Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
Serdica Mathematical Journal

 Сердика
Математическо списание

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

TRIPLES OF POSITIVE INTEGERS WITH THE SAME SUM AND THE SAME PRODUCT

A. Schinzel

Communicated by S. L. Troyanski

Abstract. It is proved that for every k there exist k triples of positive integers

 with the same sum and the same product.In this paper we solve the problem D. 16 from the book [1] by proving the following

Theorem. For every k there exist infinitely many primitive sets of k triples of positive integers with the same sum and the same product.
(A set S of triples is called primitive if the greatest common divisor of all elements of all triples of S is 1.)

Lemma. The system of equations

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}=x_{1} x_{2} x_{3}=6 \tag{1}
\end{equation*}
$$

has infinitely many solutions in rational numbers $x_{j}>0$.
Proof. The equation $f(x)=x^{3}-9 x+9=y^{2}$ has the solution $\langle x, y\rangle=\langle 7,17\rangle$, which does not satisfy Nagell's condition $y^{2} \mid \Delta$, where $\Delta=3^{6}$ is the discriminant of f. Hence (see [2], Chap. V, p. 78, Satz 12a) the equation has infinitely many rational solutions and in virtue of the theroem of Poincaré and Hurwitz (see ibid. Satz 11) it has infinitely many rational solutions in every neighbourhood of any one of them. Since the solution $\langle x, y\rangle=\langle 0,3\rangle$ satisfies the inequality

$$
|y|<6-3 x
$$

there are infinitely many rational solutions of $f(x)=y^{2}$ satisfying this inequality; hence also $x<2$. Put such solutions

$$
x_{1}=\frac{6}{3-x}, \quad x_{2}=\frac{6-3 x+y}{3-x}, \quad x_{3}=\frac{6-3 x-y}{3-x} .
$$

We have $x_{j}>0$, moreover

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=6 \\
x_{1} x_{2} x_{3}=\frac{6\left((6-3 x)^{2}-y^{2}\right)}{(3-x)^{3}}=\frac{6\left((6-3 x)^{2}-f(x)\right)}{(3-x)^{3}}=6 .
\end{gathered}
$$

To different solutions $\langle x, y\rangle$ correspond different (ordered) triples $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, which proves the lemma.

Proof of the theorem. Take any k solutions $\left\langle x_{i 1}, x_{i 2}, x_{i 3}\right\rangle$, where $x_{i 1} \leq$ $x_{i 2} \leq x_{i 3}$ of the system (1) in rational numbers $x_{j}>0$ and let d be the least common denominator of all the numbers $x_{i j}(i \leq k, j \leq 3)$. Thus

$$
x_{i j}=\frac{a_{i j}}{d}, \quad a_{i j} \in \mathbb{N}, \quad\left(\begin{array}{c}
\text { g.c.d. } \\
i, j \\
a_{i j}, d
\end{array}\right)=1
$$

We have

$$
\begin{equation*}
\sum_{j=1}^{3} a_{i j}=6 d, \quad \prod_{j=1}^{3} a_{i j} 6 d^{3}(i \leq k) \tag{2}
\end{equation*}
$$

hence g.c.d. $a_{i j}=1$.
i, j
If for two sets of solutions $\left\{\left\langle x_{i 1}, x_{i 2}, x_{i 3}\right\rangle: 1 \leq i \leq k\right\}$ and $\left\langle x_{i 1}^{\prime}, x_{i 2}^{\prime}, x_{i 3}^{\prime}\right\rangle$: $1 \leq i \leq k\}$ the sets of triples $\left.\left\langle a_{i 1}, a_{i 2}, a_{i 3}\right\rangle: 1 \leq i \leq k\right\}$ and $\left\langle a_{i 1}^{\prime}, a_{i 2}^{\prime}, a_{i 3}^{\prime}\right\rangle: 1 \leq$ $i \leq k\}$ coincide, we have by (2) $d=d^{\prime}$, hence the sets of solutions themselves coincide. Since there are infinitely many choices of k elements from an infinite set the theorem follows.

REFERENCES

[1] R. K. Guy. Unsolved Problems in Number Theory, 2nd edition, Springer-Verlag, 1994.
[2] Th. Skolem. Diophantische Gleichungen, Chelsea, 1950.
Andrzej Schinzel Institute of Mathematics PAN
ul. Sniadeckich 8
00-950 Warszawa, Poland
e-mail: schinzel@impan.gov.pl

