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Abstract. Sufficient conditions are obtained for the existence of local integral
manifolds of autonomous systems of differential equations with impulses at fixed
moments. In case of perturbations of the nonlinear part an estimate of the differ-
ence between the manifolds is obtained.

1. Introduction. The impulsive differential equations are adequate mathema-

tical models of evolutionary processes which are subjected to short-time effects during

their evolution. They are successfully used in science and technology [1], [4].

In spite of the great possibilities for applications, the theory of these equations

is developed rather slowly. This is due to their specific properties such as “beating”,

merging of the solutions, loss of the property of autonomy, etc. We shall note that the

theory of the impulsive differential equations is considerably richer than the theory of

the ordinary differential equations.
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The intensive investigations in the field of the integral manifolds are brought

forth by the necessity of studying these processes in their entirety. In many cases the

standard conditions for existence of integral manifolds are satisfied only locally, i.e.

only for on bounded domains.

In the present paper sufficient conditions are obtained for existence of local

integral manifolds of autonomous systems of differential equations with impulses at

fixed moments, and in case of perturbations of the nonlinear part an estimate of the

difference between the respective manifolds is obtained.

2. Preliminary notes. Statement of the problem. Let us assume that the

sequence of numbers {τk}, τk ∈ R, τk < τk+1 (k ∈ Z) has no finite accumulation point.

Consider the autonomous system of differential equations with impulses at fixed

moments

(1)

dz

dt
= Az + F (z), t 6= τk

∆z = Bz + Φk(z), t = τk, k ∈ Z

where z ∈ R
m+n, F : R

m+n → R
m+n, Φk : R

m+n → R
m+n, where R

m+n is an

m+ n – dimensional Euclidean space with norm ‖ · ‖, A and B are constant matrices,

A = diag [A1, A2], B = diag [B1, B2], where A1, B1 are m×m – dimensional, and A2,

B2 are n× n – dimensional, ∆z = z(τk + 0) − z(τk − 0).

Definition 1. The function z(t) : R → R
m+n is said to be a solution of (1) if

it satisfies the following conditions:

1) z(t) is a piecewise continuous function with points of discontinuity of the first

kind τk (k ∈ Z) at which it is continuous on the left, i.e.

z(τk − 0) = z(τk), z(τk + 0) = z(τk) + Φk(z(τk)) + Bz(τk);

2) z(t) is differentiable for t 6= τk and

dz

dt
= Az(t) + F (z(t)).

Denote by Ur the closed ball in R
m with a center at the origin and radius r,

i.e.

Ur = {x : x ∈ R
m, ‖x‖ ≤ r, r > 0}.
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Denote by Vρ the closed ball in R
n with a center at the origin and radius ρ, i.e.

Vρ = {x : x ∈ R
n, ‖x‖ ≤ ρ, ρ > 0}.

Consider the Banach space E of all functions ϕ̂ mapping the set R
m into R

n,

which are continuous with respect to x and are bounded, with norm

|ϕ̂| = sup{‖ϕ(x)‖ : x ∈ R
m}.

By L(ρ, η) we denote the subset of E consisting of all functions for which

‖ϕ̂(x)‖ ≤ ρ, ‖ϕ̂(x) − ϕ̂(x)‖ ≤ η‖x− x‖; x, x ∈ R
m,

where η = const > 0, ρ = const > 0.

It is easily checked that L(ρ, η) is closed in E.

We write down system (1) in the form

(2)

dx

dt
= A1x+ f(x, y)

dy

dt
= A2y + g(x, y), t 6= τk

∆x = B1x+ Ik(x, y) ∆y = B2y + Jk(x, y), t 6= τk, k ∈ Z

where z = (x, y), x ∈ R
m, y ∈ R

n. The functions f and Ik map R
m+n into R

m and g

and Jk map R
m+n into R

n.

Definition 2. An arbitrary manifold J in the extended phase space of system

(1) is said to be an integral manifold if for an arbitrary solution z = (x(t), y(t)) of

(1) for which (t0, z(t0)) ∈ J it follows that (t, z(t)) ∈ J for t ≥ t0.

Definition 3. The integral manifold J ,

J = {(x, y) : y = ϕ̂(x), x ∈ Ur, ϕ̂ ∈ L(ρ, η)}

is said to be a local integral manifold of class L(ρ, η) or a local (ρ, η)-manifold.

In the present paper sufficient conditions are obtained for existence of integral

manifolds of system (1) for any ρ > 0 and η > 0.

We shall say that conditions (H) are satisfied if the following conditions hold:

H1. There exist constants p and ε such that uniformly on t and s ∈ R the

following inequality is valid
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i(s, t) ≤ p(t− s) + ε,

where by i(s, t) we have denoted the number of the points τk in the interval [s, t].

H2. det(Em + B1) 6= 0, the matrices A1 and B1 commute and there exists

a constant α > 0 such that the eigenvalues λi (i = 1, . . . ,m) of the matrix Λ1 =

A1 + pln (Em +B1) satisfy the inequalities

|Reλi| < α, (i = 1, . . . ,m),

where Em is a unit m×m matrix.

H3. det(En + B2) 6= 0, the matrices A2 and B2 commute and there exists

a constant γ > 0 such that the eigenvalues λj (j = 1, . . . , n) of the matrix Λ2 =

A2 + pln (En +B2) satisfy the inequalities

|Reλj| > γ, (j = 1, . . . , n),

where En is a unit n× n matrix.

H4. The functions f and Ik are continuous, bounded and Lipschitz continuous,

i.e. there exist constants Q, l1 and l2 such that

sup
(x,y)∈Ur×Vρ

‖f(x, y)‖ + sup
(x,y)∈Ur×Vρ, k∈Z

‖Ik(x, y)‖ ≤ Q,

‖f(x, y) − f(x, y)‖ + ‖Ik(x, y) − Ik(x, y)‖ ≤ l1‖x− x‖ + l2‖y − y‖,

where x, x ∈ Ur, y, y ∈ Vρ.

H5. The functions g and Jk are continuous, bounded and Lipschitz continuous,

i.e. there exist constants Q, δ1 and δ2 such that

sup
(x,y)∈Ur×Vρ

‖g(x, y)‖ + sup
(x,y)∈Ur×Vρ, k∈Z

‖Jk(x, y)‖ ≤ Q,

‖g(x, y) − g(x, y)‖ + ‖Jk(x, y) − Jk(x, y)‖ ≤ δ1‖x− x‖ + δ2‖y − y‖

where x, x ∈ Ur, y, y ∈ Vρ.

Henceforth we shall use the following lemmas.
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Lemma 1 [2]. Let conditions H1 and H2 be satisfied. Then the Cauchy matrix

W (t, s) = eΛ1(t−s)(Em +B1)
−p(t−s)+i(s,t) (t ≥ s)

of the linear system

dx

dt
= A1x, t 6= τk,

∆x = B1x, t = τk, k ∈ Z

satisfies the inequality

‖W (t, s)‖ ≤ Neα1(t−s), t, s ∈ R,

where α1 = α1(ε) > 0, N = N(ε) > 0.

For the system

dy

dt
= A2y, t 6= τk,

∆y = B2y, t = τk, k ∈ Z

we construct Green’s function

G(t, s) =






−(En +B2)
−p(t−s)+i(t,s)S−1diag (eΛ

+

2
(t−s), 0)S, t < s,

−(En +B2)
−p(t−s)+i(t,s)S−1diag (0, eΛ

−

2
(t−s), 0)S, t > s,

where S is a nonsingular matrix such that

Λ2 = S−1diag (Λ+
2 ,Λ

−
2 )S.

Λ+
2 is a square matrix with positive real parts of its eigenvalues and Λ−

2 is a square

matrix with negative real parts of its eigenvalues.

Lemma 2 [5]. Let conditions H1 and H3 be satisfied. Then for Green’s

function G(t, s) there exist constants K > 0 and ∆1 = ∆1(γ) > 0 such that

‖G(t, s)‖ ≤ Ke−∆1|t−s|, t, s ∈ R.
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Lemma 3 [2]. Let the inequality

U(t) ≤

∫ t

t0

U(s)ν(s)ds + F (t) +
∑

t0<τk<t

βkU(τk) +
∑

t0<τk<t

γk(t)

be satisfied, where the function U(t) is piecewise continuous with discontinuities of the

first kind at the points τk, ν(t) ≥ 0 is a locally integrable function, F (t) and γk(t) are

non decreasing functions for t ∈ [t0,∞] and γk(t) ≥ 0, βk ≥ 0.

Then

U(t) ≤



F (t) +
∑

t0<τk<t

γk(t)




∏

t0<τk<t

(1 + βk)exp

(∫ t

t0

ν(s)ds

)
.

3. Main Results. Consider the system

(3)

dx

dt
= A1x+ f̂(x, y)

dy

dt
= A2y + ĝ(x, y), t 6= τk

∆x = B1x+ Îk(x, y) ∆y = B2y + Ĵk(x, y), t = τk, k ∈ Z

where

f̂(x, y) =






f(x, y), x ∈ Ur, y ∈ Vρ,

f

(
x

‖x‖
r, y

)
, x ∈ R

m \Ur, y ∈ Vρ

and the functions ĝ(x, y) and Îk(x, y), Ĵk(x, y), k ∈ Z are defined analogously.

Let ϕ̂j ∈ L(ρ, η), j = 1, 2. We denote by ψj(t) = ψj(t, s, ωj |ϕ̂j), ωj ∈ R
m,

j = 1, 2 the solution of the Cauchy problem for the system

(4)

dψ

dt
= A1ψ + f̂(ψ,ϕ(ψ)), t 6= τk

∆ψ = B1ψ + Îk(ψ,ϕ(ψ)), t = τk, ψj(s) = ωj, k ∈ Z.
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Lemma 4. Let conditions H1, H2 and H4 be satisfied. Then the following

inequality holds

(5)

‖ψ1 − ψ2‖ ≤

{

Nl2



 1

α

(
eα1|t−s| − 1

)
+

∑

s≤τk<t

eα1|t−τk|



 |ϕ̂1 − ϕ̂2|+

+Neα1|t−s| ‖ω1 − ω2‖

}

[1 +N(l1 + l2η)]
i(s,t) eN(l1+l2η)|t−s|.

P r o o f. From [3] it follows that f̂ and Îk satisfy conditions H4 with the same

constants. Then, from [1] and (4) it follows that

ψj = W (t, s)ωj +

∫ t

s
W (t, r)f̂ (ψj(r), ϕ̂j (ψj(r))) dr+

∑

s≤τk<t

W (t, τk)Îk (ψj(τk), ϕ̂j (ψj(τk))) .

Hence, for t ≥ s

‖ψ1 − ψ2‖ ≤ ‖W (t, s)‖ ‖ω1 − ω2‖ +

+

∫ t

s
W (t, r)

∥∥∥f̂ (ψ1(r), ϕ̂1 (ψ2(r))) − f̂ (ψ2(r), ϕ̂2 (ψ2(r)))
∥∥∥ ds+

+
∑

s≤τk<t

W (t, τk)
∥∥∥Îk (ψ1(τk), ϕ̂1 (ψ2(τk))) − Îk (ψ2(τk), ϕ̂2 (ψ2(τk)))

∥∥∥ ≤

≤ Neα1(t−s)‖ω1 − ω2‖ +

∫ t

s
Neα1(t−r)(l1 + l2η)‖ψ1 − ψ2‖dr +

+

∫ t

s
Neα1(t−r)l2|ϕ1 − ϕ2|dr +

+
∑

s≤τk<t

Neα1(t−τk)(l1 + l2η)‖ψ1 − ψ2‖ +

+
∑

s≤τk<t

Neα1(t−τk)l2|ϕ1 − ϕ2|.
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Set

U(t) = e−α1t‖ψ1 − ψ2‖,

F (t) = Nl2

∫ t

s
e−α1r|ϕ1 − ϕ2|dr +Ne−α1t‖ω1 − ω2‖,

γk(t) = Nl2e
−α1τk |ϕ1 − ϕ2|,

βk = N(l1 + l2η),

V(t) = N(l1 + l2η).

Then, from Lemma 3, it follows that

‖ψ1 − ψ2‖ ≤

{

Nl2



 1

α1

(
eα1(t−s) − 1

)
+

∑

s≤τk<t

eα1(t−τk)



 |ϕ̂1 − ϕ̂2| +

+Neα1(t−s)‖ω1 − ω2‖

}

[1 +N(l1 + l2η)]
i(s,t) eN(l1+l2η)(t−s).

The proof for t < s is analogous. �

Theorem 1. Let the following conditions be satisfied:

1. Conditions (H) hold.

2. The constants defined in conditions (H), Lemma 1 and Lemma 2 are such

that the following inequalities are valid:

(6) β = ∆1 − α1 −N(l1 + l2η) − p ln[1 +N(l1 + l2η)] > 0,

(7) 2KN(δ1 + δ2η)e
ε ln[1+N(l1+l2η)]

(
1

β
−

p+ ε

1 − e−β

)
≤ η,

2KNl1(δ1 + δ2η)e
ε ln[1+N(l1+l2η)]

[
1

α1

(
1

β
−

1

β + α1

)
+
ε

β
+

p

β2
+

(8) +
p+ ε

α1

(
1

1 − e−β
−

1

1 − e−(β−α1)

)
+
ε(p+ ε)

1 − e−β
+

e−β

(1 − e−β)2

]

+
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+Kδ2

(
1

∆1
+

p+ ε

1 − e−∆1

)
< 1,

(9) 2KQ

(
1

∆1
+

p+ ε

1 − e−∆1

)
≤ ρ.

Then, system (2) has a local (ρ, η)-manifold.

P r o o f. From [3] it follows that ĝ(·) and Ĵk(·) satisfy H5 with the same

constants. In L(ρ, η) we define an operator T by the formula

Tϕ =

∫ ∞

−∞
G(t, s)ĝ (ψ(s), ϕ (ψ(s))) ds+

+
∑

−∞<τk<∞

G(t, τk)Ĵk (ψ(τk), ϕ (ψ(τk))) .

Then, from Lemma 2 and (9) we have

(10)

‖Tϕ‖ ≤

∫ ∞

−∞
Ke−∆1|t−s|Qds+

∑

−∞<τk<∞

Ke−∆1|t−τk |Q ≤

≤ 2KQ

(
1

∆1
+

p+ ε

1 − e−∆1

)
≤ ρ.

From (5) and (6) it follows that

‖Tϕ1(ψ1) − Tϕ2(ψ2)‖ ≤

∫ ∞

−∞
‖G(t, s)‖ ‖ĝ(ψ1, ϕ1(ψ1)) − ĝ(ψ2, ϕ2(ψ2))‖ds +

+
∑

−∞<τk<∞

‖G(t, τk)‖ ‖Ĵk(ψ1(τk), ϕ1(ψ1(τk))) − Ĵk(ψ2(τk), ϕ2(ψ2(τk)))‖ ≤

≤

∫ ∞

−∞
Ke−∆1|t−s|{δ1‖ψ1(s) − ψ2(s)‖ + δ2‖ϕ1(ψ1(s)) − ϕ2(ψ2(s))‖}ds+

+
∑

−∞<τk<∞

Ke−∆1|t−τk|{δ1‖ψ1(τk) − ψ2(τk)‖ + δ2‖ϕ1[ψ1(τk)] − ϕ2[ψ2(τk)]‖} ≤

≤

∫ ∞

−∞
Ke−∆1|t−s| [(δ1 + δ2η)‖ψ1(s) − ψ2(s)‖ + δ2|ϕ1 − ϕ2|] ds+

+
∑

−∞<τk<∞

Ke−∆1|t−τk| [(δ1 + δ2η)‖ψ1(τk) − ψ2(τk)‖ + δ2|ϕ1 − ϕ2|] ≤
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≤

∫ t

−∞
Ke−∆1(t−s)

{

(δ1 + δ2η)

[

Nl1

( 1

α1
(eα1(t−s) − 1) +

+
∑

s≤τk<t

eα1(t−τk)
)
|ϕ1 − ϕ2| +Neα1(t−s)‖ω1 − ω2‖

]

×

×eε ln[1+N(l1+l2η)]e{N(l1+l2η)+p ln[1+N(l1+l2η)]}(t−s) +

+δ2|ϕ1 − ϕ2|

}

ds+
∑

τk<t

Ke−∆1(t−τk)

{

(δ1 + δ2η)

[

Nl1

( 1

α1
(eα1(t−s) − 1) +

+
∑

τk≤τj<t

eα1(t−τj)
)
|ϕ1 − ϕ2| +Neα1(t−τk)‖u1 − u2‖

]

×

× eε ln[1+N(l1+l2η)]e{N(l1+l2η)+p ln[1+N(l1+l2η)]}(t−τk) + δ2|ϕ1 − ϕ2|

}

+

+

∫ ∞

t
Ke∆1(t−s)

{

(δ1 + δ2η)

[

Nl1

( 1

α1
(e−α1(t−s) − 1) +

∑

t≤τk<s

e−α1(t−τk)
)
×

(11) ×|ϕ1 − ϕ2| +Ne−α1(t−s)‖ω1 − ω2‖

]

×

× eε ln[1+N(l1+l2η)]e{N(l1+l2η)+p ln[1+N(l1+l2η)]}(t−s) + δ2|ϕ1 − ϕ2|

}

ds +

∑

t<τk

Ke∆1(t−τk)

{

(δ1 + δ2η)

[

Nl1

( 1

α1
(e−α1(t−τk) − 1) +

+
∑

t≤τj<τk

e−α1(t−τj)
)
|ϕ1 − ϕ2| +Ne−α1(t−τk)‖ω1 − ω2‖

]

×

×e−ε ln[1+N(l1+l2η)]e{−N(l1+l2η)+p ln[1+N(l1+l2η)]}(t−s) +

+δ2|ϕ1 − ϕ2|

}

= N∗‖ω1 − ω2‖ +K∗|ϕ1 − ϕ2|,
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where we denote:

N∗ = 2KN(δ1 + δ2η)e
ε ln[1+N(l1+l2η)]

(
1

β
+

p+ ε

1 − e−β

)
,

K∗ = 2KNl1(δ1 + δ2η)e
ε ln[1+N(l1+l2η)]

[
1

α1

(
1

β
−

1

β + α1

)
+
ε

β
+

p

β2
+

+
p+ ε

α1

(
1

1 − e−β
−

1

1 − e−(β+α1)

)
+
ε(p+ ε)

1 − e−β
+

e−β

(1 − e−β)2

]

+

+ 2Kδ2

(
1

∆1
+

p+ ε

1 − e−∆1

)
.

From (11) for ψ1 = ψ2 we obtain that

(12) ‖Tϕ1 − Tϕ2‖ ≤ N∗‖ω1 − ω2‖.

Then, from (7), (10) and (12), it follows that T is a mapping from L(ρ, η) into L(ρ, η).

For u1 = u2 from (11) we obtain that

(13) ‖Tϕ1 − Tϕ2‖ ≤ K∗‖ϕ1 − ϕ2‖.

From (13) and (8) it follows that T is a contracting operator. Then the fixed

point ϕ̂ of the operator T provides an integral manifold of (3). Hence the restriction

of the function ϕ̂ to Ur defines a local integral manifold of system (2). �

Further on consider the system

(14)

dx

dt
= A1x+ f(x, y)

dy

dt
= A2y + g(x, y) + h(x, y), t 6= τk

∆x = B1x+ Ik(x, y) ∆y = B2y + Jk(x, y) + hk(x, y), t = τk, k ∈ Z

where h : Ur × Vρ → R
n, hk : Ur × Vρ → R

n, k ∈ Z.

Definition 4. We called system (14) perturbed with respect to system (2).

Let Φ̂ be a function defining an integral manifold of the system
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(15)

dx

dt
= A1x+ f̂(x, y)

dy

dt
= A2y + ĝ(x, y) + ĥ(x, y), t 6= τk

∆x = B1x+ Îk(x, y) ∆y = B2y + Ĵk(x, y) + ĥk(x, y), t = τk, k ∈ Z

where

ĥ(x, y) =






h(x, y), x ∈ Ur, y ∈ Vρ,

h

(
x

‖x‖
r, y

)
, x ∈ R

m \Ur, y ∈ Vρ.

ĥk(x, y) =






hk(x, y), x ∈ Ur, y ∈ Vρ,

hk

(
x

‖x‖
r, y

)
, x ∈ R

m \ Ur, y ∈ Vρ.

By ψ(t, s, ω|Φ̂) we denote the solution of the Cauchy problem for the system

dψ

dt
= A1ψ + f̂(ψ, Φ̂(ψ)), t 6= τk,

∆ψ = B1ψ + Îk(ψ, Φ̂(ψ)), t = τk, k ∈ Z.

Lemma 5. Let the following conditions be satisfied:

1. Conditions H1, H2 and H4 are valid.

2. System (15) has a (ρ, η)-manifold with function Φ̂(x).

Then the following inequality holds

‖ψ(t, s, ω|Φ̂) − ψ(t, s, ω|ϕ̂)‖ ≤

≤



Nl2
α1

(
eα1|t−s| − 1

)
|Φ̂ − ϕ̂| +

∑

s≤τk<t

Neα1|t−τk |l2|Φ̂ − ϕ̂|



×

× [1 +N(l1 + l2η)]
i(s,t) eN(l1+l2η)|t−s|
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P r o o f. It is carried out analogously to the proof of Lemma 4. �

Theorem 2. Let the following conditions be given:

1. The conditions of Theorem 1 are satisfied.

2. The functions h and hk are bounded with constant Q1, k ∈ Z.

3. The relation l2 ≤ l1 holds.

4. System (14) has a local (ρ, η)-manifold with function Φ̂(x).

Then the following inequality is valid

‖Φ̂ − ϕ̂‖ ≤ (1 − q)−12K

(
1

∆1
+

p+ ε

1 − ε−∆1

)
×

×max

(

sup
(x,y)∈Ur×Vρ

‖h(x, y)‖, sup
(x,y)∈Ur×Vρ, k∈Z

‖hk(x, y)‖

)

,

where

q = 2K(δ1 + δ2η)Nl2e
ε ln[1+N(l1+l2η)]

[
1

α1

( 1

β
−

1

β + α1

)
+

+(p+ ε)
( 1

1 − e−β
−

1

1 − e−(β+α1)

)
+ ε

( 1

β
−

p+ ε

1 − e−β

)
+

+p
( 1

β2
+

e−β

(1 − e−β)2

)]

+ 2Kδ2
( 1

∆1
+

p+ ε

1 − e−∆1

)
.

P r o o f. From [3] it follows that ĥ and ĥk satisfy Condition 2 or Theorem 2

with the same constants.

Then

‖Φ̂ − ϕ̂‖ ≤

∫ ∞

−∞
‖G(t, s)‖

{∥∥∥ĝ (ψ(ϕ̂), ϕ̂) − ĝ
(
ψ(Φ̂), Φ̂

)∥∥∥+
∥∥∥ĥ
(
ψ(Φ̂), Φ̂

)∥∥∥
}
ds +

+
∑

−∞<τk<∞

‖G(t, τk)‖
{∥∥∥Îk (ψ(ϕ̂), ϕ̂) − Îk

(
ψ(Φ̂), Φ̂

)∥∥∥+
∥∥∥ĥ
(
ψ(Φ̂), Φ̂

)∥∥∥
}
≤

≤

∫ ∞

−∞
Ke−∆1|t−s|

[
(δ1 + δ2η)

∥∥∥ψ(Φ̂) − ψ(ϕ̂)
∥∥∥+ δ2

∥∥∥Φ̂ − ϕ̂
∥∥∥+

∥∥∥ĥ
∥∥∥
]
ds+
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+
∑

−∞<τk<∞

Ke−∆1|t−τk|
[
(δ1 + δ2η)

∥∥∥ψ(Φ̂) − ψ(ϕ̂)
∥∥∥+ δ2

∥∥∥Φ̂ − ϕ̂
∥∥∥+

∥∥∥ĥ
∥∥∥
]
.

From Conditions 1, 3 of Theorem 2 it follows that 0 < q < 1. Then, from

Lemma 5, we obtain that

(16)

‖Φ̂ − ϕ̂‖ ≤ (1 − q)−12K

(
1

∆1
+

p+ ε

1 − ε−∆1

)
×

× max

(

sup
(x,y)∈R

m×Vρ

‖ĥ(x, y)‖, sup
(x,y)∈R

m×Vρ, k∈Z

‖ĥk(x, y)‖

)

.

Estimate (16) holds for all x ∈ R
m, y ∈ Vρ. Then it is valid for any x ∈ Ur,

y ∈ Vρ.
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