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ON A TWO-DIMENSIONAL SEARCH PROBLEM

Emil Kolev, Ivan Landgev

Communicated by R. Hill

Abstract. In this article we explore the so-called two-dimensional tree− search
problem. We prove that for integers m of the form m = (2st − 1)/(2s − 1) the
rectangles A(m, n) are all tight, no matter what n is. On the other hand, we prove
that there exist infinitely many integers m for which there is an infinite number
of n’s such that A(m, n) is loose. Furthermore, we determine the smallest loose
rectangle as well as the smallest loose square (A(181, 181)). It is still undecided
whether there exist infinitely many loose squares.

In this article we are concerned with a problem proposed by Katona [1]. It is

formulated briefly below. Let us call the set A(m,n) = {(i, j) | i, j ∈ Z, 1 ≤ i ≤ m, 1 ≤

j ≤ n } a rectangle of size m by n. A rectangle of size n by n will be referred to as a

square of size n. Let a = (a1, a2) ∈ A(m,n), b = (b1, b2) ∈ A(m,n). We write a ≤ b

if and only if a1 ≤ b1, and a2 ≤ b2. Suppose an element x = (x1, x2) from A(m,n)

is fixed but unknown to us. Now we want to know how many questions of the type

“Is x ≤ a?” are necessary to determine x. Let us mention at this point that every
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question will be considered as an element (point) from A(m,n). So, by saying ”we ask

the question q = (α1, α2)” we mean the question ”Is x ≤ q?”. We restrict ourselves

to the so- called tree-search, i.e. we suppose that the questions being asked depend on

the previous answers.

Denote by t(m,n) the minimum number of questions that are needed to identify

x. It is straightforward that

(1) ⌈log m + log n⌉ ≤ t(m,n) ≤ ⌈log m⌉ + ⌈log n⌉,

(see also [2], Proposition 2.1 and 2.2). All the logarithms here are taken to the base 2,

and ⌈a⌉ denotes, as usual, the smallest integer greater than or equal to a. The rectangle

A(m,n) is said to be tight if there exists a searching algorithm identifying an element

x (chosen from A(m,n)) after ⌈log m + log n⌉ questions. Otherwise A(m,n) is called

loose. The problem of determining whether a rectangle is tight or loose becomes a

nontrivial one if ⌈log m + log n⌉ 6= ⌈log m⌉ + ⌈log n⌉.

Loose rectangles do exist. In fact, there exist infinitely such rectangles. It was

pointed out in [2] that A(210k−1
11 , 11) is loose for every k 6≡ 1(mod 3). Below we state

without proofs some straightforward results (see also [2]).

Proposition 1. For every m1, n1,m2, n2 ∈ N with m1 ≤ n1, m2 ≤ n2 we

have t(m1, n1) ≤ t(m2, n2).

Proposition 2. For any j, k,m, n ∈ N

(2) t(2jm, 2kn) ≤ j + k + t(m,n).

In particular, if A(m,n) is tight then A(2jm, 2kn) is also tight.

Now we are going to prove that for certain choices of m all rectangles A(m,n)

are tight no matter what n is.

Lemma 3. Let m = 2t − 1. Then A(m,n) is tight for every n ∈ N.

P r o o f. We use induction on n. For n = 1 the statement is trivial. Let

n = 2l + A > 1, 0 < A < 2l, and let A(m,n′) be tight for every n′ < n. We can
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suppose that mn ≤ 2t+l for otherwise the lower and the upper bound in (1) coincide

and there is nothing to prove.

We ask the following questions until we get an answer “yes”.

(3) qα = (
α

∑

i=1

2t−i, 2l), α = 1, 2, . . . , t.

If one of the questions has been answered by “yes” then we can apply a straightforward

algorithm to obtain x in a rectangle whose “sides” are powers of 2. If all the questions

q1, q2, . . . ,qt have been asked and all the answers were “no” then x is contained in a

rectangle of size m by A which is tight by the induction hypothesis. It remains to be

noted that

mA = mn − m2l ≤ 2t+l − 2l(2t − 1) = 2l,

whence it follows that x can be found after t + l questions, as required. �

Theorem 4. Let m = 2st−1
2s−1 for some s, t ∈ N. Then for every integer n > 0

the rectangle A(m,n) is tight.

P r o o f. We shall prove the theorem by induction. Obviously, A(m, 1) is tight.

Write n = 2l + A, 0 < A < 2l and suppose that every rectangle A(m,n′) with n′ < n is

tight.

Without loss of generality we can assume that mn ≤ 2s(t−1)+l+1. If n ≤ 2s − 1

our theorem is settled by Lemma 3 and Proposition 1. Now let n > 2s − 1 (i.e.

l > s > 1). If A ≤ 2l−1 + 2l−2 + . . . + 2l−s+1 then 2s(t−1)+l < mn < 2s(t−1)+l+1. The

rectangle A(m, 2l−s−1(2s − 1)) is tight by Proposition 2. Therefore, by Proposition 1

A(m,n) is also tight.

We have to consider only the case A > 2l−1 + 2l−2 + . . . + 2l−s+1. Now we ask

the following st questions until an answer ”yes” is obtained

(4) qαs+β = (
α

∑

i=0

2s(t−i−1),
β

∑

j=1

2l−j+1),

where α = 0, 1, . . . , t − 1, β = 1, 2, . . . , s. Suppose the question qα0s+β0
has been

answered by “yes”. Then x is contained in a rectangle of size 2s(t−α0−1) by 2l−β0+1
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and can be determined with s(t−α0 − 1) + l − β0 + 1 questions, which gives a total of

s(t − 1) + l + 1 questions, as required.

If all questions (4) have been answered by “no” then x is contained in a rectangle

of size m by n′, where n′ = n−2l−s+1(2s−1), which is tight by the induction hypothesis.

Further, we have

mn′ = mn − m2l−s+1(2s − 1) ≤ 2s(t−1)+l+1 − 2l−s+1(2st − 1) = 2l−s+1,

whence it follows that x can be determined after st + (l − s + 1) = s(t − 1) + l + 1

questions, as required. �

Now we are going to introduce some more notations. Let A(m,n) be a rectangle

with ⌈log m + log n⌉ 6= ⌈log m⌉ + ⌈log n⌉. The deficiency of A(m,n) is defined by

(5). d(m,n) = 2⌈log mn⌉ − mn.

Let x ∈ A(m,n) be fixed but unknown and let q1, q2, . . . , qs be a sequence of questions

for this x. Suppose further that they have been answered by i1, i2, . . . , is; ij ∈ {0, 1}

(0 is viewed as “no”, and 1 as “yes”). By Si1,i2,...,is
q1,q2,...,qs

we denote the subset of A(m,n)

containing those of its elements for which the answers on q1,q2, . . . ,qs are precisely

i1, i2, . . . , is. Obviously, if A(m,n) is tight and if q1 = (α1, α2) we have

(6) α1α2 = |S1
q

1
| ≤ 2⌈log mn⌉−1,

(7) mn − α1α2 = |S0
q

1
| ≤ 2⌈log mn⌉−1,

whence 2⌈log mn⌉−1 − d(m,n) ≤ α1α2 ≤ 2⌈log mn⌉−1. Taking into account the obvious

restrictions 1 ≤ α1 ≤ m, 1 ≤ α2 ≤ n, we can easily find all possible starting questions

by investigating the decompositions into primes of the numbers

(8) 2⌈log mn⌉−1 − d(m,n), 2⌈log mn⌉−1 − d(m,n) + 1, . . . , 2⌈log mn⌉−1.

In the same way we can define the deficiency of the set Si1,i2,...,is
q

1
,q

2
,...,q

s
as

(9) di1,i2,...,is
q

1
,q

2
,...,q

s
= 2⌈log mn⌉−s − |Si1,i2,...,is

q
1
,q

2
,...,q

s
|.
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From S
i1,i2,...,is−1

q
1
,q

2
,...,q

s−1
= S

i1,...,is−1,0
q

1
,...,q

s−1
,q

s
∪ S

i1,...,is−1,1
q

1
,...,q

s−1
,q

s
we can easily obtain

(10) d
i1,i2,...,is−1

q
1
,q

2
,...,q

s−1
= d

i1,...,is−1,0
q

1
,...,q

s−1
,q

s
+ d

i1,...,is−1,1
q

1
,...,q

s−1
,q

s
.

In particular, d0
q

1
+ d1

q
1

= d(m,n). Thus every algorithm finding out an x ∈ A(m,n)

in ⌈log mn⌉ steps must have a nonnegative deficiency for each set Si1,i2,...,is
q

1
,q

2
,...,q

s
, for each

integer s ≤ ⌈log mn⌉ and each s-tuple of zeros and ones i1, i2, . . . , is.

The following lemma will be needed later.

Lemma 5. Let m = 2l1 + A, n = 2l2 + B, where A < 2l1 , B < 2l2 , and let

q1 = (2l1 , 2l2), q2 = (α1, α2), with α1 > 2l1 , α2 > 2l2 . Then

|S0,1
q

1
,q

2
| 6= 2l1+l2−1.

P r o o f. Let us assume that |S0,1
q

1
,q

2
| = 2l1+l2−1. Note that neither of α1 and α2

is a power of 2. Therefore both of them have an odd prime divisor. On the other hand

we have

α1α2 = |S1
q

1
∪ S0,1

q
1
,q

2
| = 3.2l1+l2−1.

This is not possible because there is only one odd prime divisor on the right. �

The next theorem provides a large infinite class of loose rectangles. It claims

that for appropriate m’s there exist infinitely many choices for n so that A(m,n) is

loose.

Theorem 6. Let m = 2l1 + A, 2l1−2 + 2l1−3 ≤ A < 2l1−1 be an odd integer

and let

(11) k = lcm

{

ru |
m

2
< u ≤ m,u − odd

}

,

where ru and r are the orders of 2 in Z∗
u and Z∗

m, respectively. Then the rectangle

A(m,n) with n = (2αkr − 1)/m is loose for every α ∈ N.

Remark. The theorem still holds if k is a number with the property (k, ru) 6= 1

for every odd u with m/2 < u ≤ m.
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P r o o f. Our first question q1 = (α1, α2) must satisfy α1α2 = 2αkr−1, or α1α2 =

2αkr−1−1. Suppose α1α2 = 2αkr−1−1. Obviously α1 is odd and m/2 < α1 ≤ m. From

2αkr−1 ≡ 1(mod α1) it follows that αkr ≡ 1 (mod rα1
) which is impossible by (11).

Thus q1 = (α1, α2) with α1α2 = 2αkr−1. If we write n = 2l2 +B, then it follows

from the condition on A that 2l2−2 ≤ B < 2l2−1, αkr−1 = l1+l2, and α1 = 2l1 , α2 = 2l2 .

Let the second question be q2 = (β1, β2). Then |S0,1
q

1
,q

2
| = 2αkr−2 − 1 or 2αkr−2

which implies that β1 > 2l1 , β2 > 2l2 . According to Lemma 5 we have |S0,1
q

1
,q

2
| 6= 2αkr−2,

whence we get

(12) |S1
q

1
∪ S0,1

q
1
,q

2
| = 2αkr−1 + 2αkr−2 − 1 = β1β2.

This yields

(13) 3.2αkr−2 ≡ 1(mod β1),

where (β1, 2) = (β1, 3) = 1, m/2 < β1 ≤ m.

If 3 6∈ 〈2〉 in Z∗
β1

then (13) is impossible. Now suppose that

(14) 2s ≡ 3 (mod β1), 0 < s < rβ1
.

Then we have 2αkr+s−2 ≡ 1 (mod β1). Therefore rβ1
divides s − 2, which is possible

only for s = 2. We get a contradiction to (14). �

It was pointed out in [2] that the smallest loose rectangle (i.e. rectangle with

minimal number of elements) the author was able to find was A(23, 89). It turns out

that there exists a smaller loose rectangle.

Proposition 7. The smallest loose rectangle is A(11, 93). It is the only loose

rectangle of cardinality less than 1024.

P r o o f. We shall consider rectangles A(m,n) with m ≤ n, and 2l−1 < m.n ≤ 2l.

It can be easily checked that if neither m nor n is of the type 2k(2st−1)/(2s−1), where

s is a positive and k, t nonnegative integers, there exist the following possibilities:
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(A) m = 11, n = 11, l = 7;

(B) m = 11, n ≤ 23, l = 8;

(C) m = 13, n ≤ 19, l = 8;

(D) m = 11, n ≤ 46, l = 9;

(E) m = 13, n ≤ 39, l = 9;

(F ) m = 19, n ≤ 26, l = 9;

(G) m = 22, n ≤ 23, l = 9;

(H) m = 11, n ≤ 93, l = 10;

(I) m = 19, n ≤ 53, l = 10;

(J) m = 27, n ≤ 37, l = 10;

(K) m = 29, n ≤ 35, l = 10.

Case (A) is settled in [2]. It can be proved that the rectangles A(11, 23),

A(13, 19), A(13, 39), A(19, 53), A(27, 37), A(29, 35) are tight which settles cases (B)–

(G), (I)–(K). (See the Appendix for the corresponding algorithms.)

Now we are going to prove that A(11, 93) is loose. Let our first question be

q1 = (α1, α2), where α1α2 = 511, or 512. So we have two possibilities

(i) α1 = 8, α2 = 64;

(ii) α1 = 7, α2 = 73.

Let q2 = (β1, β2).

(i) |S0,1
q1,q2

| = 255, or 256. Hence β1 > α1, β2 > α2. It follows from Lemma 5

that |S0,1
q1,q2

| = 255, and |S0,0
q1,q2

| = 256. Therefore, we have 1023 − β1β2 = 256, with

8 < β1 ≤ 11, 64 < β2 ≤ 93. We cannot find such integers, which rejects (i).

(ii) Now we must have |S0,1
q1,q2

| = 256, and the only possibility is β1 = 11, β2 =

64. Write q3 = (γ1, γ2) for our third question. We have |S0,0,0
q1,q2,q3

| = 128. This cannot

be achieved unless γ1 > 7, γ2 > 73. Thus we have

128 = 29.11 − γ1(γ2 − 64)

γ1(γ2 − 64) = 191,
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which is impossible.

To finish the proof it remains to be noted that the rectangle A(11, 92) is tight

since 92=4.23 and A(11, 23) was proved to be tight. �

It is known that the squares A(5, 5), A(11, 11), A(45, 45) are tight [2]. This fact

combined with Proposition 1 and Proposition 2 yields that every square A(n, n) with

n ≤ 180 is loose. Hence the first undecided case is A(181, 181).

Theorem 8. The square A(181, 181) is loose.

P r o o f. (sketch) We have d(181, 181) = 7, and the first question can be com-

puted using the decomposition of the numbers (8). Similarly, we can obtain all possible

second questions. It turns out that there exist 13 possibilities which are listed below

1A) q1 = (140, 117), q2 = (128, 181);

1B) q1 = (140, 117), q2 = (130, 180);

2A) q1 = (156, 105), q2 = (117, 175);

2B) q1 = (156, 105), q2 = (126, 170);

2C) q1 = (156, 105), q2 = (128, 169);

2D) q1 = (156, 105), q2 = (130, 168);

3A) q1 = (159, 103), q2 = (128, 167);

4A) q1 = (180, 91), q2 = (91, 181);

4B) q1 = (180, 91), q2 = (105, 169);

4C) q1 = (181, 91), q2 = (117, 161);

4D) q1 = (181, 91), q2 = (126, 156);

4E) q1 = (181, 91), q2 = (128, 155);

4F ) q1 = (181, 91), q2 = (130, 154);

In order to give an idea of the proof let us consider some cases in more detail.

3A) Here we have e0,0
q

1
,q

2
= 0, which means that |S0,0,i

q
1
,q

2
,q

3
| = 212, i = 0, 1.
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Further we write

S0,0
q

1
,q

2
=

6
⋃

i=1

Ti,

where the Ti’s are defined as follows

T1 = {(a, b) | 128 < a ≤ 181; 0 < b ≤ 103};

T2 = {(a, b) | 128 < a ≤ 159; 103 < b ≤ 167};

T3 = {(a, b) | 159 < a ≤ 181; 103 < b ≤ 167};

T4 = {(a, b) | 0 < a ≤ 128; 167 < b ≤ 181};

T5 = {(a, b) | 128 < a ≤ 159; 167 < b ≤ 181};

T6 = {(a, b) | 159 < a ≤ 181; 167 < b ≤ 181}.

The question q3 cannot be in T1, T2, or T4 because of |S0,0,1
q

1
,q

2
,q

3
| ≤ |Ti| < 212, i = 1, 2, 4.

We cannot have q3 ∈ T5 because of Lemma 5. If q3 ∈ T6 then obviously

1812 − α1α2 = 212,

which does not have any solutions with 159 < α1 ≤ 181, and 167 < α2 ≤ 181. The

case when q3 ∈ T3 is treated similarly – we must have

|S0,0,1
q

1
,q

2
,q3

| = (α1 − 159)α2 + (α2 − 103)31 = 212,

which has no integer solutions α1, α2 with 159 < α1 ≤ 181, 103 < α2 ≤ 167.

2B) Now e0,0
q

1
,q

2
= 1 and we must have |S0,0,i

q
1
,q2,q

3
| = 212 − 1, or 212. The set

S0,0
q

1
,q

2
is divided as above in six subsets. Investigating each one of them we find the

only possiblity q3 = (171, 161). It is easily checked that e0,0,0
q

1
,q

2
,q

3
= 0 and for each

fourth question q4 = (δ1, δ2) we must have |S0,0,0,i
q

1
,q

2
,q

3
,q4

| = 211, i = 0, 1. This turns

out to be impossible. To show this we must first note that necessarily 126 < δ1 ≤

181, and 170, δ2 ≤ 181. There is a straightforward check that it cannot be found a q4

which satisfies |S0,0,0,1
q

1
,q

2
,q

3
,q

4
| = 211.

The rest of the cases are treated in a similar way. �
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Let us finish with an open problem. Although we could show that A(181, 181)

is loose we were not able to prove that there exist infinitely many loose squares. So the

problem is:

Problem. Are there infinitely many loose squares?

Appendix.

We present below the missing algorithms from the proof of Proposition 7. The

pictures have to be understood in the following way. We move from left to right asking

the questions (a, b), where the numbers a and b are specified on the pictures. If we get

an answer ”no” we move upwards, in case of answer “yes” we move downwards. When

we arrive at a rectangle of size u by v which is tight and for which the algorithm is

known (Proposition 2, Theorem 4), we indicate this by giving the value t(u, v).

A(11, 23)

t(1,7)=3
(10,23)

(11,16) t(2,4)=3
(8,23) t(1,16)=4

t(8,4)=5
(10,19)

t(3,10)=5
(8,16) (10,16)

t(2,6)=5
t(8,16)=7

A(13, 19)

t(3,3)=4
(13,16)

(10,19) t(1,16)=4
(12,16) t(3,10)=5

(8,16) t(4,16)=6
t(8,16)=7
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A(13, 39)

t(7,4)=5
(13,32)

(9,39) t(1,32)=5
(12,32) t(7,9)=6

(8,32) t(4,32)=7
t(8,32)=8

A(19, 53)

t(19,1)=5
(19,52)

(16,52) t(3,10)=5
(19,42) t(4,16)=6

(16,48) t(3,42)=7
(16,32) t(16,16)=8

t(16,32)=9

A(27, 37)

t(3,37)=7
(24,37)

(24,32) t(24,5)=7
(16,32) t(8,32)=8

t(16,32)=9

A(29, 35)

t(3,8)=5
(29,32)

(21,35) t(1,32)=5
(28,32) t(21,3)=6

(24,32) t(4,32)=7
(16,32) t(8,32)=8

t(16,32)=9
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