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Abstract. We are concerned with two-level optimization problems called strong-
weak Stackelberg problems, generalizing the class of Stackelberg problems in the
strong and weak sense. In order to handle the fact that the considered two-level
optimization problems may fail to have a solution under mild assumptions, we
consider a regularization involving ǫ-approximate optimal solutions in the lower
level problems. We prove the existence of optimal solutions for such regularized
problems and present some approximation results when the parameter ǫ goes to
zero. Finally, as an example, we consider an optimization problem associated to a
best bound given in [2] for a system of nondifferentiable convex inequalities.

1. Introduction and motivation. Let U and V be two finite dimensional

Euclidean spaces, X (resp. Y ) a nonempty subset of U (resp. of V ). Let f1 and f2 be

two functions:

f1 : X × T × Y → R, T ⊂ Y, T 6= Ø, f2 : X × Y → R ∪ {+∞}, f2 6≡ +∞.

We consider the following two-level optimization problem:

(S)























Min
x∈X

inf
y∈M2(x)

sup
z∈M2(x)

f1(x, y, z)

where M2(x) denotes the set of optimal solutions to the lower

level problem P (x) :
{

Min
y∈Y

f2(x, y)
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Let us notice that:

– when f1 does not depend on y, we get the Stackelberg problem in the weak

sense [4, 7, 12].

– when f1 does not depend on z, we get the Stackelberg problem in the strong

sense [4, 9].

Let:

u1(x) = inf
y∈M2(x)

sup
z∈M2(x)

f1(x, y, z) and v1 = inf
x∈X

u1(x).

The previous remark leads us to the following definitions:

Definition 1.1. The problem (S) is called a strong-weak Stackelberg problem.

Definition 1.2. Any x ∈ X verifying v1 = u1(x) is called a strong-weak

Stackelberg solution to (S) and v1 is termed the strong-weak Stackelberg value.

Examples.

1) Let fi, i = 1, 2, . . . ,m, be closed proper convex functions defined on R
N ,

and:

C =
{

x ∈ R
N/ fi(x) ≤ 0, i = 1, 2, . . . ,m

}

, θ(x) = (f+
1 (x), f+

2 (x), . . . , f+
m(x))

with the notation a+ = max(0, a). Suppose that C is nonempty. Auslender and

Crouzeix have been interested in [2] by the best constant k2,∞ verifying:

d2(x,C) ≤ k2,∞‖θ(x)‖∞ ∀x ∈ R
N , that is to say k2,∞ = sup

x/∈C

d2(x,C)

‖θ(x)‖∞

where d2(x,C) = min
y∈C

‖x − y‖2, ‖.‖2 denotes the Euclidean norm on R
N and ‖.‖∞ the

Tchebycheff norm on R
m. Let f be the function defined by: f(x) = max

i=1,2,...,m
fi(x).

Under appropriate hypotheses (see section 3), k2,∞ is a positive finite real number and

is given in [2] by:

k2,∞ =
1

k∗
2,∞

where k∗
2,∞ = inf

x∈bd(C)
inf

y∈∂f(x)
sup

z∈∂f(x)
〈z,

y

‖y‖2

〉
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with: bd(C) the boundary of C, ∂f(x) the subdifferential of f at x and 〈., .〉 the usual

inner product in R
N . The constant k∗

2,∞ can be seen as a strong-weak Stackelberg

value. In fact, let us define the following functions:

f2(x, y) = f∗(y) − 〈x, y〉 and for any x ∈ R
N , f1(x, y, z) = 〈z,

y

‖y‖2

〉, y 6= 0

where f∗ denotes the conjugate function of f . Let X = bd(C) and M2(x) be the set of

optimal solutions to the optimization problem:

Min
y∈R

N
f2(x, y)

Then, the constant k∗
2,∞ can be rewritten in the form:

k∗
2,∞ = inf

x∈X
inf

y∈M2(x)
sup

z∈M2(x)
f1(x, y, z)

by using the fact that M2(x) = ∂f(x), ∀x ∈ X.

2) Stackelberg games: consider a two-player Stackelberg game in which the

first player called the leader has the leadership in playing the game, with an objective

function f1 and X ⊂ R
n, the set of his strategies. The leader has all information

about the objective function f2 and the constraints of the second player (follower).

He chooses his optimal strategy, knowing that the follower reacts optimally. For an

announced strategy, the follower selects one strategy and his choice cannot be affected

by the leader. The aim of the two players is to minimize their objective functions. Let

Y ⊂ R
m, be the set of strategies and M2(x) the reaction set (for an announced strategy

x by the leader) of the follower. There are two extreme cases for the leader [6]:

i) optimistic case: the leader has to minimize the function: inf
y∈M2(x)

f1(x, y),

ii) pessimistic case: the leader has to minimize the function: sup
z∈M2(x)

f1(x, z).

As an intermediate case, the leader could make a choice by minimizing the

function:

α inf
y∈M2(x)

f1(x, y) + (1 − α) sup
z∈M2(x)

f1(x, z)

for some α ∈]0, 1[. By setting Fα(x, y, z) = αf1(x, y)+(1−α)f1(x, z), the corresponding

minimization problem amounts to:

Min
x∈X

inf
y∈M2(x)

sup
z∈M2(x)

Fα(x, y, z)

which is a strong-weak Stackelberg problem in the sense of Definition 1.1.
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Remark 1.1. The problem (S) may fail to have a solution even if the decision

variables x, y and z range over a compact set, whereas f1 and f2 are continuous, as it

is seen in the following example (which is an adaptation of the one considered in [12]):

Let: X = Y = [0, 1], f1(x, y, z) = −xyz, f2(x, y) = (x − 1
2)y.

Then:

M2(x) =



































{1 } for x ∈ [0,
1

2
[

[0, 1] for x =
1

2

{0 } for x ∈]
1

2
, 1]

Let: w1(x, y) = sup
z∈M2(x)

f1(x, y, z), u1(x) = inf
y∈M2(x)

w1(x, y), v1 = inf
x∈X

u1(x).

Then:

w1(x, y) =























−xy for x ∈ [0,
1

2
[

0 for x ∈ [
1

2
, 1]

and u1(x) =















−x for x ∈ [0,
1

2
[

0 for x ∈ [
1

2
, 1]

The strong-weak Stackelberg value is v1 = −
1

2
, but there is no x such that: u1(x) = v1.

Let us notice that the marginal function u1 is not lower semicontinuous at x =
1

2
. In

the sequel, we shall consider a regularization of (S) based on ǫ-approximate solutions

to the lower level problems P (x), x ∈ X as in [13, 14]. More precisely, for ǫ > 0, the

regularized strong-weak Stackelberg problem will be defined by:

(Sǫ)























Min
x∈X

inf
y∈M2(x)

sup
z∈M2(x,ǫ)

f1(x, y, z)

where M2(x, ǫ) is the set of ǫ-approximate solutions to the lower

level problem P (x) :
{

Min
y∈Y

f2(x, y)

Under appropriate assumptions, we shall prove the existence of solutions for the regu-

larized problem (Sǫ). Then, we shall give approximation results when ǫ goes to zero.

Finally, we shall apply our results to the first example concerning the best bound given

in [2].

2. Properties of the strong-weak regularized Stackelberg problem.

2.1. Convergence results for the lower level problems. In the sequel we

shall use the following notations:

v2(x) = inf
y∈Y

f2(x, y) and for ǫ ≥ 0, M2(x, ǫ) =
{

y ∈ Y/ f2(x, y) ≤ v2(x) + ǫ
}

,
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with M2(x, 0) = M2(x) =
{

y ∈ Y/ f2(x, y) = v2(x)
}

.

Let An , n ∈ N, be a sequence of subsets of Y . We recall the following definitions:

Lim inf
n→+∞

An =
{

y ∈ Y/ ∃yn → y, yn ∈ An

}

,

Lim sup
n→+∞

An =
{

y ∈ Y/ ∃ynk
→ y, ynk

∈ Ank

}

.

We report now some results given in [13, 14] for the lower level problems.

Proposition 2.1. Suppose that the following assumptions are fulfilled:

(2.1) f2 is lower semicontinuous on the topological space X × Y ,

(2.2) For any (x, y) ∈ X × Y , for any sequence (xn)n converging to x in X,

there exists a sequence (yn)n converging to y in Y , such that:

lim sup
n→+∞

f2(xn, yn) ≤ f2(x, y)

(2.3) Y is a convex compact subset of V ,

(2.4) ∀x ∈ X, the function: y → f2(x, y) is strictly quasiconvex on Y [16], that

is to say: ∀(y, y′) ∈ Y × Y , such that: f2(x, y) 6= f2(x, y′), ∀θ ∈]0, 1[, we have:

f2(x, θy + (1 − θ)y′) < max
{

f2(x, y), f2(x, y′)
}

.

Then, for any ǫ > 0, for any x ∈ X and any sequence (xn)n converging to x in X, we

have:

M2(x, ǫ) ⊂ Lim inf
n→+∞

M2(xn, ǫ)

that is to say the multifunction M2(., ǫ) is lower semicontinuous on X.

P r o o f. The previous result is only but a particular case of the one stated in

[14, Proposition 2.1] for not necessarily first countable spaces. �

Proposition 2.2. Let us suppose that the assumption (2.1) and the following

assumption are fulfilled:

(2.5) For any (x, y) ∈ X × Y , for any sequence (xn)n converging to x in X,

there exists a sequence (yn)n in Y such that:

lim sup
n→+∞

f2(xn, yn) ≤ f2(x, y).
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Then, for any x ∈ X and any sequence (xn)n converging to x in X, we have:

1) lim sup
n→+∞

v2(xn) ≤ v2(x);

2) Lim sup
n→+∞

M2(xn, ǫn) ⊂ M2(x), for any sequence ǫn → 0, ǫn > 0 ∀n;

3) Lim sup
n→+∞

M2(xn, ǫ) ⊂ M2(x, ǫ), ∀ǫ ≥ 0.

P r o o f. Apply Propositions 4.1 and 4.2 and Remark 4.2 in [13] by letting

f2,n = f2, for any n ∈ N. �

Proposition 2.3. If the assumptions of Proposition 2.2 are satisfied and if

Y is compact, then, for any x ∈ X and any sequence (xn)n converging to x in X, we

have:

lim
n→+∞

v2(xn) = v2(x).

P r o o f. Apply Proposition 4.3 in [13] or see Propositions 3.1.1 and 4.1.1

in [10]. �

Remark 2.1. The assumption (2.1) and the compactness of Y imply that

M2(x, ǫ) is a nonempty compact set, ∀ǫ ≥ 0, ∀x ∈ X. In particular, v2(x) is a finite

real number.

2.2. Convergence results for the upper level problem. In the sequel, we

shall let: T =
⋃

x∈X

M2(x) = M2(X).

For ǫ > 0, we introduce the following notations:

w1(x, y, ǫ) = sup
z∈M2(x,ǫ)

f1(x, y, z) u1(x, ǫ) = inf
y∈M2(x)

w1(x, y, ǫ) v1(ǫ) = inf
x∈X

u1(x, ǫ).

Proposition 2.4. Let ǫ > 0. Suppose that the assumptions of Proposition 2.1

and the following assumption are satisfied:

(2.6) f1 is lower semicontinuous on the topological space X × T × Y.

Then, the marginal function w1(., ., ǫ) is lower semicontinuous on the topological

space X × T .

P r o o f. See the results given in [11, page 160]. �

Proposition 2.5. Let ǫ > 0. Suppose that the assumptions of Proposition 2.4

are satisfied. Then, the marginal function u1(., ǫ) is lower semicontinuous on X.
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P r o o f. See [10, Proposition 4.2.1]. �

Proposition 2.6. Let ǫ > 0. Under the assumptions of Proposition 2.5 and

if moreover X is compact, then the problem (Sǫ) has at least one solution, that is to

say: there exists x ∈ X, such that: u1(x, ǫ) = v1(ǫ).

P r o o f. Since the marginal function u1(., ǫ) is lower semicontinuous (Proposi-

tion 2.5) on the compact space X, the existence of solutions to (Sǫ) is obvious. �

Proposition 2.7. Let ǫ > 0. Suppose that the assumptions of Proposition 2.6

and the following assumption are satisfied:

(2.7) ∀(x, y) ∈ X × T , the function: z → f1(x, y, z) is upper semicontinuous

on Y .

Then there exists (x(ǫ), y(ǫ), z(ǫ)) ∈ X × T × Y verifying:

v1(ǫ) = f1(x(ǫ), y(ǫ), z(ǫ))

and (y(ǫ), z(ǫ)) ∈ M2(x(ǫ)) × M2(x(ǫ), ǫ).

P r o o f. From Proposition 2.6, there exists x(ǫ) such that: u1(x(ǫ), ǫ) = v1(ǫ).

By using Proposition 2.4, we deduce that the function w1(x(ǫ), ., ǫ) is lower semi-

continuous on T . From Remark 2.1, M2(x(ǫ)) is a compact set. Then, there exists

y(ǫ) ∈ M2(x(ǫ)) such that:

w1(x(ǫ), y(ǫ), ǫ) = u1(x(ǫ), ǫ) = v1(ǫ).

Finally, from the upper semicontinuity of the function f1(x(ǫ), y(ǫ), .) (assumption

(2.7)) and the compactness of M2(x(ǫ), ǫ), there exists z(ǫ) ∈ M2(x(ǫ), ǫ) verifying:

f1(x(ǫ), y(ǫ), z(ǫ)) = w1(x(ǫ), y(ǫ), ǫ) = v1(ǫ). �

Proposition 2.8. Let x ∈ X. Suppose that the following assumption is

satisfied:

(2.8) ∀(x, z) ∈ X × Y , the function: y → f1(x, y, z) is lower semicontinuous

on the topological space T .

Then, for any sequence ǫn → 0, ǫn > 0 ∀n, for any y ∈ T and any sequence

(yn)n converging to y in T , we have:

w1(x, y) ≤ lim inf
n→+∞

w1(x, yn, ǫn).
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P r o o f. Let z ∈ M2(x) and ǫn → 0, ǫn > 0 ∀n. Then:

f1(x, yn, z) ≤ sup
t∈M2(x,ǫn)

f1(x, yn, t) = w1(x, yn, ǫn).

The assumption (2.8) implies that:

f1(x, y, z) ≤ lim inf
n→+∞

f1(x, yn, z) ≤ lim inf
n→+∞

w1(x, yn, ǫn).

Since f1(x, y, z) ≤ lim inf
n→+∞

w1(x, yn, ǫn) for any z ∈ M2(x), we get:

w1(x, y) ≤ lim inf
n→+∞

w1(x, yn, ǫn). �

Remark 2.2. Let x ∈ X and ǫn → 0, ǫn > 0 ∀n. Since we have:

u1(x) ≤ u1(x, ǫn), ∀n, then:

u1(x) ≤ lim inf
n→+∞

u1(x, ǫn).

Proposition 2.9. Let x ∈ X and ǫn → 0, ǫn > 0 ∀n. Suppose that the

assumption (2.7) and the assumptions of Proposition 2.2 are satisfied and that Y is

compact. Then:

lim sup
n→+∞

u1(x, ǫn) ≤ u1(x).

P r o o f. Let y ∈ M2(x). Then:

(∗) lim sup
n→+∞

w1(x, y, ǫn) ≤ w1(x, y).

Indeed, if it is not true, there exists α ∈ R such that:

w1(x, y) < α < lim sup
n→+∞

w1(x, y, ǫn) = lim
n→+∞

n∈N′

w1(x, y, ǫn)

where N ′ ⊂ N. Then, there exists n0 ∈ N ′ such that for all n ≥ n0, n ∈ N ′:

w1(x, y, ǫn) > α. So, for all n ≥ n0, n ∈ N ′, there exists zn ∈ M2(x, ǫn) such

that: f1(x, y, zn) > α. From the compactness of Y , there exists a subsequence zn,

n ∈ N ′′ ⊂ N ′ converging to z ∈ M2(x) (from Proposition 2.2). Then, by using (2.7),

we have:

α ≤ lim sup
n→+∞

n∈N′′

f1(x, y, zn) ≤ f1(x, y, z) ≤ w1(x, y)
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and the contradiction. Since: u1(x, ǫn) ≤ w1(x, y, ǫn), ∀n ∈ N, we get:

lim sup
n→+∞

u1(x, ǫn) ≤ lim sup
n→+∞

w1(x, y, ǫn) ≤ w1(x, y)

by using inequality (∗). Since lim sup
n→+∞

u1(x, ǫn) ≤ w1(x, y) for any y ∈ M2(x), we obtain:

lim sup
n→+∞

u1(x, ǫn) ≤ u1(x). �

Corollary 2.1. Under the assumptions of Proposition 2.9, for any x ∈ X, we

have:

lim
ǫ→0+

u1(x, ǫ) = u1(x)

P r o o f. It is sufficient to apply Remark 2.2 and Proposition 2.9. �

Proposition 2.10. If the assumptions of Proposition 2.9 are satisfied, then

for any ǫn → 0, ǫn > 0 ∀n, we have:

lim
n→+∞

v1(ǫn) = v1.

P r o o f. For any x ∈ X and any n, we have : v1(ǫn) ≤ u1(x, ǫn). Then, by

using Proposition 2.9, we get:

lim sup
n→+∞

v1(ǫn) ≤ lim sup
n→+∞

u1(x, ǫn) ≤ u1(x).

Since lim sup
n→+∞

v1(ǫn) ≤ u1(x) for any x ∈ X, we obtain: lim sup
n→+∞

v1(ǫn) ≤ v1. Noticing

that v1 ≤ v1(ǫ), for any ǫ ≥ 0, we deduce that: v1 ≤ lim inf
n→+∞

v1(ǫn). Then:

lim
n→+∞

v1(ǫn) = v1. �

Remark 2.3. From the previous result, we also have: lim
ǫ→0+

v1(ǫ) = v1.

Proposition 2.11. Suppose that the assumption (2.8) is satisfied. Then:

∀ǫ > 0, ∀x ∈ X, the function: y → w1(x, y, ǫ) is lower semicontinuous on the topological

space T .

P r o o f. Let ǫ > 0 and x ∈ X. Let y ∈ T such that w1(x, y, ǫ) 6= −∞, and

let (yn)n be a sequence converging to y in T . Let a ∈ R such that a < w1(x, y, ǫ) =



160 Abdelmalek Aboussoror and Pierre Loridan

sup
z∈M2(x,ǫ)

f1(x, y, z). Then, there exists za ∈ M2(x, ǫ) verifying: f1(x, y, za) > a. So, by

using (2.8):

a < f1(x, y, za) ≤ lim inf
n→+∞

f1(x, yn, za)

≤ lim inf
n→+∞

{ sup
z∈M2(x,ǫ)

f1(x, yn, z)} = lim inf
n→+∞

w1(x, yn, ǫ)

Then:

w1(x, y, ǫ) ≤ lim inf
n→+∞

w1(x, yn, ǫ),

since we have a < lim inf
n→+∞

w1(x, yn, ǫ) for all a ∈ R such that: a < w1(x, y, ǫ). �

Definition 2.1. Any (x, y, z) ∈ X × Y × Y , verifying f1(x, y, z) = v1 and

(y, z) ∈ M2(x) × M2(x) is called an hybrid exact lower Stackelberg equilibrium of (S).

This definition generalizes the one introduced in [1] for weak Stackelberg prob-

lems.

For x ∈ X and ǫ > 0, let:

M1(x, ǫ) =
{

y ∈ M2(x)/ u1(x, ǫ) = w1(x, y, ǫ)
}

and:

M1(x) =
{

y ∈ M2(x)/ u1(x) = w1(x, y)
}

be respectively the sets of optimal solutions to the minimization problems:

Sǫ(x) : Min
y∈M2(x)

sup
z∈M2(x,ǫ)

f1(x, y, z) and S(x) : Min
y∈M2(x)

sup
z∈M2(x)

f1(x, y, z)

Let us denote

M1,ǫ =
{

x ∈ X/ u1(x, ǫ) = v1(ǫ)
}

the set of optimal solutions to (Sǫ), and let M0 be the projection onto X of the set of

hybrid exact lower Stackelberg equilibria of (S):

M0 =
{

x ∈ X/ ∃y ∈ M2(x),∃z ∈ M2(x) verifying: f1(x, y, z) = v1

}

.

Let us point out that when f1 does not depend on y, M0 amounts to the projection

onto X of the set of exact lower Stackelberg equilibrium pairs [1]. Then, we have the

following stability results:
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Proposition 2.12. Suppose that the assumptions (2.7), (2.8) and the assump-

tions of Proposition 2.2 are satisfied and that Y is compact. Then, for any x ∈ X and

any sequence ǫn → 0, ǫn > 0 ∀n, we have:

Lim sup
n→+∞

M1(x, ǫn) ⊂ M1(x)

and M1(x) is a nonempty set.

P r o o f. For any n, the marginal function w1(x, ., ǫn) is lower semicontinuous

on T (Proposition 2.11) and the set M2(x) is compact, then: M1(x, ǫn) 6= Ø (that is

the problem Sǫn(x) has at least one solution). Since M1(x, ǫn) 6= Ø, ∀n, it follows from

the compactness of Y that: Lim sup
n→+∞

M1(x, ǫn) 6= Ø. Let y ∈ Lim sup
n→+∞

M1(x, ǫn). Then,

there exists a subsequence yn, n ∈ N ′ ⊂ N, converging to y in Y and yn ∈ M1(x, ǫn),

∀n ∈ N ′, that is to say:

u1(x, ǫn) = w1(x, yn, ǫn) and yn ∈ M2(x) ∀n ∈ N ′.

Then, y ∈ M2(x). By using Proposition 2.8 and Corollary 2.1, we obtain:

w1(x, y) ≤ lim inf
n→+∞

n∈N′

w1(x, yn, ǫn) = lim
n→+∞

n∈N′

u1(x, ǫn) = u1(x) ≤ w1(x, y).

Then: w1(x, y) = u1(x) and y ∈ M1(x). �

Proposition 2.13. Suppose that Y is compact and that the assumptions of

Proposition 2.2 are fulfilled. If moreover:

(2.9) f1 is continuous on the topological space X×T ×Y, then, for any ǫn → 0,

ǫn > 0 ∀n, we have:

Lim sup
n→+∞

M1,ǫn ⊂ M0.

P r o o f. If Lim sup
n→+∞

M1,ǫn = Ø, then there is nothing to prove. Otherwise,

let x be an element of Lim sup
n→+∞

M1,ǫn . By definition, there exists a subsequence xn,

n ∈ N ′ ⊂ N, converging to x in X, verifying xn ∈ M1,ǫn , ∀n ∈ N ′, that is: u1(xn, ǫn) =

v1(ǫn), ∀n ∈ N ′. From Proposition 2.11, ∀n ∈ N ′, the function w1(xn, ., ǫn) is lower

semicontinuous on T , and since the set M2(xn) is compact, there exists yn ∈ M2(xn)

such that:

u1(xn, ǫn) = w1(xn, yn, ǫn) = v1(ǫn).
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For each n ∈ N ′, we deduce from (2.9) and the compactness of M2(xn, ǫn) that there

exists zn ∈ M2(xn, ǫn) such that:

w1(xn, yn, ǫn) = sup
z∈M2(xn,ǫn)

f1(xn, yn, z) = f1(xn, yn, zn).

From the compactness of Y , there exists a subsequence (yn, zn), n ∈ N ′′ ⊂ N ′,

converging to (y, z) ∈ M2(x) × M2(x) (by using Proposition 2.2). Then:

f1(x, y, z) = lim
n→+∞

n∈N′′

f1(xn, yn, zn) = lim
n→+∞

n∈N′′

v1(ǫn) = v1

by using (2.9) and Proposition 2.10. Then: x ∈ M0. �

Remark 2.4. The previous proposition stress the importance of the set M0 in

the approximation of (S) by a sequence of regularized problems (Sǫn).

For x ∈ X, ǫ > 0 and η > 0, we let:

M1(x, ǫ, η) =
{

y ∈ M2(x)/ w1(x, y, ǫ) ≤ u1(x, ǫ) + η
}

the set of η-approximate solutions to Sǫ(x). Then, as a complementary result concern-

ing the intermediate problem S(x) previously defined, we have:

Proposition 2.14. Let η > 0 and x ∈ X. Suppose that the assumptions of

Proposition 2.12 are fulfilled. Then, for any sequence ǫn → 0, ǫn > 0 ∀n, we have:

M1(x) ⊂ Lim inf
n→+∞

M1(x, ǫn, η)

P r o o f. By using Proposition 2.12, we deduce that M1(x) is nonempty set.

Let y ∈ M1(x). From the inequality: w1(x, y, ǫn) ≥ w1(x, y), ∀n, and the proof of

Proposition 2.9, we deduce:

lim
n→+∞

w1(x, y, ǫn) = w1(x, y)

and Corollary 2.1 implies that:

lim
n→+∞

u1(x, ǫn) = u1(x) = w1(x, y).

Then, there exists (n0, n1) ∈ N × N, such that:

| w1(x, y, ǫn) − w1(x, y) |<
η

2
∀n ≥ n0
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and

| w1(x, y) − u1(x, ǫn) |<
η

2
∀n ≥ n1

So, for all n ≥ max{n0, n1}, we have:

w1(x, y, ǫn) ≤ u1(x, ǫn) + η

that is y ∈ M1(x, ǫn, η). Then:

M1(x) ⊂ Lim inf
n→+∞

M1(x, ǫn, η). �

For related results in a topological setting, the reader is referred to [11].

3. Example: an optimization problem associated to a system of non-

differentiable convex inequalities.

3.1. Introduction. First, we recall the example considered in section 1.

Let fi : R
N → R, i = 1, 2, . . . ,m, be closed proper convex functions and:

C =
{

x ∈ R
N/ fi(x) ≤ 0, i = 1, 2, . . . ,m

}

, θ(x) = (f+
1 (x), f+

2 (x), . . . , f+
m(x))

with the notation a+ = max(0, a). Suppose that C is nonempty. One of the problems

considered in [2] is to find the best constant k2,∞ verifying:

d2(x,C) ≤ k2,∞‖θ(x)‖∞ ∀x ∈ R
N , that is to say k2,∞ = sup

x/∈C

d2(x,C)

‖θ(x)‖∞

where d2(x,C) = min
y∈C

‖x − y‖2, ‖.‖2 the Euclidean norm on R
N and ‖.‖∞ the Tcheby-

cheff norm on R
m. Let k∗

2,∞ = 1
k2,∞

(if k2,∞ 6= 0). Then, we have the following result:

Proposition 3.1 [2]. Let f be the function defined by: f(x) = max
i=1,2,...,m

fi(x).

If the following assumptions are satisfied:

(3.1) C is a compact set,

(3.2) C ⊂ int(domfi), i = 1, 2, . . . ,m (where int(domfi) denotes the interior of

the effective domain of fi),

(3.3) Slater’s condition: ∃x,∃η > 0 such that: fi(x) < −η, i = 1, 2, . . . ,m,

then, k2,∞ is a positive finite real number, and:

k∗
2,∞ = inf

x∈bd(C)
inf

y∈∂f(x)
sup

z∈∂f(x)
〈z,

y

‖y‖2

〉
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(where bd(C) denotes the boundary of C and ∂f(x) the subdifferential of f at x)

Remark 3.1. Noticing that the function f is closed, proper and convex and

that C ⊂ int(domf), we deduce that f is a continuous function on C [18].

3.2. Preliminary results. Before going further, let us establish the following

results relevant to convex analysis:

Theorem 3.1. Let ǫ ≥ 0. Let g be a closed proper convex function on R
N , and

G be a nonempty compact subset of int(domg). Then, the set
⋃

x∈G

∂ǫg(x) is compact.

P r o o f. The multifunction ∂ǫg is upper semicontinuous and compact valued.

Since G is compact, then ∂ǫg(G) is also compact (see [3], Theorem 3, page 116). �

Remark 3.2. For ǫ = 0, we get a result given in [18, Theorem 24.7].

Corollary 3.1. Under the assumptions (3.1) to (3.3), there exists ǫ0 > 0 such

that:

0 6∈ Y 0 =
⋃

x∈bd(C)

∂ǫ0f(x)

and Y 0 is a compact set in R
N .

P r o o f. From Slater’s condition (3.3) and by using the fact that: f(x) = 0,

∀x ∈ bd(C), we deduce that:

0 6∈ ∂ηf(x) ∀x ∈ bd(C).

Then:

0 6∈
⋃

x∈bd(C)

∂ηf(x).

Let ǫ0 = η. Then:

0 6∈ Y 0 =
⋃

x∈bd(C)

∂ǫ0f(x)

and Y 0 is a compact set by using Theorem 3.1. �

Now, we consider the following strong-weak Stackelberg problem associated to

the constant k∗
2,∞: find x ∈ bd(C) solving the minimization problem:

(S) : Min
x∈bd(C)

inf
y∈∂f(x)

sup
z∈∂f(x)

〈z,
y

‖y‖2

〉
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Let:

f1(x, y, z) = 〈z,
y

‖y‖2

〉, f2(x, y) = f∗(y) − 〈x, y〉

with f∗(y) = sup
x∈R

N

{〈x, y〉 − f(x)} the conjugate function of f , and

X = bd(C), Y = co(Y 0), T =
⋃

x∈X

∂f(x)

where co(Y 0) denotes the convex hull of Y 0.

The problem (S) can be rewritten as follows:

(S)























Min
x∈X

inf
y∈M2(x)

sup
z∈M2(x)

f1(x, y, z)

where M2(x) = ∂f(x) denotes the set of optimal solutions to the lower

level problem P (x) :
{

Min
y∈Y

f2(x, y)

We notice that k∗
2,∞ corresponds to the strong-weak Stackelberg value considered in

section 2.

For ǫ > 0, we shall consider the following ǫ-regularized problem of (S) defined

by:

(Sǫ)























Min
x∈X

inf
y∈M2(x)

sup
z∈M2(x,ǫ)

f1(x, y, z)

where M2(x, ǫ) = ∂ǫf(x) denotes the set of ǫ-approximate solutions

to the lower level problem P (x) :
{

Min
y∈Y

f2(x, y)

The following remarks collect some useful and obvious properties.

Remark 3.3.

1) Y is a convex compact set and T is a compact set (Theorem 3.1).

2) The problem P (x) and the problem: Min
y∈Y

f2(x, y), are equivalent (that is the

two problems have the same set of solutions).

3) f2 is lower semicontinuous on X×Y and the function: y → f2(x, y) is convex

on Y , for any x ∈ X.

Remark 3.4.

1) X is a compact set.
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2) ∀x ∈ X, ∀ǫ > 0 sufficiently small, we have: 0 6∈ M2(x, ǫ) and the function f1

is continuous on X × Y 0 × R
N (see Corollary 3.1), and in particular on X × T × Y .

3.3. Convergence results for the lower level problems. In the following,

we shall always assume that the assumptions (3.1) to (3.3) are fulfilled.

Proposition 3.2. Let ǫ > 0. Then, for any x ∈ X and for any sequence

(xn)n converging to x in X, we have:

M2(x, ǫ) ⊂ Lim inf
n→+∞

M2(xn, ǫ)

i.e

∂ǫf(x) ⊂ Lim inf
n→+∞

∂ǫf(xn).

P r o o f. We deduce the result by using Remarks 3.1 and 3.3 and Proposition

2.1 (take yn = y ∀n in (2.2)). �

Proposition 3.3. For any x ∈ X and any sequence (xn)n converging to x in

X, we have:

1) Lim sup
n→+∞

M2(xn, ǫn) ⊂ M2(x), for any sequence ǫn → 0, ǫn > 0 ∀n, that is to

say:

Lim sup
n→+∞

∂ǫnf(xn) ⊂ ∂f(x).

2) Lim sup
n→+∞

M2(xn, ǫ) ⊂ M2(x, ǫ), for any ǫ ≥ 0, that is to say:

Lim sup
n→+∞

∂ǫf(xn) ⊂ ∂ǫf(x).

P r o o f. See Proposition 2.2. (take yn = y ∀n in (2.5)). �

For a further analysis concerning approximation results for the subdifferential

of a convex function see [17].

3.4. Convergence results for the upper level problem. As in subsection

3.3, in order to state the following results, we always assume that the assumptions (3.1)

to (3.3) are satisfied. We notice that the assumptions (2.1) to (2.9) are satisfied as a
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consequence of the assumptions (3.1) to (3.3). As in section 2, for ǫ > 0, we shall use

the following notations:

w1(x, y, ǫ) = sup
z∈M2(x,ǫ)

f1(x, y, z), u1(x, ǫ) = inf
y∈M2(x)

w1(x, y, ǫ), v1(ǫ) = inf
x∈X

u1(x, ǫ).

Proposition 3.4. Let ǫ > 0. The problem (Sǫ) has at least one solution.

P r o o f. Apply Proposition 2.6. �

Proposition 3.5. Let ǫ > 0. There exists (x(ǫ), y(ǫ), z(ǫ)) ∈ X × T × Y ,

verifying:

f1(x(ǫ), y(ǫ), z(ǫ)) = v1(ǫ)

and (x(ǫ), y(ǫ), z(ǫ)) ∈ X × M2(x(ǫ)) × M2(x(ǫ), ǫ).

P r o o f. Apply Proposition 2.7. �

Proposition 3.6. The following result holds:

lim
ǫ→0+

v1(ǫ) = k∗
2,∞.

P r o o f. Apply Proposition 2.10. �

For x ∈ X and ǫ > 0, let:

M1(x, ǫ) =
{

y ∈ M2(x)/ u1(x, ǫ) = w1(x, y, ǫ)
}

=
{

y ∈ ∂f(x)/ sup
z∈∂ǫf(x)

〈z,
y

‖y‖2

〉 = inf
y∈∂f(x)

sup
z∈∂ǫf(x)

〈z,
y

‖y‖2

〉
}

,

M1(x) =
{

y ∈ M2(x)/ u1(x) = w1(x, y)
}

=
{

y ∈ ∂f(x)/ sup
z∈∂f(x)

〈z,
y

‖y‖2

〉 = inf
y∈∂f(x)

sup
z∈∂f(x)

〈z,
y

‖y‖2

〉
}

be respectively the sets of optimal solutions to the minimization problems:

Sǫ(x) : Min
y∈∂f(x)

sup
z∈∂ǫf(x)

〈z,
y

‖y‖2

〉 and S(x) : Min
y∈∂f(x)

sup
z∈∂f(x)

〈z,
y

‖y‖2

〉

M1,ǫ =
{

x ∈ X/ u1(x, ǫ) = v1(ǫ)
}

=
{

x ∈ bd(C)/ inf
y∈∂f(x)

sup
z∈∂ǫf(x)

〈z,
y

‖y‖2

〉 = inf
x∈X

inf
y∈∂f(x)

sup
z∈∂ǫf(x)

〈z,
y

‖y‖2

〉
}
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the set of optimal solutions to (Sǫ) and:

M0 =
{

x ∈ X/ ∃y ∈ M2(x),∃z ∈ M2(x) : f1(x, y, z) = k∗
2,∞

}

=
{

x ∈ bd(C)/ ∃y ∈ ∂f(x),∃z ∈ ∂f(x) : 〈z, y
‖y‖

2

〉 = k∗
2,∞

}

.

Then, as in section 2, we have:

Proposition 3.7. For any x ∈ X and any sequence ǫn → 0, ǫn > 0 ∀n, we

have:

Lim sup
n→+∞

M1(x, ǫn) ⊂ M1(x)

and M1(x) is a nonempty set.

P r o o f. Apply Proposition 2.12. �

Proposition 3.8. For any ǫn → 0, ǫn > 0 ∀n, we have:

Lim sup
n→+∞

M1,ǫn ⊂ M0

and M0 is a nonempty set.

P r o o f. By using Proposition 2.13, we get:

Lim sup
n→+∞

M1,ǫn ⊂ M0.

Since M1,ǫn 6= Ø, ∀n (Proposition 2.6), it follows from the compactness of X that:

Lim sup
n→+∞

M1,ǫn 6= Ø. Then: M0 6= Ø. �

Remark 3.5.

1) From Proposition 3.8, there exist x ∈ bd(C), y∗ ∈ ∂f(x) and z∗ ∈ ∂f(x)

such that:

〈z∗,
y∗

‖y∗‖2

〉 = k∗
2,∞ and d2(x,C) ≤ ‖θ(x)‖∞

1

〈z∗, y∗

‖y∗‖2

〉
∀x ∈ R

N .

2) By taking into account the eventual vacuity of the set of optimal solutions

to the problem (S) associated to k∗
2,∞, we have introduced a sequence of regularized

problems approximating (S) in the sense of Proposition 3.6 and Proposition 3.8.

Remark 3.6. Further results will appear in the thesis prepared by A. Abous-

soror.
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