <
1
< K [ lles (o)) = o)), ot <

1
< Kk [ lo:!(0@0)(e) = @)l andt <
< Ku ko7 (@)l ege y () l0 ) — #(@) 6,

1

i.e. fow™" is locally Lipschitz.
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In order to prove the reverse implication we need the following

Claim. Let M be a C'— Finsler manifold, x € M, (Oy, @) be a chart such that
zo € Oy, k > 1 and U C O, be a neighbourhood of xo corresponding to (b) of Definition
2.4., i.e.

1, _ _ _
zlles He@) Wl < lox (9(@0)) ©)llz,, (ary < Kl (0(2))(0) 12, )

for each v € E and each x € U. Then

lox (@)l e an). By < Elle(@o)ll o, (an),B)

holds true for every x € U.
Proof of the claim. It is easy to check that if X and Y are two Banach

spaces, A € L(X,Y) is injective and surjective and A~! € L(Y, X) is its inverse, then
1A vixy = (inf{[|Az]ly : [lofx =1})7".

Let z € U be fixed. We have

(@)l 2z v,y = (E {03 (0(@)) (@) 7, ary < lvlle = 117" <
< k(inf {0y (9(20)) (0)lln, (1) : IvllE = 117" = kllow(o)l eeyy (1), 1)

which proves the claim.

Turning back to the proof of Lemma 2.3, let f : M — R be locally Lipschitz
according to Definition 2.1. Let zp € M be fixed and the chart (O, ) be such that
xo € Oy. Let k> 1,U C O, be an open neighbourhood of x¢ with the property (b) of
Definition 2.4 and f o ¢! be Lipschitz on ¢(U) with some positive K. Let r € (0,1)
be such that {z € M : p(zg,2) <2r} CU,V ={z€ M : p(x9,2) < 5} and z,y € V be
arbitrary fixed. Let o, : [0,1] — M be a C'—path connecting = and y and satisfying
J3 lor@)|ldt < p(z,y)(1 + 7). We claim that {o.(t) : t € [0,1]} € U. If it was not the
case, o,(tg) € U for some ty € (0,1). Then

1 to .
[ enolae= [ ool + [ ool =
0 0 to
> p(x,0r(to)) + plor(to),y) > 1.5r + 1.5r = 3r.

On the other hand

/01 o7 ()|t < p(z,y)(1 +7) < (1 +7) =7 +77
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which contradicts the above inequality. Finally, since

c(lit((p 0 0;)(t) = px(0r(t))(+(t)) we have

(#) = F@)| = |(f o (@) — (f o 0 )W) < Kullo(x) — o(y)] <
Ky / 1< (00 o) (8) |t < Ky / o= (e, oy l6r )z, oyt <
< Ku klle«(@o)l ez, a0y, ) (1 + 7)p(2, )

and Lemma 2.3 is proved. O
In Section 4 we shall need the equivalent of Proposition 2.1.1.a) from [4] for the
case of locally Lipschitz function defined on C!'—Finsler manifold instead of on Banach

space. This equivalent is

Lemma 2.4. Let M be a C'—Finsler manifold without boundary, xo €
M, hy € Tyo(M) and f: M — R be Lipschitz around xy with constant K. Then

(0, ho)| < K [hollz, (ar)-

Proof. Let the chart (O,, ) be such that zg € Oy, k > 1 and let U C O,
be an open neighbourhood of xy corresponding to (b) of definition 2.4 and having the
properties:

— ¢(U) is convex in E;
— f is Lipschitz in U with constant K.

Let y € o(U),to > 0 be such that y + top«(70)(ho) € ¢(U) and s(t) = ¢~ 1(y +
to.(xo)(ho)) for t € [0,%p]. Then

[f(e™ (Y + tu(a )(ho))) — fle™ )]

I, (anydr <

/ (3 ((ao) mxo)(ho)nTzO(M K.lhollz, an)

Hence

| (20, ho)|=|  Tim sup
y—(zo) tlO

< limsup

< Kk [|hollz,, (ar)
y—(zo) tl0
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Letting k£ | 1 we finish the proof. O

A concluding definition remains to be given in these preliminaries. It introduces
the notion “steepness” (for a locally Lipschitz function f) which, if negative at some
point z, means that there is a direction in which we can “go down”, starting from
(z, f(x)) and following the graph of f.

Definition 2.5. Let M be a C'— Finsler manifold, xo € M and f : M — R
be locally Lipschitz. The number

inf{f%(zo,h) : h € Tpy (M), 17|z, ar) = 1}

is called steepness of f at x¢ and is denoted by stf(xg).

The steepness for locally Lipschitz functions defined on a Banach space was first
introduced in [11], where its relation to a similar notion introduced by K. C. Chang in
[2] was discussed. The steepness for locally Lipschitz functions defined on a C'*—Finsler
manifold was introduced in [12].

3. Deformation lemma. In this section we establish the existence of defor-
mations of a C'!'—Finsler manifold which generalize the well known ones concerning
Banach spaces or manifolds of smoothness at least C2~.

The following notation will be used in the sequel:

For any subset S of a metric space X with metric p and for every positive «,
So = {z € M : dist(z,S) < a} where dist(z, S) = inf{p(z,y) : y € S}.

Theorem 3.1 (Deformation lemma). Let M be a complete C'— Finsler ma-
nifold without boundary and f : M — R be a locally Lipschitz function on it. Let S be
a subset of M, ¢ be a real number, € and § be positives and k > 1. We suppose that

stf(y) < —%5 for every y in an open neighbourhood Q of f~'([c—¢,c+¢€]) N Sks. Then
there exists n € C([0,1] x M, M) with the following properties:

(i) n(0,x) = x for every x € M;

(ii) n(t,z) = x for every x € M \ Q,t € [0, 1];

(i) (1, /= (—00,c+ ) N S) C F1((=00,¢ — ) N Sy

(iv) p(z,n(1,7)) < k25 for every x € M, where p is the Finsler metric on each

component of M.

Proof. We first prove the deformation lemma for the case of connected M.
Without loss of generality we can assume that Q C f~1((c — ke, c + ke)).
Step 1. Construction of the open covering {U, }er.
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The Finsler structure of M and the steepness condition on f yield for
every x € @ the existence of a neighbourhood U, of it, a tangent unit vector h, €
To(M),||he|lz, (ar) = 1 and a chart (O, , @) with U, C O, such that for every y € U,

we have

f(@;l(gow(y) + tgox*(ﬂf)(hx))) - f(y) < _?t

for every t € (0,t;),t; > 0 and

%HSO;*I(SO:B(Z/))(U)HTy(M) < |z (@) @) 7, 11y < Kllogs (02 (y) ()7, an)

for every v in the Banach space E. Getting a smaller U, if necessary we can assume

2e

P (2a(y) + tpau(@)(ha))) = Fy) < =t

whenever y and ¢ (¢4 (y) + toes(z)(hy)) are in U,.

The family {U,}.eq is an open covering of Q). Let {U,} er be a locally finite
refinement of it and {c, },er be a Lipschitz partition of unity subordinate to {U, },er,
that is a, : M — [0,1] are Lipschitz continuous functions, a,(x) > 0 iff z € U, and

Z ay(z) =1 for every z in the closed set SN f~1([c —&,c +¢]).
~yel'
Let us fix v € I'. Then there exists a point z, € @ with U, C U, a chart ¢,

with O, D U, and a vector hy = @«(2,)(he,) € E satisfying

_ 2e
(1) ey (03 (y) + thy)) = fy) < =t
whenever y and ¢! (¢, (y) + thy) are in U,,.
The following step gives the basic small deformations of M.
Step 2. Construction of the “elementary deformations” 7,,.
For a fixed v € I" we define n, € C([0,1] x M, M) in the following way :

L ifx g U
ny(t,z) = {%71(2(@%07(%))) if x € U:

where z(t,y) is the solution of the Cauchy problem
zZ= O‘v(@;l(z))'h'y z(0) =y

at the moment ¢ > 0. Then for every ¢ € [0,1] and every z € M we have:
(A) plw, 1y (t,2)) < Kt o vy (r (ts, ))ds;
(B) f(n'y(t7$)) - f(z) < _%tfol a'y(n'y(t57$))d5§
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(C) ny(t,.) : M — M is a diffeomorphism for each t € [0, 1].

Indeed (A) is obvious for ¢ U,. Otherwise o(s) = ¢ '(z(ts, o1 (x))) is a
C'—path between x and 7, (¢, z) and hence (using the claim from the proof of Lemma
2.3)

1
p(xa/rl"{(tal‘))g/o HO.'(S)HTG(S)(M)CLS:
1
= [ (03 elts, s @) Al (s, 02 @D (), 3y =
:t/ol auy (1 (s, )| 03 (95 (03 (5, 2))) © P4 ()7, o (1) 5 <

1
St/o oy (1 (t3,2))- I3 (94 (24)) © @y (24) (ha, )l (aryds =

1 1
=kt [ (t5.0): s, Nz, s = kt | oy (t5,0))ds.

To prove (B) we see that in fact

1)) = 92(0) ([ 25" 27 (),

and so

FOm(6,2)) = £2) < = [ a7 Gy o)r = =2t [t oy, )

by (1) because x € Uy yields z(t, ¢ (x)) € ¢, (U,) for every t. If x & Uy,n,(ts,z) =
and the equality holds. The assertion (C) needs no proof.

Step 3. Composition of all n,’s.

Let us think of the set I' as of the ordinal interval [0,7) (i.e. let I" be well
ordered). We will construct a family {£, : 0 <y <y} of deformations of M as follows:

(a) & is the identity map, i.e. & (t,x) = x for every x € M,t € [0,1];

(b) if v is not a limit ordinal, & (¢, ) = ny—1(t,{—1(t,x)) for every x € M,t €
[0, 1];

(c) if v is a limit ordinal, & (t,z) = limg.., &5(t, x) for every z € M,t € [0,1].

In order such an inductive definition to be correct we need to show that the
limit in (c) exists.

Lemma 3.1. Let g(t, ) be well defined as above and f(&a(t,x)) < f(&a(t, x))
for all B < ~v,a < B. Then & (t, ) is well defined and f(&(t,x)) < f(&s(t,x)) for all
B<n.
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Proof. There is nothing to prove when x ¢ (). Let x € Q. If 7y is not a limit

ordinal,
F(&(tz)=f(ny-1(t, &1t 2))) <
2e (1
<F(E16a) = St [ oot &oa(b0)ds < F(61(t2)

because a_1(y) > 0 for each y € M and we are done.

If v is a limit ordinal, the generalized sequence {f({3(t,x))}g<y C [c—ke, c+ke]
is decreasing by the induction assumption: f(&.(t,z)) < f(€s(t,2)) whenever § < a <
7. Hence it is convergent and so at most countably many terms of the series

> _Lf(Es(t ) = f(En(t,2))]

B<y

are non-zero, all of them are nonnegative and the series converges.
We will see that

p({ﬁl(t,x),ng(t,w)) < Z p(§a+1(t,$),£a(t,$))

B2la<B

whenever (G < (G1 < 7.

We will proceed by induction on ;. Indeed, if 31 is not a limit ordinal, then

p(£ﬂ1 (t7$)=£ﬂ2 (t7$))§p(§ﬂ1 (tvx)7§ﬂ1—1(tvx)) +P(§,@1—1(t7$)a§,@2 (t,z)) <
< Z pati(t,x),&a(t, z)).

B2<a<Br

If 31 is a limit ordinal, then &g, (¢, ) = limg<g, 3(t,x) and hence

p(gﬂl (tv $)> 5,82 (tv 'T)):ﬂlggl p(fﬁ(t’ x)v 552 (tv .1‘)) <

< Z p(§a+1(t,x),£a(t,$))-

Ba<a<fr

Now the inequalities (A) and (B) of step 2 yield

1
(&1 (6:2). Go(t, ) <kt [ cpmats. Gt 2)))ds <

ké

<5 [F(€s(t,2)) = F(Epra(t, 2))]
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for every 3 < «v. Therefore

(€5, (1,2), 65, (1,0) < o0 3 ([ (Ealt,2)) — [ (Easr (2]

B2<a<B

for each By < 81 < . But we know that the above series is convergent and hence the
generalized sequence {{3(t,7)}g<~ is a Cauchy one. As M is complete, its limit exists
and the lemma is proved. O

We saw that for every fixed (t,z) € [0,1] x M our definition is correct. The
following lemmas enable us to show that the so defined &,’s are deformations.

Lemma 3.2. Let 0 <y <~ be a limit ordinal and (to,xo) € [0,1] x M. Then
there exist a non-limit ordinal number v* < « and a neighbourhood U* of & (to, o)
such that &« (t, x) = &, (t, x) whenever & (t,x) € U*.

Proof. The family {Ua }a<~ is locally finite and so there exists a neighbourhood
U* of &,(to,z0) which intersects at most finitely many of its members. Let us denote
them by Uy, Uay, - -+, Us, and o = max{ai,as,...,ap} (if no Uy, a0 < 7 intersects
U*, we set a* = 0). Now a* < v and as v is a limit ordinal, the non-limit ordinal
v* = a* 4 1 is strictly less than + as well. For the so defined v* and U* we will show
that 3(t,x) = &~(t,2) whenever &«(t,xz) € U* and 3 € [y*,7]. We will proceed by
induction on (. Indeed, the initial step 8 = v* is obvious. If § is a non-limit ordinal,
then &3(t, x) = ng—1(t,€p-1(t, ) = ng—1(t, &4+ (¢, x)) for &+ (t,x) € U* by the induction
assumption. But as f—1 > ~v* > o, we have Ug_1 NU* = 0 and so ng_1(t,x) = « for
every x € U*. Hence £5(t,x) = &+ (t, ) if &+(t,x) € U* and we are done.

If B is limit, {3(t, ) = lima<p éa(t, ) = limaeg &y« (t, ) = &= (t, ) for &+ (t, x)
€ U™ by the induction assumption.

Therefore & (t,x) = & (t, ) if &4+ (t,2) € U* and the lemma is proved. O

Lemma 3.3. Let (tg,z¢) € [0,1] x M,y < 79 and U be an arbitrary neigh-
bourhood of &,(to,xo). Then there exist a neighbourhood V' of xo, a neighbourhood W
of to and finitely many ordinals v > 31 > [ > -+ > s > 0 such that &(t,x) =
ng, (tmg, (t, ... g, (t,na,(t,x))...)) and & (t,x) € U for every (t,x) € W x V, i.e.
& 1 [0,1] x M — M s continuous and locally it is a composition of finitely many of the
diffeomorphisms {13} 5<~-

Proof. To every ordinal number § € (0,7] we can assign an ordinal number
B < (3 in the following way: [ is 8 — 1 if 3 is nonlimit and § is 8* — 1 if 8 is limit
where * is the ordinal number assigned to § by the previous lemma. In such a way
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we obtain a strictly decreasing sequence

')/:ﬂ()>30:ﬁ1>31262>...

of ordinal numbers. Therefore this sequence is a finite one:

Y=00>Bg=F>B=0>...> B, =5 =0.

We will denote by Uy the set U.

Let us fix an arbitrary i € {0,1,2,...,s—1}. Now &g, (t,2) = 1, ., (t,&s,,, (t,x)) €
U* everywhere if (3; is not limit, and when &g, (t,z) € U; (where U} is the neighbour-
hood of &g, (t9, xp) obtained by the previous lemma), if ; is limit.

Let U; be U; itself or U; NU; in the limit-ordinal case. The continuity of MBitr -
[0,1] x M — M at the point (to,&g,,, (to, o)) yields the existence of a neighbourhood
Uiyt of &g, (to, z0) and a neighbourhood W; of tg such that g, (t,y) € U; whenever
t € Wi and y € Upyy, ie. &3(t,z) € U; for every (¢, z) with t € W; and £, (t, 1) €
Uit1.

To finish the proof we set V = U to be the desired neighbourhood of zy and
s—1

W = ﬂ W; to be the desired neighbourhood of tg.
=0
Indeed, a back-going induction on i € {0,1,2,...,s} shows that if (¢,2) €

W x V, then & (t,x) € U and &/(t,x) = ng, (t,n,(t,. (ngs (t,mp,(t,x))))) by the
above paragraph. 0O

In the notations from the proof of the above lemma we have the following
properties of &, which correspond to the properties (A), (B) and (C) of the elementary
deformations {7, },<, in step 2:

x g'y t Qj i 6,@1 t x 6@4—1 (t $))
=0

@
= 3 P (18 (0)), € (1) < ktZ / s (13 (5,5, (1,))
=0
s—1
f(g’y(tvw)) - f(l‘) = Z[f(gﬁz(tvx)) - f(gﬁwﬂ (t?x))] =
1=0
s—1
(B) = S U 0 (18 (2)) = F (€, (62)] <

ﬂ
o

< __tz / s (g, (t5, €6, () )ds;
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ch &(t,.) 1is alocal diffeomorphism for every (t,z) € W x V,v < 7.

In particular, p(&,(t,x), z) < g—g[f(x) — f(&(t,x))] whenever v < ~g,2 € M,t € [0,1].
Step 4. Construction of 7.
Let us denote the "maximal” of the deformations constructed in the previous
step by & (i.e. £ =&,,). We will define {" inductively as follows:

§O(t,x) = §n+1(tvx) = f(t,fn(t,x))

for every x € M,t € [0,1] and positive integer n.
To go ahead, one needs to know something about the behaviour of the defor-
mation £ with respect to the level of the function f.

Lemma 3.4. Let zg € SN f~Y((—o0,c+¢€]) and let ty € (0,1] be positive.
Then there exist a positive integer m, a neighbourhood U of x¢ and a neighbourhood W
of to such that f(§™(t,z)) < ¢ — ¢ for every x € U,t € W.

Proof. Let us consider the sequences {£"(to,z0)}0>; C M and
{f(&"(to,x0))}52; € R. The second one is decreasing by the property (B’) in step
3. Moreover, it is bounded below because either xy ¢ @ and then £"(tg, z¢) = xo for
every n, or &g € @ and then n,(to,z) € Q for v € Q,y € I yield {"(t9,x0) € Q. Thus
f(&"(tg, o)) > ¢ — ke for every n. Hence the sequence is convergent and so is the series

o0

D (€ (o, m0)) — f(E" (o, m0))].

n=0
But

(" (to, o), €™ (to, 20))=p(&(t0, €™ (to, 20)), €™ (to, x0)) <

<2 LH(E t0,20)) — F€ (10, 70))

by the property at the end of the previous step. Therefore {£"(tp, z0)}o>; is a Cauchy
sequence. Let us denote its limit by z.

We will show that z ¢ @Q. Indeed, let us assume the contrary. Then there exists
v* € I' so that z € U+ and a,«(z) > 0. Let > 0, r > 0 be two positive reals such
that oy« (x) > p for every = with p(z,x) ST?”. The convergence of the sequence yields
the existence of ng with p(z,£"(tg,x0)) < 3 whenever n > ng. Let us fix an arbitrary
positive integer n > ng. By Lemma 3.3 there exists a neighbourhood of £"(tg, xg) so

that &(to,.) is a composition of finitely many elementary deformations on it, say

§=1p, 0Mgy 0-..0MN3,.
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The decreasing property from Lemma 3.1 gives

FE (to, 20)) < £(€a,(to, € (to, 20))) < F(E"(to, z0))

and hence
P(fn(t0>$0)afﬁi(tofn(to,xO)))Sg—g[f(gn(to,fUO)) — f(&p,(to, " (to, w0))] <
<2 [F(€ o)) — F(E™ (10, 0)]
Therefore

r
p(é.n(t(b xO)v gﬁz (t()v gn(t(b xO))) < 5

for every ¢ = 0,1,2,..., s and for every n which is big enough, say n > ny > ng. So we
have (&g, (to,&" (to,x0))) > p foreach i € {0,1,2,...,s}. Moreover, every
path {ng,.,(t0s, &g, (to, " (to, z0))) = s € [0,1]} between &g, (to,&"(to,70)) and
€, (t0, €™ (to, o)) is in {z : p(x,z) < r} for n > n; too, because f decreases along the
integral lines of 7g,,, and the above argument aplies.

As ¢ is actually the composition of all {n,},<,, and every intermediate point
£5(to, €™ (to,x0)), B < 7o is in Uy, my, must act nontrivially, i.e. there exists i €
{1,2,...,s} with v* = ;. Then

s—1

Zfolaﬁi+1 (nﬁi+1 (t03> gﬁi+1 (t()a gn (t07 .To))))ds >
=0

> [0ty (0 (o, €4+ (to, €™ (Lo, 20))) ds.
So by (B') and 1y« (tos, & (to, £ (to, 20))) C {z : p(x,2) <7} we have
FE T (b0, 20)) — F(€"(to, 20)) <

2 1 n 2
< —gto/o vy (1 (tos, €4+ (to, € (to, 0))))ds < —5 tok
Thus £(€"(to, 20)) — F(E" (t0,0)) > =
the convergence of the series 300 ([f(£™(to, z0)) — f (£ (t0,70))]. So we proved that
2 & Q.
On the other hand

top > 0 for every n > n; which contradicts

Qq

p(zo, 2)=lim_p(xo,€"(to,20)) < ) p(€" (o, x0), €™ (to, 0)) <
n=0

ko

l;— Z "(to, z0)) — FE"T (to, 20))] = %(f(xo) —f(2) < g—g(chg — £(2)).
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If we assume that f(z) > ¢ — e, we have

ko ko
p(xg,2) < 5 (c+e—f(2) < 5 (c+e—c+e)=kd

Hence z € Sys because xg € S, i.e. dist(zg,S) = 0. But f(z) = lim,, oo f(£"(to, 70)) <
f(zo) <c+eandsoz € fHec—ec+e]) NSk C Q. This contradicts our result
z & Q. Thus f(z) < ¢ —e. This gives us the existence of a positive integer m with
f(&m(to,x0)) < c—e. But £ : [0,1] x M — M and f : M — R are continuous
mappings. Therefore there exist a neighbourhood W of ¢ty and a neighbourhood U of
xo such that f(£™(¢,z)) < ¢ —e whenever x € U and t € W. The lemma is proved. O

We go back to the construction of the desired deformation n. We first define £
for a > 0 by

€(t,w) = &((a — [a))t,€9(t, )

where [a] is the largest integer not greater than a. If a is integer, then

ga(tvx) = g(o'taga(tvl‘)) = ga(tvx)

and so this definition agrees with the one given at the beginning of this step. It is
straightforward to check that the so defined £*(t,x) is a jointly continuous function for
(a,t,x) € [0,00) x [0,1] x M.

Lemma 3.4 assigns to every point € SN f~1([c — &,¢ + €]) an open neigh-
bourhood V, C @ of x and a positive integer m, so that f(£"*(1,y)) < ¢ — ¢ for every

y € V. Now {V‘B}megﬂf—l([cfs,chs])
V3} e be alocally finite refinement of it. We denote by mg one of the positive integers
BIB B

is an open covering of SN f~!([c —¢,c+¢€]). Let

my for which Vg C V,. There exists a partition of unity {ag}gep subordinated to
{Vs}sen, i-e. ag: M — [0,1] are continuous, ag(x) > 0 iff z € Vs and Y scpag(r) =1
for every x in the closed set SN f~1([c — &, c +¢€]).

At last, we are ready to define

Z,@eB ag(z)mg

n(tvx) =¢ (t,.l‘)

for every t € [0,1],2 € M.

The continuity of ag and of (¢, x) as a function of (a,t,x) gives us the conti-
nuity of 1 : [0,1] x M — M as a superposition of continuous functions. We will check
that n satisfies the conditions (i) + (iv). For the rest of this section a(x) will denote
> gep ap(z)mg:

(i) (0, 2) = (0, 2) = £((al(@) — [a(x)]).0,1@N(0,2)) = £l (0, z) = =;
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(ii) Let # € Q. Then ag(x) = 0 for every 3 € B and hence n(t,z) = (t,z) = x for
every t € [0, 1];

(iii) Let # € SN f~1((—o0,c + €]). We know that f(¢™5(1,7)) < ¢ — ¢ whenever
x € V3 from the choice of mg. Let m = min{mg : € Vg}. If f(x) > ¢ — ¢, then
> pepap(r) =1 and so

a(z) = Z ag(x).mg >m
BeB

yields [a(z)] > . Hence

1L,a)) = f(é(a(x) — a(x)), €4@I(1,2))) <
<fEP@I(L,2)) < F(E7 (L) <c—e.

~
—
3
—
—_
]
~—
S—
I
~
—~~
Iy
2
&
—~

If f(z) < c¢—e, then f(n(1,2)) = f(£*@)(1,2)) < f(z) < ¢ —e. Therefore n(1,z) €
FH(=00,c —€]).

From (iv) below z € S yields dist(n(1,x),S) < dist(n(1,z),z) < k?6. Thus
(1,80 fH (=00, c+e])) € fH(—o00, ¢ —€]) N Sges.

pla,n(t,z)) = p(a, £ (¢, 2)) = p(a,&((a(z) — [a(2))t, €t 2))) <
< pla, €Dt 2)) + p(e Nt 2),€((alz) — [a(2)])t, €0 (¢, 2))) <

15 fa(@)-1 ,
< o [ 2) — fnt o]+ 30 o€t )€t ) <
=0
(iv) 15 (@)1 ,5 4
< S 2)) — FOn(t, )] + S (€)= FE€T ()] =
1=0
= ];—g[f(é[a(“” (t,2)) = [(n(t,2))] + I;—E flw) = N, 2)] =

ks
2%

[f (@) = f(n(t, )]

for every x € M,t € [0,1].

If z € Q, then n(1,z) € Q as well and hence f(z) and f(n(1,z)) are in [c —
ke,c + ke|. Therefore p(z,n(t,z)) < 'I;—g[(c + ke) — (c—ke)] = ];—nge =k*. Ifx ¢ Q,
then 7(1,7) = z and p(z,n(1,7)) = 0 < k2§, i.e. the deformation lemma is proved in

the case when M is connected.
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Next, supposing that M is not connected, let M, for a from some index set A
be all components of M. Let A; C A be the set of all « with

{reM:ze€ fYc—ect+e))nNS}n M, #0O.

Clearly A; # O because otherwise f~!([c —€,c+¢]) NS = @ and there is nothing to
prove. Now Q, = Q N M, is an open neighbourhood of f~!([c — &, ¢+ €]) N Ss N M,
in M,. Let n, € C([0,1] x M, M,) be the above constructed deformation of M,.
Defining n(t,z) = na(t,z) for (t,x) € [0,1] x M, when a € Ay and n(t,x) = = for
all t € [0,1] and = from all other components of M we obtain n € C([0,1] x M, M)
satisfying (i)+(iv). The deformation lemma is thus proved. O

4. Ljusternik-Schnirelmann theory on C!—Finsler manifolds. Here we
apply the deformation lemma from the previous section for proving the result of R. S.
Palais (Theorem 1.1) for a locally Lipschitz function defined on a C!—Finsler manifold.
Theorem 4.2 below includes as a particular case the respective result of A. Szulkin —
Theorem 3.1 on p. 126 in [13].

We begin with recalling the necessary definitions:

Definition 4.1. Let M be a Banach manifold. The mapping n € C([0,1] x
M, M) is called deformation of M if n(0,z) = = for every x € M.

Definition 4.2. Let F be a family of subsets of a Banach manifold M. We
shall say that F is deformation invariant if, given A € F and a deformation n of M,
n(1, A) € F holds true, where n(1,A) ={x:xz =n(1,y),y € A}.

Definition 4.3. Let M be a Banach manifold, f : M — R and F be a family
of subsets of M. We denote by minimaz(f,F) the number inf{sup{f(x) : z € A} :
Ae F}.

Definition 4.4. Let M be a C'—Banach manifold and f : M — R be locally
Lipschitz. The real number c is said to be a critical value of f iff there exists x € M

(called critical point of f) such that ¢ = f(x) and 0 € Of(x).

When proving existence of critical points, one imposes some kind of compactness
condition (of Palais-Smale type) on the considered function. In this section we shall
need such a condition which is stronger than the respective one used in the next section.

Definition 4.5. ([13], Remark 3.4 on p. 131) Let M be a C'—Finsler
manifold, ¢ € R and f : M — R be locally Lipschitz. We say that f satisfies the
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condition (sPS). if, whenever a sequence {x,}>2 is such that ¢ = lim,_,~ f(x,) and
liminf stf(x,) > 0, then ¢ is critical value of f and

inf {inf {p(xn,2):2€ M, NK.}:n>1}=0

where M, is the component of M containingx € M, K.={x € M : f(z) =c and 0 €
Of(x)} is the set of the critical points at level ¢ and p is the Finsler metric on each

component of M.

The next theorem will be applied in the proof of Theorem 4.2 below.

Theorem 4.1 (minimax theorem). Let M be a complete C'— Finsler manifold
without boundary and f : M — R be a locally Lipschitz function. Let F be a deformation
mwariant family of subsets of M such that

—oo < minimax(f,F) < 4o0.

Let ¢ = minimax(f,F) and let f satisfy the (sPS). condition. Then c is a critical
value of f.

Proof. Let us assume the contrary, i.e. that c is not a critical value. We claim
that in this case there exist € > 0 and § > 0 such that stf(z) < —f for each x €
f1((c—2¢e,c+2¢)). If this claim was not true, we could find a sequence {x,}°°; C M
such that ¢ — 1 < f(z,) < ¢+ L and stf(z,) > 1 for each natural n. Because of
the (sPS). condition this means that c is a criticalTifalue of f which contradicts our
assumption.

Applying the deformation lemma with S = M,Q = f~((c — 2¢,¢ + 2¢)) and
§ = 2¢//3 we obtain a deformation n € C([0,1] x M, M) such that n(1, f~1((—o0,c +
e])) € f~1((—o0,c — €]). By the definition of ¢ there is a nonempty A € F with
AC fY(~o00,c+¢]). Then n(1,A) C f~1((—oo,c —¢]). Since n(1,A) € F we have

¢ =minimax(f,F) <sup{f(z):zen(l,A)} <c—=¢

which is a contradiction. This completes the proof. O

Remark 4.1. For proving Theorem 4.1 it is sufficient to impose on f the
weaker Palais-Smale condition from definition 5.2 below.

In what follows we shall need the notions of Ljusternik-Schnirelmann category.

Definition 4.6. ([13], p.124). Let M be a topological space. A set A C M is
said to be of category k in M (denoted catpr(A) = k) if it can be covered by k but not
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by k — 1 closed sets which are contractible to a point in M. If such k does not ezist,
catpr(A) = +o0.

The next two properties of the category follow directly from the definition.

Proposition 4.1. (a) If A C B, then catpyr(A) < catpr(B);
(b) catpr (AU B) < catpr(A) + catpr(B).

The main result in this section is

Theorem 4.2. Let M be a complete C'—Finsler manifold without bound-
ary and f : M — R be a locally Lipschitz function which is bounded below. Let
catp (M) = k, where k is a natural number or k = 4oo. Let Aj = {A C M :
A s closed and catyr(A) > j} and ¢; = inf{sup{f(z) : x € A} : A € A;} for
Jj = 1+k. If f satisfies the (sPS). condition for all ¢ = ¢;,5 = 1+ k and for all
¢ >sup {f(x): z € K}, where K is the set of all critical points of f, then f has at

least k distinct critical points.

Proof. If sup {f(z) : © € K} = 400 then K is infinite and the assertion of
the theorem holds true.

Let sup {f(z) : € K} < 400. Then we shall prove that ¢; < sup {f(z) :
x € K} for every j = 1,... k. Indeed, if ¢ > sup {f(z) : = € K} we obtain that the
set f~1([e,+00)) does not contain any critical values of f. Because of the condition
(sPS)., for every d > c there exist £4 > 0 and ag > 0 such that st f(z) < —aq for every
€ f7Y(d — 2e4,d + 2¢4)). Applying the deformation lemma we obtain the existence
of a deformation 7y such that ng(1, f~1((—o00,d +&4]) C f~1((—o0,d — &4)).

So, we can find countably many numbers d,,, £, > 0, and deformations 7,,, n =
1,2,... such that

o
(dn — &n, dn + En) ) [C, +OO)>
n=1
(and every compact interval [c, d] is covered by finitely many intervals (d,, —ep, d, +€5))
dn +éen > dn+1 —&np+1y C < dn < dn+17

nn(l,f_l((—oo,dn +e,)) C f_l((—oo,dn —en), n=1,2,...

Next we define inductively the deformations &,, n = 1,2,..., as follows: &y(t,z) =
x and &,41(t,x) = &p(t, Mur1(t,x)) for all z € M and ¢ € [0, 1].

By setting £(t, ) = limy, o0 §n(t, ) we define a deformation for which (1, M) C
f~H(—o00,c —¢]), where e = ¢ — dy + &1 > 0.



Deformation Lemma and Mountain Pass Theorem 259

Indeed, let z be an arbitrary point from M. If f(x) < ¢ —e = dy — 1, then
f(€(1,2)) < f(z). Let x € f71(Jc —€,+00)). Then there exists a positive integer k
such that f(z) < inf {f(y)| v € U2,y f(dn — 3en,dn + 265,)}. Because of the
deformation lemma we have that n,(t,y) = y for every n > k+ 1, t € [0,1] and
every point y € f~1((—oo, f(x) + exy1)). Therefore £(¢,y) = &(t,y) for ¢ € [0,1] and
y € f~1((—o0, f(x)+exs1)). This shows that & depends continuously on its arguments.

Next we prove by induction on n that if f(x) < d, + &, then

f&(1,2)) <di — e

Let n = 1 and f(x) < dy +¢e1. Then &(1,2) = n(1,2) and hence & (1,2) < di — &7.
Let us assume that this is true for n. For n + 1 we have that if f(z) < dp+1 + €nt1
then f(n11(1,2)) < dpy1 — €nt1 < dp, + €,. Applying our induction assumption and
the equality &,11(1,2) = &,(1, mny1(1, 2)) we obtain that f(£,41(1,2)) < di — e;.

We obtained already that £(1,z) = £, (1, x), and hence f(£(1,x)) = f(&k(1,z)) <
d1 — &1 = ¢ — . Since = was arbitrarily fixed point from the set f~([c — ¢, +00)), we
proved in such a way that £(1, M) C f~((—o0,c — €]).

So, if j < catps (M) then because of the relations

catpyr (M) < catyy (€(1, M) < catps (f((—o00,c — €]),

we obtain that ¢; < ¢ —¢e < ¢. Since ¢ was an arbitrary real number greater than
sup{f(z)| x € K}, we have that ¢; < sup{f(z)| z € K} .

Since Aj41 C Aj, we have ¢; < ¢j41. We already proved that ¢, < sup{f(z)|z €
K} < +00. Moreover

—oo < inf{f(x):x € M} <inf{f(x):z € A}
for each A € Ay and, hence, —oco < ¢;. We thus proved that
—o<cg <L .. < < +o0.

Let Ko={x € M : f(x) =c and 0 € df(z)} for ¢ € R. According to Theorem
6.2.(3) in [9] A; is deformation invariant for all j = 1,2,...,k. Then Theorem 4.1
implies that K. # O for c =¢;,j =1+ k.

Given j, suppose ¢j = ¢jqy1 = ... = cjqp for some p > 0. If K. is noncompact
we are done.

Let K. be a compact subset of M. Then by Theorem 5 in [8] and Theorem 6.3 in
[9] there are > 0 and a 2u-neighbourhood Us,, of K. such that cat s (Us,) = catyr(Ke).



260 Nadezhda Ribarska, Tsvetomir Tsachev, Michail Krastanov

We next prove that there are § > 0 and gy > 0 such that stf(z) < —f for each
z € f71((c — 2e0,¢ + 220)) \ Uy. Indeed, if it was not the case, then there would be
a sequence {z,}32; C M \ U, such that ¢ — 2 < f(z,) < c+ % and stf(z,) > —1.
Then the (sPS). condition yields a point o € K.N (M \ U,) which is a contradiction
because K. C U,,.

Let & > 1 be the constant in the formulation of the deformation lemma and
e € (0,g9) be such that 2¢/3 < pu/k. Now we apply the deformation lemma with
this €,0 € (2¢/8,u/k),S = M \ Uy, and Q = f~1((c — 2e9,¢ + 2¢0)) \ U,. Hence
n(1, f~1((—=o0,c+¢]) \ Uau) C f1((—00,c — €]) and therefore (using Theorem 6.2.(3)
in [9))

catar (f =1 (=00, ¢ — e])>catrr (n(1, f~ (=00, c +€]) \ Uzy) >
>catp (fH (=00, c+€]) \ Usp).

By the Proposition 4.1 we have

cathfl((—oo, c+ f-:])gcatM(f*l((—oo, c+el)Uly,) <
<catpn (fH(—o0,c+e]) \ Usy) + catpr(Usy) <
<catpr(f 1 ((—o0,c —€])) + catpr(KL).

Hence
catpyr(K.) > catpr(f 71 ((—o0, ¢+ €])) — catpr(fH((—o0, ¢ — €])).

Since ¢ = ¢j = ... = ¢jip, we obtain catpy(f1((—o00,c+¢])) > j+p and
caty (f~H((—o0,c —¢])) <j—1. Finally catpy(K.) >j+p—(j—1)=p+1 which
means that the set K, contains at least p + 1 points. This completes the proof. O

Remark 4.2. When M is compact the assumption that f satisfies (sP.S), for
all ¢ >sup {f(x) : 2 € K} is not needed because in this case ¢; < o0 for j =1+ k.

5. Min-max principle and mountain pass theorem. In this section we
establish a general min-max principle (Theorem 5.1) using the deformations constructed
in Section 3. As a corollary we obtain a general version of the mountain pass theorem
(Theorem 5.2).

Here is the setting: Let M be a complete C!—Finsler manifold without boun-
dary and f: M — R be locally Lipschitz. Let F be a family of subsets of M and F' be
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a subset of M. Throughout this section we shall denote
c(F, f,F)=if{sup{f(z):z € ANF}: Ae F}
and in particular
c=c(M, f,F)=inf {sup {f(z) :x € A} : A e F}.
We shall also use the conventional notations
dist(F, B) = inf {p(z,y) : x € F,y € B}

and
dist(z, B) = inf{p(x,y) : y € B}

forx e M,F C M,B C M, M being a metric space with metric p.

Definition 5.1 (cf. [5]) Let B C M. We shall say that a class F of subsets
of M is a homotopy stable family with boundary B if
(a) every set in F contains B;
(b) for any set A in F and any n € C([0,1] x M, M) verifying n(t,x) = = for all (t,x)
in ({0} x M)U([0,1] x B) we have n(1,A) € F, where

n(l,A) ={zx e M :x=n(l,y) for some ye€ A}.

Theorem 5.1. Let M be a complete connected C'— Finsler manifold without
boundary, f : M — R be locally Lipschitz, k € (1, %),f be a homotopy stable family of
subsets of M with boundary B and F' be a subset of M verifying

(2) dist(F,B) >0 and FNA#O foral AcF
and
(3) inf{f(z):z € F} >c.

Let ¢ € (0,dist(F, B)/2). Then for every A € F satisfying
e

sup{f(x) : 2z € AN Fj2. 3} <c+ 1
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there exists x. € M with the properties:
g2 5e?

(i) e—— Sf(xs)gc'i‘ﬁ

(i) stf(as) > —

(iii) dist(z., F) <e

(iv) dist(xe, A) < e.

Proof. We first note that (2) and (3) imply ¢(F, f, F) = ¢(M, f,F) = c. Hence
there is A € F (appearing in the formulation of the theorem) satisfying

2

Sup{f(x) NS AﬁFk2€/3} < c—+ i_2
because
c= C(Fafaf) < C(Fk25/37f7f) < C(M7f7f) = c.
We set

2
e (z) = max{0, EZ - %.dist(a:, F}

fe(x) = f(.l‘) + wa(x)
2

forz € M, and ¢, = c+ % It is easy to check that c. < ¢(F, fo, F) < (M, fo, F) < ce.
2
Since 0 < 9. (x) < EZ for each x € M,

2
Sup{fs(x):$€AﬁF&}<cE+%
3

holds true.
Let us choose S to be the set AN Fj2. /3. Then

Skesz = (Fr2e/3 N A)reyz C Flrzqryeys N Ageya-

5
Since k < —, the set

4
1 g2 g2
Qe = int(f ([ce — g,ca + ED NF.NA,)
g2 g2
is an open neighbourhood of f-1([e. — ¢t E]) N Ske/3-
We claim that there exists
2 2

_ €
ze € fo 1([05 - —,C + E])ﬁFaﬁA6
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such that stf.(x.) > —%. Supposing the contrary, we apply the deformation lemma for
the following choice of f, S, ¢c,e,d,k and @Q respectively: fe, AN F2. /s, c,e2/12,¢/3,k
and Q.. We thus obtain n € C([0,1] x M, M) satisfying the following properties:

(a) n(0,x) = z for each = € M,

(b) n(t,z) = = for each (t,z) € ([0,1] x M \ Q¢);

() (1, (=00, ¢ + €/12]) N AN Fyays) C fo(—00, ez — £2/12]);

(d) p(z,n(1,2)) < k?c/3 for each x € M.

Let A; =n(1,A). Since Q. C F. we have BN Q. = @ and, hence, n(t,z) ==
for all (¢t,z) € ([0,1] x B). Since F is homotopy stable with boundary B, we have
Ay € F. Tt follows from (d) that A;NF C n(1, AN Fj2./3). But because of AN Fy2. /3 C
(=00, cc +€%/12]), (c) implies n(1, AN F%E) C foY((—o0,ce —€2/12]). Then

2

cc = c(F, f.,F) <sup{fe(z):x € AANF} <c. — %
which is a contradiction. Hence there is
2 &2
Te € f;l([cs - E,Cg + E]) N F; ﬂAE
with stfo(z:) > —¢/2, 1. e. x. satisfies (iii) and (iv). Moreover,
2 2 2 2
€ € € 5e
f(xs) :fs(xs)_¢5(x5) §65+€ :C+Z+€ :C"‘E
and ) , ,
€ € €
f(Q:E) = fs(xs) _1/}5(335) > Ce — Z — g =c— E,

i.e. z. satisfies (i).

Finally, since f: = f+1)., using Lemma 2.2 we get f2(z,h) < f°(z,h)+¢2(x, h)
for every » € M and h € T,(M) with ||h|l7, vy = 1. Hence stf(x) > stf-(x) +
inf{—v2(z,h) : ||hll7, ) = 1}. But 9. is a globally Lipschitz function with Lipschitz
costant §. It follows then from Lemma 2.4 that | — ¢2(z,h)| < £/2 for every x € M
and h € T,,(M) with ||h[|z, ar) = 1. So we obtain

€ e €
st f(xs) > st fs(dfs) - 5 > _5 - 5 = —¢&.
and the proof of the theorem is complete. O
Remark 5.1. Our Theorem 5.1 includes as a special case Theorem 1.ter

in [5] (and, hence, Theorem 1 in [5]) when the compact Lie group appearing in their
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formulation is the identity. Here we drop the compactness assumption on the elements
of F and consider locally Lipschitz functions instead of C! ones. Theorem 2.2 in [3] is

also a corollary of Theorem 5.1.

The Palais-Smale condition we shall need in the mountain pass theorem below

is weaker than the one given in Definition 4.5.

Definition 5.2. Let M be a C'— Finsler manifold, c € R and f : M — R be
locally Lipschitz. We say that f satisfies the condition (PS). if, whenever a sequence
{zn}22 is such that ¢ = lim, . f(zy,) and liminf st f(x,) > 0, then ¢ is a critical
value of f.

Next we introduce the final necessary notation: Let u,v be two distinct points
of the connected C'—Finsler manifold M. We denote

I'={g € C([0,1}, M) : g(0) = u,g(1) = v}

(the set of paths connecting v and v).

Theorem 5.2. Let M be a complete connected C*— Finsler manifold without
boundary, f : M — R be locally Lipschitz, D be a closed subset of M and u,v be
two points from M belonging to disjoint components of M \ D. Assume c(M, f,I') =
(D, f,T') =c. If f verifies (PS). then c is a critical value of f.

Proof. The assumption c¢(M, f,I') = ¢(D, f,I') = ¢ and the compactness
of all ¢ € T yield that v and v belong to disjoint components of M \ Dy, where
Dy ={x € D: f(x) > c}. We apply Theorem 5.1 with F =T, B = {u,v} and F' = D;.
Since D is closed and B is compact, D1 N B = @ implies that dist(D;, B) > 0. Since
u,v belong to disjoint components of M \ Dy, D1 Ng # O for all g € " and thus (2)
is satisfied. The definition of Dy implies (3). The family T is clearly homotopy stable.
Next we combine (i) and (ii) with the (PS). condition to end the proof. O

Remark 5.2. It is obvious that (iii) and (iv) from Theorem 5.1 combined
with the usual stronger Palais-Smaile conditions, if imposed on f, will yield information
about the location of the established critical points (cf. Theorem 1 (ii) in [11]). Theorem
5.2 includes as special cases Theorem 1 (i) in [11] where f is defined on a Banach space,

as well as Theorem 1 in [12] where f is defined on a C?~—Finsler manifold.
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