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Abstract. The maximal cardinality of a code W on the unit sphere in n dimen-
sions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two
methods for obtaining new upper bounds on A(n, s) for some values of n and s.
We find new linear programming bounds by suitable polynomials of degrees which
are higher than the degrees of the previously known good polynomials due to Lev-
enshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein
bounds [11, 12]. In such cases we find the distance distributions of the correspond-
ing feasible maximal spherical codes. Usually this leads to a contradiction showing
that such codes do not exist.

1. Introduction. A finite non-empty subset of n-dimensional Euclidean sphere

Sn−1 is called a spherical code. A spherical code W ⊂ Sn−1 has several characteristics,

such as its cardinality, its maximal cosine s = s(W ) = max{(x, y) : x, y ∈ W, x 6= y},
its minimum distance d = d(W ) = min{d(x, y) : x, y ∈ W, x 6= y}, its degree |A(W )| =

|{(x, y) : x, y ∈ W, x 6= y}| and its strength τ = τ(W ) = max{τ : W is a spherical

τ -design }. For many links between these characteristics we refer to [10, 12, 13].
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If W is a spherical code and x ∈ W then the distance distribution of W with

respect to x [3, 9] is the system of nonnegative integer numbers {At(x) : −1 ≤ t < 1}
where At(x) = |{y ∈ W : (x, y) = t}|.

The maximal cardinality A(n, s) of a spherical code W ⊂ Sn−1 with maximal

cosine s = s(W ) is bounded above from [11, 12, 13]
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where ξk and ηk are the greatest zeros of Jacobi polynomials P
((n−1)/2,(n−1)/2)
k (t) and

P
((n−1)/2,(n−3)/2)
k (t) respectively (see [1]); P

(n)
k (t) = P

((n−3)/2,(n−3)/2)
k (t) are the Gegen-

bauer polynomials [1, 2] (normalised for P
(n)
k (1) = 1). A code W ⊂ Sn−1 with s(W ) = s

and |W | = A(n, s) points is called maximal.

The bound (1) has been obtained by linear programming. Indeed, suitable

polynomials for the following theorem were used.

Theorem 1. [10, 11] Let f(t) be a real polynomial such that:

(C1) f(t) ≤ 0 for −1 ≤ t ≤ s.

(C2) The coefficients in the Gegenbauer expansion f(t) =
k
∑

i=1

fiP
(n)
i (t) satisfy f0 > 0,

fi ≥ 0 for i = 1, 2, . . . , k.

Then A(n, s) ≤ f(1)/f0.

In this paper we improve in some cases the bound (1) using two different meth-

ods. The first one is based on the results in [5, 6], and the second uses an approach

from [4, 7].

Firstly, in some cases we are able to find polynomials of degrees which are

higher than the degrees of the corresponding Levenshtein polynomials. In fact, we

search for good polynomials, having one double zero more [6, Theorem 2.2]. Moreover,

our polynomials have several consecutive zero Gegenbauer coefficients [6, Theorem 3.1].

The best polynomials we obtain in this way are extremal in some sense [5, 6]. More

precisely, they are best [6, Theorem 5.2] among the polynomials of the same or lower

degree which satisfy the conditions of Theorem 1.
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The above method does not work for all values of n and s. Then we inves-

tigate the possibilities for attaining the bound (1). The distance distribution of all

maximal codes attaining (1) can be computed by a Vandermonde system [10, Theorem

7.4], [4, Theorem 2.1]. Thus we would obtain a contradiction unless the solutions are

nonnegative integers. This gives nonexistence of corresponding maximal codes.

2. Good polynomials of higher degrees. Levenshtein [11, 12, 13] obtains

the bound (1) by suitable polynomials having form A2(t)(t − s) or A2(t)(t + 1)(t − s).

Following [5, 6], we apply Theorem 1 for polynomials B2(t)G(t)(t − s) where

G(t) =







(t − p)2 + q(s − t)(1 + t) if deg(f) is odd;

(t + 1)(t − p)2 + q(s − t)(t − u)2 if deg(f) is even,

0 < q < 1, p, u ∈ [−1, s]. Furthermore, B(t) has one zero (in [−1, s]) more than the

corresponding A(t).

We express all coefficients of B(t) by p and q (or p, q and u respectively). To

do this, we use equalities fi = 0 [6, Theorems 3.1, 3.2] and equations we have obtained

by equating to zero the partial derivatives of F = f(1)/f0 as a function of p, q, u. The

remaining two or three parameters we determine by a Monte Carlo method minimizing

the ratio f(1)/f0 under the condition (C2) from Theorem 1.

As remarked, our polynomials have one double zero more than the correspond-

ing Levenshtein polynomials. Their degree must be higher by three or four at least

[6, Section 2.1]. Usually, two or three consecutive Gegenbauer coefficients of the best

polynomials we find are equal to zero.

Example 1. The good polynomials of degree 9 must have the following form:

f(t) = (t3 + at2 + bt + c)2((t − p)2 + q(s − t)(1 + t))(t − s) =
9
∑

i=1

fiP
(n)
i (t),

where 0 < q < 1, −1 ≤ p ≤ s. The requirements f8 = f7 = f6 = 0 give a = −α/2,

b = −(β +2aα+a2 +36/(n+14))/2 and c = −(28(2a+α)/(n+12)+γ +2aβ +α(2a+

b2)+ 2ab)/2 respectively (where (t− p)2 + q(s− t)(1+ t) = αt2 + βt + γ). When s > η3

we allow f6 > 0 and compute c by the linear equation 2f0−(1+a+b+c)f ′

0c = 0 (where

f ′

0c = 0 is the partial derivative of the function f0 = f0(c, p, q) with respect to c). This

approach gives new bounds for ξ3 = 1/
√

n + 2 < s < ξ4 =
√

3/(n + 4) in dimensions

n ≤ 11. In some cases the improvements are not in the integral part. In two tables

below we give some new bounds on A(n, s) in this range. These are the typical cases.
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Table 1. New upper bounds for A(n, 0.45), 5 ≤ n ≤ 10.

n Bound (1) New bound p q f6 = 0

5 38.5009 38.0423 0.04674609 0.7687089 Yes

6 63.7149 62.004 0.0543148 0.757356 Yes

7 103.2661 99.4735 0.06189406 0.7458104 Yes

8 163.5957 160.1935 0.06995187 0.7334939 Yes

9 250.6434 249.737 −0.06348625 0.86231578 No

10 383.2484 382.6357 −0.07007453 0.8659478 No

Table 2. New upper bounds for A(n, 0.48), 4 ≤ n ≤ 8.

n Bound (1) New bound p q f6 = 0

4 24.3733 24.15 0.0756345 0.7586056 Yes

5 43.6207 42.447 0.0835181 0.7464715 Yes

6 75.7119 72.6399 0.0914318 0.73411734 Yes

7 124.944 124.0729 0.0139593 0.80664359 No

8 202.3733 201.6748 −0.0405325 0.8560384 No

In the next table we give bounds for s =
√

2/7 = 0.534522 by polynomials of

degree 9, 10 and 11.

Table 3. New upper bounds for A(n,
√

2/7), 3 ≤ n ≤ 10 (R is the number of the

double zeros of the corresponding extremal polynomial)

n Bound (1) New bound deg(f) R fi = 0

3 14.348 14.233 9 3 f7 = f6 = 0

4 29.561 28.77 10 3 f8 = f7 = 0 = f6

5 56.066 55.27 10 3 f8 = f7 = 0

6 102.429 101.16 10 3 f9 = f8 = f7 = 0

7 181.586 179.562 11 4 f9 = f8 = 0

8 307.929 303.51 11 4 f10 = f9 = f8 = 0

9 514.853 497.22 11 4 f10 = f9 = f8 = 0

3. Nonexistence of some maximal spherical codes. We need definition

for spherical designs. The most convenient for using here is the following:

Definition. A spherical code W ⊂ Sn−1 is called a spherical τ -design if and

only if
∑

x∈W

f((x, y)) = f0|W |(2)
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holds for all real polynomials f(t) of degree at most τ and any point y ∈ Sn−1. Here

f0 is as in Theorem 1. The maximal number τ for which W is a spherical τ -design is

called strength of W .

Let W ⊂ Sn−1 be a maximal code and |W | = f(1)/f0 for the corresponding Le-

venshtein polynomial f(t). Then we have the following necessary conditions (obtained

by the complementary slackness in the linear programming) for attaining the bound (1)

[10, 11, 12]. Firstly, At(x) 6= 0 is possible only if f(t) = 0. Moreover, since fi > 0 for

i = 1, 2, . . . ,deg(f) [11], W must be a spherical design with strength at least deg(f).

Theorem 2. ([10, Theorem 7.4], [4, Theorem 2.1]) The distance distribution

of a maximal spherical code W ⊂ Sn−1 attaining (1) depends only on its cardinality and

the zeros of the corresponding Levenshtein polynomial. It can be found by the following

Vandermonde system:

Aα1
(x)αi

1 + Aα2
(x)αi

2 + · · · + Aαr
(x)αi

r = f
(i)
0 |W | − 1, i = 0, 1, . . . , r − 1,(3)

where A(W ) = {α1, α2, . . . , αr}, α1, α2, . . . , αr are all different zeros of f(t), f
(2j+1)
0 =

0, f
(2j)
0 =

(2j − 1)!!

n(n + 2) · · · (n + 2j − 2)
(f

(0)
0 = 1).

P r o o f. We set consecutively f(t) = 1, t, . . . , tr−1 in (2) (r ≤ deg(f), y ∈ W ).

The system (3) has a Vandermonde matrix. Hence its solution is unique and gives the

distance distribution of W . �

In the sequel we compute the distance distributions of putative maximal spheri-

cal codes which would attain the bound (1) for degrees 3 and 4. Since the distributions

do not depend on the point x ∈ W , we shall write At instead of At(x). If W ⊂ Sn−1

has |W | = M points and maximal cosine s = s(W ) we refer to as an (n,M, s) code.

The third Levenshtein polynomial is

f(t) = (t + a)2(t − s), a =
1 + s

1 + ns
.

It gives bound (1) when 0 ≤ s ≤
√

n + 3 − 1

n + 2
. In this range we have (see (1), [12, p.66]):

A(n, s) ≤ f(1)

f0
=

n(1 − s)(2 + s + ns)

1 − ns2
.(4)

Let us suppose that an (n,M, s) code with s ∈ (0,

√
n + 3 − 1

n + 2
] attains the

bound (4). Then by Theorem 2 the maximal code W is a spherical 3-design, A(W ) =

{s,−a} and its distance distribution satisfies the following system

As + A−a =
n(1 − s)(2 + s + ns)

1 − ns2
− 1, sAs − aA−a = −1.
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Therefore we have

As(x) =
(n − 1)(2 + s + ns)

(1 − ns2)(1 + ns2 + 2s)
, A−a(x) =

(1 + ns)3(1 − s)

(1 − ns2)(1 + ns2 + 2s)
.

Example 2. a) For n = 5, s = 1/5 we obtain the distance distribution of

a known 3-design with 16 points (a (5, 16, 1/5) code) [10, 13, 4]. Namely, we have

A1/5 = 10, A−3/5 = 5. In fact, the first author proves [8] that this code is unique up to

isometry.

b) For n = 4, s = 1/4 we have A(4, 1/4) ≤ 13. If W attains this bound then

A1/4 = 52/7. Therefore (4, 13, 1/4) codes do not exist, i.e. A(4, 1/4) ≤ 12.

We set s = 1/m ∈ (0,

√
n + 3 − 1

n + 2
]. So we have m ≥ 1+

√
n + 3. For a putative

maximal (n,M, 1/m) code we obtain

|W | = M =
n(m − 1)(2m + n + 1)

m2 − n
,

A 1

m

= B1 =
m3(n − 1)(2m + n + 1)

(m2 − n)(m2 + 2m + n)
, A

−
m+1

m+n

= B2 =
(m + n)3(m − 1)

(m2 − n)(m2 + 2m + n)
.

Therefore the following assertion is true:

Theorem 3. If for some k ≥ 1 +
√

n + 3 the numbers B1 and B2 are not

integer then (n,M, 1/m) maximal codes do not exist.

Example 3. Maximal spherical (4, 13, 1/4), (7, 28, 1/5), (9, 45, 1/5), (10, 56,

1/5), (6, 19, 1/6), (8, 30, 1/6), (16, 116, 1/6), (18, 165, 1/6), (21, 238, 1/6) codes do

not exist. We set m = 4, 5, 6 and choose the suitable cases.

To obtain infinitely many nonexistence results we set suitable values of m in

Theorem 3. Let us take m = n ≥ 1 +
√

n + 3 for n ≥ 4. Then by (4) we obtain

A(n, 1/n) ≤ 3n + 1 for n ≥ 4. However, B2 = 8n/(n + 3) is integer only for n = 5, 9,

and 21. Since A(5, 1/5) = 16, we have:

Theorem 4. A(n, 1/n) ≤ 3n for n ≥ 4 except for n = 5, where A(5, 1/5) = 16,

and for n = 9 and 21 where A(9, 1/9) ≤ 28 and A(21, 1/21) ≤ 64 by (4).

We consider now the bound (1) for degree 4. It has been obtained by

f(t) = (t + a)2(t + 1)(t − s), a = 1/s(n + 2).

For

√
n + 3 − 1

n + 2
≤ s ≤ 1√

n + 2
we have ((1), [12, p.66])

A(n, s) ≤ f(1)

f0
=

2n(1 − s)(ns + 2s + 1)

1 + 2s − (2 + n)s2
.(5)
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Let us suppose that a maximal (n,M, s) code W attains (5). Then W is a

spherical 4-design. We resolve the corresponding system (3). In fact, we need only the

expression for A−1 ∈ {0, 1}:

A−1 =
2s|W | + n[s2(n + 2) − s(n + 1) − 1]

n(1 + s)[s(n + 2) − 1]
∈ {0, 1}.

Example 4. For n = 7, s = 1/3 we obtain the inner product distribution of

a (7, 56, 1/3) maximal code: A−1 = 1, A1/3 = A−1/3 = 27. In fact, this is the unique

tight 7-design on S6 [10, 3]. For n = 8, s = 1/4 we obtain nonexistence of maximal

(8, 48, 1/4) codes, i.e. A(8, 1/4) ≤ 47.

Again we set s = 1/m ∈ [

√
n + 3 − 1

n + 2
,

1√
n + 2

] (i.e. 1+
√

n + 3 ≥ m ≥
√

n + 2).

Then we find

A−1 =
(m − 1)(n + m + 2)(n + 2 + 2m − m2)

(m + 1)(n − m + 2)(m2 + 2m − n − 2)
∈ {0, 1}.

Considering the two possibilities, we obtain the following necessary condition:

Theorem 5. If a maximal (n,M, 1/m) code attains the bound (5) then

n + 2 + 2m − m2 = 0 (A−1 = 0 respectively) or m2 = n + 2 (A−1 = 1).

Example 5. Maximal spherical (4, 16, 1/3), (5, 25, 1/3), (8, 48, 1/4), (10, 80,

1/4), (11, 102, 1/4), (17, 204, 1/5), (18, 240, 1/5), (21, 392, 1/5), (22, 464, 1/5) codes

do not exist. We set k = 3, 4, 5 and choose the suitable codes. For the unique (6, 27, 1/4)

code [4, Theorem 4.1] we find its distance distribution A1/4 = 16, A−1/2 = 10.

Example 6. Using a similar argument we show the nonexistence of (9, 108, 1/3),

(10, 146, 1/3), (13, 338, 1/3), (15, 576, 1/3), (16, 752, 1/3), (17, 986, 1/3), (16, 312, 1/4),

(21, 756, 1/4) ect. codes. Such codes would attain the bound (1) for degree 5. The new

bound A(10, 1/3) ≤ 145 improves by one the last entry in [9, Table 9.2].
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