Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
Serdica Mathematical Journal

 Сердика
Математическо списание

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

BÄCKLUND-DARBOUX TRANSFORMATIONS IN SATO'S GRASSMANNIAN

B. Bakalov, E. Horozov, M. Yakimov

Communicated by J.-P. Françoise

Abstract

We define Bäcklund-Darboux transformations in Sato's Grassmannian. They can be regarded as Darboux transformations on maximal algebras of commuting ordinary differential operators. We describe the action of these transformations on related objects: wave functions, tau-functions and spectral algebras.

Introduction. Classically, a Darboux transformation [6] of a differential operator L, presented as a product $L=Q P$, is defined by exchanging the places of the factors, i.e. $\bar{L}=P Q$. Obviously all versions of Darboux transformations have the property that if $\Phi(x)$ is an eigenfunction of L, i.e. $L \Phi=\lambda \Phi$ then $P \Phi$ is an eigenfunction of \bar{L}, i.e. $\bar{L} P \Phi=\lambda P \Phi$. Motivated by this characteristic property we give a version of Darboux transformation directly on wave functions. The plane W of Sato's Grassmannian is said to be a Bäcklund-Darboux transformation of the plane V iff the corresponding wave functions are connected by:

$$
\begin{aligned}
& \Psi_{W}(x, z)=\frac{1}{g(z)} P\left(x, \partial_{x}\right) \Psi_{V}(x, z) \\
& \Psi_{V}(x, z)=\frac{1}{f(z)} Q\left(x, \partial_{x}\right) \Psi_{W}(x, z)
\end{aligned}
$$

for some polynomials f, g and differential operators P, Q, or equivalently -

$$
f V \subset W \subset \frac{1}{g} V
$$

To any plane $W \in G r$ one can associate a maximal algebra \mathcal{A}_{W} of commuting ordinary differential operators $[11,12,13]$ (called a spectral algebra). Recall that a rank of \mathcal{A}_{W} is the g.c.d. of the orders of the operators from \mathcal{A}_{W}. We prove that BäcklundDarboux transformations preserve the rank of the spectral algebra. Moreover if W is a Bäcklund-Darboux transformation of V such that $\mathcal{A}_{V}=\mathbb{C}\left[L_{V}\right]$ for some operator L_{V} then every operator from \mathcal{A}_{W} is a Darboux transformation (in the sense of eq. (17) below) of an operator from \mathcal{A}_{V}.

In our terminology the set of rational solutions of the KP hierarchy [11, 13] coincides with the set of Bäcklund-Darboux transformations of the simplest plane $H_{+}=$ $\operatorname{span}\left\{z^{n} \mid n=0,1, \ldots\right\}$. The corresponding tau-function τ_{W} is given by the so-called "superposition low for wobbly solitons" (see e.g. [13, 15]). We generalize this formula for a Bäcklund-Darboux transformation W of an arbitrary plane V provided that the wave function $\Psi_{V}(x, z)$ is well defined at all zeros of the polynomial $f(z) g(z)$ (see Theorem 2 below). In a particular but important case which we use it is proven in [1]. The case when $\Psi_{V}(x, z)$ is not well defined for some zero $z=\lambda$ of $f(z) g(z)$ is even more interesting (cf. [3, 4]). We obtain a formula for τ_{W} valid in the general situation (see Theorem 1 below).

A geometric interpretation of $\operatorname{Ker} P$ can be given using the so-called conditions C (introduced in [15] for the rational solutions of KP). When the spectral curve $\operatorname{Spec} \mathcal{A}_{V}=$ \mathbb{C} (i.e. $\left.\mathcal{A}_{V}=\mathbb{C}\left[L_{V}\right]\right)$ the spectral curve $\operatorname{Spec} \mathcal{A}_{W}$ of W can be obtained from that of V by introducing singularities at points where the conditions C are supported - see [15] and also [3] (from [5] it is known that $\operatorname{Spec} \mathcal{A}_{W}$ is an algebraic curve).

This paper may be considered as a part of our project [2]-[4] on the bispectral problem (see [8]). Although here we do not touch the latter, the present paper arose in the process of working on $[3,4]$. We noticed that many facts, needed in $[3,4]$ can be naturally obtained in a more general situation. Apart from the applications to the bispectral problem we hope that some of the results can be useful elsewhere.

Aknowledgement. This work was partially supported by Grant MM-523/95 of Bulgarian Ministry of Education, Science and Technologies.

1. Preliminaries on Sato's Grassmannian. The aim of this section is to recollect some facts and notation from Sato's theory of KP-hierarchy [12, 7, 13] needed in the paper. We use the approach of V. Kac and D. Peterson based on infinite wedge products (see e.g. [10]) and the recent survey paper by P. van Moerbeke [14].

Consider the space of formal Laurent series in z^{-1}

$$
\mathbb{V}=\left\{\sum_{k \in \mathbb{Z}} a_{k} z^{k} \mid a_{k}=0 \text { for } k \gg 0\right\}
$$

We define the fermionic Fock space F consisting of formal infinite sums of semi-infinite monomials

$$
z^{i_{0}} \wedge z^{i_{1}} \wedge \ldots
$$

such that $i_{0}<i_{1}<\ldots$ and $i_{k}=k$ for $k \gg 0$. Let $g l_{\infty}$ be the Lie algebra of all $\mathbb{Z} \times \mathbb{Z}$ matrices having only a finite number of non-zero entries. One can define a representation r of $g l_{\infty}$ in the fermionic Fock space F as follows

$$
\begin{equation*}
r(A)\left(z^{i_{0}} \wedge z^{i_{1}} \wedge \ldots\right)=A z^{i_{0}} \wedge z^{i_{1}} \wedge \ldots+z^{i_{0}} \wedge A z^{i_{1}} \wedge \ldots+\cdots \tag{1}
\end{equation*}
$$

The above defined representation r obviously cannot be continued on the Lie algebra $\widetilde{g} l_{\infty}$ of all $\mathbb{Z} \times \mathbb{Z}$ matrices with finite number of non-zero diagonals. If we regularize it by

$$
\begin{equation*}
\hat{r}(D)\left(z^{i_{0}} \wedge z^{i_{1}} \wedge \ldots\right)=\left[\left(d_{i_{0}}+d_{i_{1}}+\cdots\right)-\left(d_{0}+d_{1}+\cdots\right)\right]\left(z^{i_{0}} \wedge z^{i_{1}} \wedge \ldots\right) \tag{2}
\end{equation*}
$$

for $D=\operatorname{diag}\left(\ldots, d_{-1}, d_{0}, d_{1}, \ldots\right)$ and by (1) for an off-diagonal matrix this will give a representation of a central extension $\widehat{g l}_{\infty}=\widetilde{g l_{\infty}} \oplus \mathbb{C} c$ of $\widetilde{g l_{\infty}}$. Here the central charge c acts as multiplication by 1 . Introduce also the shift matrices $\Lambda_{n}(n \in \mathbb{Z})$ representing the multiplication by z^{n} in the basis $\left\{z^{i}\right\}_{i \in \mathbb{Z}}$ of \mathbb{V}. Then $\hat{r}\left(\Lambda_{k}\right)$ generate a representation of the Heisenberg algebra:

$$
\left[\hat{r}\left(\Lambda_{n}\right), \hat{r}\left(\Lambda_{m}\right)\right]=n \delta_{n,-m}
$$

There exists a unique isomorphism (see [10] for details):

$$
\begin{align*}
& \sigma: F \rightarrow B=\mathbb{C}\left[\left[t_{1}, t_{2}, t_{3}, \ldots\right]\right] \tag{3}\\
& \sigma\left(\hat{r}\left(\Lambda_{n}\right)\right)=\frac{\partial}{\partial t_{n}}, \quad \sigma\left(\hat{r}\left(\Lambda_{-n}\right)\right)=n t_{n}, \quad n>0 \tag{4}
\end{align*}
$$

known as the boson-fermion correspondence (B is called a bosonic Fock space).
Sato's Grassmannian $G r[12,7,13]$ consists of all subspaces $W \subset \mathbb{V}$ which have an admissible basis

$$
w_{k}=z^{k}+\sum_{i<k} w_{i k} z^{i}, \quad k=0,1,2, \ldots
$$

To a plane $W \in G r$ we associate a state $|W\rangle \in F$ as follows

$$
|W\rangle=w_{0} \wedge w_{1} \wedge w_{2} \wedge \ldots
$$

A change of the admissible basis results in a multiplication of $|W\rangle$ by a non-zero constant. Thus we define an embedding of $G r$ into the projectivization of F which is called a Plücker embedding. One of the main objects of Sato's theory is the tau-function of W defined as the image of $|W\rangle$ under the boson-fermion correspondence (3):

$$
\begin{equation*}
\tau_{W}(t)=\sigma(|W\rangle)=\langle 0| e^{H(t)}|W\rangle \tag{5}
\end{equation*}
$$

where $H(t)=-\sum_{k=0}^{\infty} t_{k} \hat{r}\left(\Lambda_{k}\right)$. Another important function connected to W is the Baker or wave function

$$
\begin{equation*}
\Psi_{W}(t, z)=e^{\sum_{k=1}^{\infty} t_{k} z^{k}} \frac{\tau\left(t-\left[z^{-1}\right]\right)}{\tau(t)} \tag{6}
\end{equation*}
$$

where $\left[z^{-1}\right]$ is the vector $\left(z^{-1}, z^{-2} / 2, \ldots\right)$. We often use the notation $\Psi_{W}(x, z)=$ $\left.\Psi_{W}(t, z)\right|_{t_{1}=x, t_{2}=t_{3}=\cdots=0}$.

The Baker function $\Psi_{W}(x, z)$ contains the whole information about W and hence about τ_{W}, as the vectors $w_{k}=\left.\partial_{x}^{k} \Psi_{W}(x, z)\right|_{x=0}$ form an admissible basis of W. We can expand $\Psi_{W}(t, z)$ in a formal series as

$$
\begin{equation*}
\Psi_{W}(t, z)=e^{\sum_{k=1}^{\infty} t_{k} z^{k}}\left(1+\sum_{k>0} a_{k}(t) z^{-k}\right) \tag{7}
\end{equation*}
$$

Introduce also the pseudo-differential operators $K_{W}\left(t, \partial_{x}\right)=1+\sum_{j>0} a_{j}(t) \partial_{x}^{-j}$ such that $\Psi_{W}(t, z)=K_{W}\left(t, \partial_{x}\right) e^{\sum_{k=1}^{\infty} t_{k} z^{k}}$ (the wave operator) and $P=K_{W} \partial_{x} K_{W}^{-1}$. Then P satisfies the following infinite system of non-linear differential equations

$$
\begin{equation*}
\frac{\partial}{\partial t_{k}} P=\left[P_{+}^{k}, P\right] \tag{8}
\end{equation*}
$$

called the KP hierarchy and $\Psi_{W}(x, z)$ is an eigenfunction of $P\left(x, \partial_{x}\right)$:

$$
\begin{equation*}
P \Psi_{W}(x, z)=z \Psi_{W}(x, z) \tag{9}
\end{equation*}
$$

A very important object connected to the plane W is the algebra A_{W} of polynomials $f(z)$ that leave W invariant:

$$
\begin{equation*}
A_{W}=\{f(z) \mid f(z) W \subset W\} \tag{10}
\end{equation*}
$$

For each $f(z) \in A_{W}$ one can show that there exists a unique differential operator $L_{f}\left(x, \partial_{x}\right)$, the order of L_{f} being equal to the degree of f, such that

$$
\begin{equation*}
L_{f} \Psi_{W}(x, z)=f(z) \Psi_{W}(x, z) \tag{11}
\end{equation*}
$$

Explicitly we have

$$
\begin{equation*}
L_{f}=K_{W} f\left(\partial_{x}\right) K_{W}^{-1} \tag{12}
\end{equation*}
$$

We denote the commutative algebra of these operators by \mathcal{A}_{W}, i.e.

$$
\begin{equation*}
\mathcal{A}_{W}=\left\{L_{f} \mid L_{f} \Psi_{W}=f \Psi_{W}, f \in A_{W}\right\} \tag{13}
\end{equation*}
$$

Obviously A_{W} and \mathcal{A}_{W} are isomorphic. We call \mathcal{A}_{W} spectral algebra corresponding to the plane W. Following I. Krichever [11] we introduce the rank of \mathcal{A}_{W} to be the dimension of the space of joint eigenfunctions of the operators from \mathcal{A}_{W}. It coincides with the greatest common divisor of the orders of the operators L_{f}.

We also use the notation $G r^{(N)}:=\left\{W \in G r \mid z^{N} \in A_{W}\right\}$. It coincides with the subgrassmannian of solutions of the so-called N-th reduction of the KP hierarchy.
2. Definitions. In this section we introduce our basic definition of BäcklundDarboux transformation in the Sato's Grassmannian.

The classical Darboux transformation is defined on ordinary differential operators in the variable x, presented in a factorized form $L=Q P$; it exchanges the places of the factors, i.e. the image of L is the operator $\bar{L}=P Q$. The next classical lemma answers the question when the factorization $L=Q P$ is possible (see e.g. [9]).

Lemma 1. L can be factorized as

$$
\begin{equation*}
L=Q P \quad \text { iff } \quad \operatorname{Ker} P \subset \operatorname{Ker} L \tag{14}
\end{equation*}
$$

In this case

$$
\begin{equation*}
\operatorname{Ker} Q=P(\operatorname{Ker} L) \tag{15}
\end{equation*}
$$

A slightly more general construction is the following one. For operators L and P such that the kernel of P is invariant under L, i.e.

$$
\begin{equation*}
L(\operatorname{Ker} P) \subset \operatorname{Ker} P \tag{16}
\end{equation*}
$$

we consider the transformation

$$
\begin{equation*}
L \mapsto \bar{L}=P L P^{-1} \tag{17}
\end{equation*}
$$

The fact that \bar{L} is a differential operator follows from Lemma 1. Indeed, $L(\operatorname{Ker} P) \subset$ $\operatorname{Ker} P$ is equivalent to $\operatorname{Ker} P \subset \operatorname{Ker}(P L)$. If h is the characteristic polynomial of the linear operator $\left.L\right|_{\operatorname{Ker} P}$ then $h\left(\left.L\right|_{\operatorname{Ker} P}\right)=0$, i.e.
$\operatorname{Ker} P \subset \operatorname{Kerh}(L)$.

This shows that

$$
h(L)=Q P, \quad h(\bar{L})=P Q
$$

for some operator Q.
Now we come to our basic definition.
Definition 1. We say that a plane W (or the corresponding wave function $\Psi_{W}(x, z)$) is a Bäcklund-Darboux transformation of the plane V (respectively wave function $\left.\Psi_{V}(x, z)\right)$ iff there exist (monic) polynomials $f(z), g(z)$ and differential operators $P\left(x, \partial_{x}\right), Q\left(x, \partial_{x}\right)$ such that

$$
\begin{align*}
& \Psi_{W}(x, z)=\frac{1}{g(z)} P\left(x, \partial_{x}\right) \Psi_{V}(x, z) \tag{18}\\
& \Psi_{V}(x, z)=\frac{1}{f(z)} Q\left(x, \partial_{x}\right) \Psi_{W}(x, z) \tag{19}
\end{align*}
$$

Here necessarily $\operatorname{ord} P=\operatorname{deg} g$ and $\operatorname{ord} Q=\operatorname{deg} f$. The polynomial $g(z)$ can be chosen arbitrary but of the same degree because the wave function $\Psi_{W}(x, z)$ is determined up to a multiplication by a formal series of the form $1+\sum_{k=1}^{\infty} a_{k} z^{-k}$.

Note that a composition of two Bäcklund-Darboux transformations is again a Bäcklund-Darboux transformation. For example the bispectral potentials of [8] can be obtained by one Bäcklund-Darboux transformation in contrast to the finite number of "rational" Darboux transformations of Duistermaat and Grünbaum.

Simple consequences of Definition 1 are the identities

$$
\begin{align*}
P Q \Psi_{W}(x, z) & =f(z) g(z) \Psi_{W}(x, z) \tag{20}\\
Q P \Psi_{V}(x, z) & =f(z) g(z) \Psi_{V}(x, z) \tag{21}
\end{align*}
$$

i.e. the operator $\bar{L}=P Q \in \mathcal{A}_{W}$ is a Darboux transformation of $L=Q P \in \mathcal{A}_{V}$. Obviously (18) implies the inclusion

$$
\begin{equation*}
g W \subset V \tag{22}
\end{equation*}
$$

Conversely, if (22) holds there exists P satisfying (18). Therefore a definition equivalent to Definition 1 is the following one.

Definition 2. A plane W is a Bäcklund-Darboux transformation of a plane V iff

$$
\begin{equation*}
f V \subset W \subset \frac{1}{g} V \tag{23}
\end{equation*}
$$

for some polynomials $f(z), g(z)$.
3. Bäcklund-Darboux transformations on the spectral algebras. In this section we study the behavior of the spectral algebra under Bäcklund-Darboux transformations. The following simple lemma will be useful.

Lemma 2. In the notation of (23) and (10)

$$
\begin{equation*}
f g A_{V} \subset A_{W} \subset \frac{1}{f g} A_{V} \tag{24}
\end{equation*}
$$

The proof is obvious from (23).
Proposition 1. The Bäckund-Darboux transformations preserve the rank of the spectral algebras, i.e. if W is a Bäckund-Darboux transformation of V then $\operatorname{rank} \mathcal{A}_{W}=\operatorname{rank} \mathcal{A}_{V}$.

Proof. Let $\operatorname{rank} A_{V}=N$. Then Lemma 2 implies that $f g \in A_{V}$ and therefore $\operatorname{deg} f g=N j, j \in \mathbb{N}$. The right inclusion in (24) gives $N \mid \operatorname{rank} A_{W}$. Because $\operatorname{rank} A_{V}=$ N, A_{V} contains polynomials of degrees $k a+l b$, for $k, l \in \mathbb{Z}_{\geq 0}$ with $(a, b)=N$. The left inclusion in (24) implies that A_{W} contains polynomials of degrees $k a+l b+N j$, for $k, l \in \mathbb{Z}_{\geq 0}$, i.e. $\operatorname{rank} A_{W} \mid N$ and therefore $\operatorname{rank} A_{W}=N$.

The most important case of algebras \mathcal{A}_{V} of $\operatorname{rank} N$ is

$$
\begin{equation*}
A_{V}=\mathbb{C}\left[z^{N}\right], \quad \mathcal{A}_{V}=\mathbb{C}\left[L_{V}\right] \tag{25}
\end{equation*}
$$

for some natural number N and a differential operator L_{V} of order N (see [3]). This corresponds to the case when the spectral curve $\operatorname{Spec} \mathcal{A}_{V}$ of V is \mathbb{C}. We shall describe \mathcal{A}_{W} for a Bäcklund-Darboux transformation W of V for which (25) holds. First observe that due to (21) we have

$$
\begin{align*}
& f(z) g(z)=h\left(z^{N}\right) \tag{26}\\
& Q P=h\left(L_{V}\right) \tag{27}
\end{align*}
$$

for some polynomial h.
Proposition 2. If $\mathcal{A}_{V}=\mathbb{C}\left[L_{V}\right]$, $\operatorname{ord} L_{V}=N$ then

$$
\begin{align*}
& A_{W}=\left\{u \in \mathbb{C}\left[z^{N}\right] \mid u\left(L_{V}\right) \operatorname{Ker} P \subset \operatorname{Ker} P\right\} \tag{28}\\
& \mathcal{A}_{W}=\left\{P u\left(L_{V}\right) P^{-1} \mid u \in A_{W}\right\} \tag{29}
\end{align*}
$$

Proof. Since $A_{W} \subset \mathbb{C}[z]$ the right inclusion of (24) with $A_{V}=\mathbb{C}\left[z^{N}\right]$ and $f(z) g(z)=h\left(z^{N}\right)$ implies $A_{W} \subset \mathbb{C}\left[z^{N}\right]$. Let $u\left(z^{N}\right) \in A_{W}$ and L be the corresponding operator from \mathcal{A}_{W} (see (12)), such that

$$
L \Psi_{W}(x, z)=u\left(z^{N}\right) \Psi_{W}(x, z)
$$

Using (18) we compute

$$
L \Psi_{W}(x, z)=L \frac{1}{g(z)} P \Psi_{V}(x, z)=\frac{1}{g(z)} L P \Psi_{V}(x, z)
$$

and

$$
\begin{aligned}
& u\left(z^{N}\right) \Psi_{W}(x, z)=u\left(z^{N}\right) \frac{1}{g(z)} P \Psi_{V}(x, z) \\
& =\frac{1}{g(z)} P u\left(z^{N}\right) \Psi_{V}(x, z)=\frac{1}{g(z)} P u\left(L_{V}\right) \Psi_{V}(x, z) .
\end{aligned}
$$

Therefore

$$
L P=P u\left(L_{V}\right)
$$

The operator $L=P u\left(L_{V}\right) P^{-1}$ is differential iff $u\left(L_{V}\right) \operatorname{Ker} P \subset \operatorname{Ker} P$ and obviously it belongs to \mathcal{A}_{W}.

Thus the determination of A_{W} is reduced to the following finite-dimensional problem:

For the linear operator $\left.L_{V}\right|_{\operatorname{Ker} h\left(L_{V}\right)}$ find all polynomials $u\left(z^{N}\right)$ such that the subspace $\operatorname{Ker} P$ of $\operatorname{Kerh}\left(L_{V}\right)$ is invariant under the operator $u\left(L_{V}\right)$.
4. Bäcklund-Darboux transformations on tau-functions. In this section we shall describe the tau-function of the Bäcklund-Darboux transformation W of V in terms of the tau-function of V and $\operatorname{Ker} P$.

Let $V \in G r^{(N)}$, i.e. $z^{N} V \subset V$ and $L_{V} \Psi_{V}(x, z)=z^{N} \Psi_{V}(x, z)$ for some operator L_{V} of order N. (We do not suppose that $A_{V}=\mathbb{C}\left[z^{N}\right]$ but only that $\mathbb{C}\left[z^{N}\right] \subset A_{V}$.) Let W be a Bäcklund-Darboux transformation of V such that $(18,19,26,27)$ hold. Let us fix a basis $\left\{\Phi_{i}(x)\right\}_{0 \leq i \leq d N-1}$ of $\operatorname{Kerh}\left(L_{V}\right)$ (where $d=\operatorname{deg} h$). The kernel of P is a subspace of $\operatorname{Ker} h\left(L_{V}\right)$. We fix a basis of $\operatorname{Ker} P$

$$
\begin{equation*}
f_{k}(x)=\sum_{i=0}^{d N-1} a_{k i} \Phi_{i}(x), \quad 0 \leq k \leq n-1 \tag{30}
\end{equation*}
$$

We can suppose that P and g are monic. Eq. (18) implies (see e.g. [9])

$$
\begin{equation*}
\Psi_{W}(x, z)=\frac{W r\left(f_{0}(x), \ldots, f_{n-1}(x), \Psi_{V}(x, z)\right)}{g(z) W r\left(f_{0}(x), \ldots, f_{n-1}(x)\right)} \tag{31}
\end{equation*}
$$

where $W r$ denotes the Wronski determinant. When we express $f_{k}(x)$ by (30) we obtain

$$
\begin{equation*}
\Psi_{W}(x, z)=\frac{\sum \operatorname{det} A^{I} W r\left(\Phi_{I}(x)\right) \Psi_{I}(x, z)}{\sum \operatorname{det} A^{I} W r\left(\Phi_{I}(x)\right)} \tag{32}
\end{equation*}
$$

The sum is taken over all n-element subsets

$$
I=\left\{i_{0}<i_{1}<\ldots<i_{n-1}\right\} \subset\{0,1, \ldots, d N-1\}
$$

and here and further we use the following notation:

$$
A=\left(a_{k i}\right)_{0 \leq k \leq n-1,0 \leq i \leq d N-1}
$$

is the matrix from (30) and

$$
A^{I}=\left(a_{k, i_{l}}\right)_{0 \leq k \leq n-1,0 \leq l \leq n-1}
$$

is the corresponding minor of A,

$$
\Phi_{I}(x)=\left\{\Phi_{i_{0}}(x), \ldots, \Phi_{i_{n-1}}(x)\right\}
$$

is the corresponding subset of the basis $\left\{\Phi_{i}(x)\right\}$ of $\operatorname{Kerh}\left(L_{V}\right)$ and

$$
\begin{equation*}
\Psi_{I}(x, z)=\frac{W r\left(\Phi_{I}(x), \Psi_{V}(x, z)\right)}{g(z) W r\left(\Phi_{I}(x)\right)} \tag{33}
\end{equation*}
$$

is the Bäcklund-Darboux transformation of V with a basis of $\operatorname{Ker} P f_{k}(x)=\Phi_{i_{k}}(x)$.
So if we know how V transforms when the basis $\left\{f_{k}(x)\right\}$ of $\operatorname{Ker} P$ is a subset of the basis $\left\{\Phi_{i}(x)\right\}$ of $\operatorname{Kerh}\left(L_{V}\right)$, the formula (32) gives us $\Psi_{W}(x, z)$ for an arbitrary Bäcklund-Darboux transformation W.

We shall obtain a similar formula for the tau-functions as well.
Let $\tau_{V}(0)$ and $\tau_{W}(0)$ be nonzero and let us normalize them to be equal to 1 (recall that the tau-function is defined up to a multiplication by a constant). We set

$$
\Delta_{I}=\left.W r\left(\Phi_{I}(x)\right)\right|_{x=0}
$$

Denote by τ_{I} the tau-function corresponding to the wave function (33), also normalized by $\tau_{I}(0)=1$. Then we have the following theorem.

Theorem 1. In the above notation

$$
\begin{equation*}
\tau_{W}(t)=\frac{\sum \operatorname{det} A^{I} \Delta_{I} \tau_{I}(t)}{\sum \operatorname{det} A^{I} \Delta_{I}} \tag{34}
\end{equation*}
$$

For the proof we have to introduce some more terminology. These are the so-called conditions C (cf. [15]). They are conditions (or equations) that should be imposed on a vector $v \in V$ in order to belong to $g W$ (recall (22)).

Let us fix an admissible basis $\left\{v_{k}\right\}_{k \geq 0}$ of V and set

$$
V_{(n)}=\bigoplus_{k=0}^{n-1} \mathbb{C} v_{k}
$$

(this is independent of the choice of the basis). We define a linear map

$$
C: V \rightarrow V_{(n)}
$$

by defining it on the wave function of V

$$
\begin{equation*}
C \Psi_{V}(x, z)=\sum_{k=0}^{n-1} f_{k}(x) v_{k} \tag{35}
\end{equation*}
$$

where $\left\{f_{k}(x)\right\}$ is the basis of $\operatorname{Ker} P$. The point is that C acts on the variable z. If we choose $v_{k}=\left.\partial_{x}^{k} \Psi_{V}(x, z)\right|_{x=0}$ then

$$
C v_{p}=\left.C \partial_{x}^{p} \Psi_{V}(x, z)\right|_{x=0}=\left.\partial_{x}^{p} C \Psi_{V}(x, z)\right|_{x=0}=\sum_{k=0}^{n-1} f_{k}^{(p)}(0) v_{k}
$$

Let V_{C} be the kernel of C, i.e.

$$
V_{C}=\{v \in V \mid C v=0\}
$$

Then the description of $g W$ is straightforward (cf. [15]).
Lemma 3. $W=\frac{1}{g} V_{C}$.
Proof. First we show that $g W \subset V_{C}$. Indeed,

$$
\begin{gathered}
C\left(g(z) \Psi_{W}(x, z)\right)=C\left(P\left(x, \partial_{x}\right) \Psi_{V}(x, z)\right)=P\left(x, \partial_{x}\right) C \Psi_{V}(x, z) \\
=P\left(x, \partial_{x}\right) \sum_{k=0}^{n-1} f_{k}(x) v_{k}=0, \quad \text { because } f_{k} \in \operatorname{Ker} P
\end{gathered}
$$

On the other hand the vectors $\left.g(z) \partial_{x}^{j} \Psi_{W}(x, z)\right|_{x=0}$ can be expressed in the form

$$
v_{j+n}+\sum_{k<j+n} d_{j k} v_{k}, \quad j \geq 0
$$

i.e. the plane $g W$ maps one to one on the plane $\bigoplus_{j \geq n} \mathbb{C} v_{j}$. But the same is true for the plane V_{C} as $\operatorname{Im} C=V_{(n)}$ (because $\left.\operatorname{det}\left(\left.C\right|_{V_{(n)}}\right)=\left.W r\left(f_{k}(x)\right)\right|_{x=0} \neq 0\right)$.

Corollary 1. W has an admissible basis

$$
\begin{equation*}
w_{j}=\frac{1}{g(z)}\left(1-C_{(n)}^{-1} C\right) v_{j+n}, \quad j \geq 0 \tag{36}
\end{equation*}
$$

where $C_{(n)}=\left.C\right|_{V_{(n)}}$.
Proof. $C\left(1-C_{(n)}^{-1} C\right)=C-C_{(n)} C_{(n)}^{-1} C=0$ since $\operatorname{Im} C=V_{(n)}$.
V_{C} can also be interpreted as the intersection of the kernels of certain linear functionals on $V\left(\operatorname{pr}_{k} \circ C: V \rightarrow \mathbb{C} v_{k} \equiv \mathbb{C}\right)$ which form an n-dimensional linear space. We denote it by abuse of notation again by C.

Lemma 4. Any condition $c \in C$ gives rise to a function

$$
\begin{equation*}
f(x)=\left\langle c, \Psi_{V}(x, z)\right\rangle \tag{37}
\end{equation*}
$$

from $\operatorname{Ker} P$, and vice versa.
The proof follows immediately from the definition (35).
We define linear functionals χ_{i} and c_{k} on V by

$$
\begin{align*}
& \left\langle\chi_{i}, \Psi_{V}(x, z)\right\rangle=\Phi_{i}(x), \quad 0 \leq i \leq d N-1 \tag{38}\\
& \left\langle c_{k}, \Psi_{V}(x, z)\right\rangle=f_{k}(x), \quad 0 \leq k \leq n-1 \tag{39}
\end{align*}
$$

i.e. $c_{k}=\sum_{i=0}^{d N-1} a_{k i} \chi_{i}$.

We can now give the proof of Theorem 1. The basis (36) of W can be written as

$$
w_{j}=\frac{1}{g(z)}\left(v_{j+n}-\sum_{0 \leq k \leq n-1,0 \leq i \leq d N-1}\left(C_{(n)}^{-1} A\right)_{k i}\left\langle\chi_{i}, v_{j+n}\right\rangle v_{k}\right), \quad j \geq 0
$$

We use the formula (5)

$$
\tau_{W}(t)=\sigma\left(w_{0} \wedge w_{1} \wedge w_{2} \wedge \ldots\right)
$$

and expand all w_{j} :

$$
\begin{aligned}
\tau_{W}(t)= & \sum_{r=-1}^{n-1} \sum_{\substack{0 \leq k_{s} \leq n-1,0 \leq i_{s} \leq d N-1 \\
\text { for } 0 \leq s \leq r}}\left(C_{(n)}^{-1} A\right)_{k_{0} i_{0}} \ldots\left(C_{(n)}^{-1} A\right)_{k_{r} i_{r}} \cdot(-1)^{r+1} \\
\times & \sum_{n \leq j_{0}<\ldots<j_{r}} \sigma\left(\frac{1}{g} v_{n} \wedge \frac{1}{g} v_{n+1} \wedge \ldots \wedge \frac{1}{g}\left\langle\chi_{i_{0}}, v_{j_{0}}\right\rangle v_{k_{0}} \wedge \ldots \wedge \frac{1}{g}\left\langle\chi_{i_{r}}, v_{j_{r}}\right\rangle v_{k_{r}} \wedge \ldots\right)
\end{aligned}
$$

(the term $\frac{1}{g}\left\langle\chi_{i_{s}}, v_{j_{s}}\right\rangle v_{k_{s}}$ is on the $\left(j_{s}-n+1\right)$-st place in the wedge product). Let $\left(k_{0}, \ldots, k_{n-1}\right)$ be a permutation of $\{0,1, \ldots, n-1\}$. Noting that

$$
\sum_{0 \leq i \leq d N-1}\left(C_{(n)}^{-1} A\right)_{k i}\left\langle\chi_{i}, v_{j}\right\rangle=\delta_{k j} \quad \text { for } 0 \leq k, j \leq n-1
$$

we can insert

$$
\begin{aligned}
& \sum_{\substack{0 \leq k_{s} \leq n-1,0 \leq i_{s} \leq d N-1 \\
\text { for } r+1 \leq s \leq n-1}}\left(C_{(n)}^{-1} A\right)_{k_{r+1} i_{r+1}} \cdots\left(C_{(n)}^{-1} A\right)_{k_{n-1} i_{n-1}} \\
& \times \sum_{\substack{0 \leq j_{r+1}<\ldots<j_{n-1} \leq n-1}}\left\langle\chi_{i_{r+1}}, v_{j_{r+1}}\right\rangle \cdots\left\langle\chi_{i_{n-1}}, v_{j_{n-1}}\right\rangle
\end{aligned}
$$

in the above expression for $\tau_{W}(t)$. Then

$$
\begin{aligned}
& \tau_{W}(t)=\sum_{\left(k_{0}, \ldots, k_{n-1}\right)} \sum_{0 \leq i_{0}, \ldots, i_{n-1} \leq d N-1}\left(C_{(n)}^{-1} A\right)_{k_{0} i_{0}} \ldots\left(C_{(n)}^{-1} A\right)_{k_{n-1} i_{n-1}} \\
& \times \sigma\left(R\left(\frac{1}{g}\right) r\left(\chi_{i_{0}}\right) \cdots r\left(\chi_{i_{n-1}}\right)\left(v_{k_{0}} \wedge \ldots \wedge v_{k_{n-1}} \wedge v_{n} \wedge v_{n+1} \wedge \ldots\right)\right),
\end{aligned}
$$

where the operator $R\left(\frac{1}{g}\right)$ acts as a group element

$$
R\left(\frac{1}{g}\right)\left(u_{0} \wedge u_{1} \wedge \ldots\right)=\frac{1}{g} u_{0} \wedge \frac{1}{g} u_{1} \wedge \ldots
$$

and $r\left(\chi_{i}\right)$ is a contracting operator:

$$
r\left(\chi_{i}\right)\left(u_{0} \wedge u_{1} \wedge \ldots\right)=\sum_{j \geq 0}(-1)^{j}\left\langle\chi_{i}, u_{j}\right\rangle u_{0} \wedge u_{1} \wedge \ldots \wedge \widehat{u}_{j} \wedge \ldots
$$

(the hat on u_{j} means as usually that it is omitted).
By the antisymmetry we obtain

$$
\begin{equation*}
\tau_{W}(t)=\sum \operatorname{det}\left(C_{(n)}^{-1} A\right)^{I} R\left(\frac{1}{g}\right) r\left(\chi_{I}\right) \tau_{V}(t) \tag{40}
\end{equation*}
$$

where the sum is over the subsets

$$
I=\left\{i_{0}<\ldots<i_{n-1}\right\} \subset\{0,1, \ldots, d N-1\}
$$

and

$$
r\left(\chi_{I}\right)=r\left(\chi_{i_{0}}\right) \cdots r\left(\chi_{i_{n-1}}\right)
$$

For the special Bäcklund-Darboux transformation $\tau_{I}(t)$ with $f_{k}(x)=\Phi_{i_{k}}(x)$ we have

$$
c_{k}=\chi_{i_{k}}, \quad A=\left(\delta_{i i_{k}}\right)_{\substack{0 \leq k \leq n-1 \\ 0 \leq i \leq d N-1}}, \quad \operatorname{det} C_{(n)}=\left.W r\left(\Phi_{I}(x)\right)\right|_{x=0}=\Delta_{I}
$$

Now (40) implies

$$
\tau_{I}(t)=\frac{1}{\Delta_{I}} R\left(\frac{1}{g}\right) r\left(\chi_{I}\right) \tau_{V}(t)
$$

Noting that

$$
\left(C_{(n)}^{-1} A\right)^{I}=C_{(n)}^{-1} A^{I}
$$

and

$$
\operatorname{det} C_{(n)}=\left.W r\left(f_{k}(x)\right)\right|_{x=0}=\sum \operatorname{det} A^{I} \Delta_{I}
$$

completes the proof of Theorem 1.
Suppose that linear functionals χ_{i} can be defined on all z^{k}, e.g. χ_{i} are of the form:

$$
\begin{equation*}
\chi_{i}=\left.\sum_{j \geq 0} \alpha_{i j} \partial_{z}^{j}\right|_{z=\lambda_{i}} \tag{41}
\end{equation*}
$$

for $\lambda_{i} \neq 0$ (cf. [15]). We recall that (see e.g. [9])

$$
\operatorname{Ker} \prod_{i=1}^{r}\left(L_{V}-\lambda_{i}^{N}\right)^{d_{i}}=\operatorname{span}\left\{\left.\partial_{z}^{k_{i}} \Psi_{V}(x, z)\right|_{z=\varepsilon^{j} \lambda_{i}}\right\}_{0 \leq j \leq N-1,1 \leq i \leq r, 0 \leq k_{i} \leq d_{i}-1},
$$

with $\varepsilon=e^{2 \pi i / N}$, when $\Psi_{V}(x, z)$ is well defined for $z=\varepsilon^{j} \lambda_{i}$ (cf. eq. (7)). Then we can put

$$
\begin{equation*}
f_{k}(t)=\left\langle c_{k}, \Psi_{V}(t, z)\right\rangle, \quad 0 \leq k \leq n-1 \tag{42}
\end{equation*}
$$

- $f_{k}(t)$ can be thought as obtained from $f_{k}(x)$ by applying the KP flows. In this case τ_{W} is given by the following theorem.

Theorem 2. If $f_{k}(t)$ are as above and $g(z)=z^{n}$, then

$$
\begin{equation*}
\tau_{W}(t)=\frac{W r\left(f_{k}(t)\right)}{W r\left(f_{k}(0)\right)} \tau_{V}(t) \tag{43}
\end{equation*}
$$

Proof. Proof uses the differential Fay identity [1] (see also [14]):

$$
\begin{gathered}
W r\left(\Psi_{V}\left(t, z_{0}\right), \ldots, \Psi_{V}\left(t, z_{n}\right)\right) \tau_{V}(t) \\
=\prod_{0 \leq j<i \leq n}\left(z_{i}-z_{j}\right) \cdot \exp \left(\sum_{k=0}^{\infty} \sum_{i=0}^{n} t_{k} z_{i}^{k}\right) \tau_{V}\left(t-\sum_{i=0}^{n}\left[z_{i}^{-1}\right]\right),
\end{gathered}
$$

where $\left[z^{-1}\right]=\left(z^{-1}, z^{-2} / 2, z^{-3} / 3, \ldots\right)$. After introducing the vertex operator

$$
X(t, z)=\exp \left(\sum_{k=1}^{\infty} t_{k} z^{k}\right) \exp \left(-\sum_{k=1}^{\infty} \frac{1}{k z^{k}} \frac{\partial}{\partial t_{k}}\right)
$$

the RHS can be written in the form

$$
\begin{aligned}
& z_{0}^{0} z_{1}^{1} \cdots z_{n}^{n} X\left(t, z_{n}\right) X\left(t, z_{n-1}\right) \cdots X\left(t, z_{0}\right) \tau_{V}(t) \\
= & z_{n}^{n} X\left(t, z_{n}\right)\left(W r\left(\Psi_{V}\left(t, z_{0}\right), \ldots, \Psi_{V}\left(t, z_{n-1}\right)\right) \tau_{V}(t)\right) .
\end{aligned}
$$

We apply the condition c_{0} to the variable z_{0}, c_{1} to z_{1}, \ldots, c_{n-1} to z_{n-1}, and set $z_{n}=z$. We obtain

$$
\begin{aligned}
& W r\left(f_{0}(t), \ldots, f_{n-1}(t), \Psi_{V}(t, z)\right) \tau_{V}(t) \\
= & z^{n} X(t, z)\left(W r\left(f_{0}(t), \ldots, f_{n-1}(t)\right) \tau_{V}(t)\right) .
\end{aligned}
$$

But (31) with $g(z)=z^{n}$ imply

$$
\Psi_{W}(t, z)=\frac{W r\left(f_{0}(t), \ldots, f_{n-1}(t), \Psi_{V}(t, z)\right)}{z^{n} W r\left(f_{0}(t), \ldots, f_{n-1}(t)\right)}
$$

(KP flows applied to (31)). Because the tau-function is determined from (6) up to a multiplication by a constant, (43) follows (when $\tau_{V}(0)=\tau_{W}(0)=1$).

Example 1. Let us consider the simplest plane in the Sato's Grassmannian $V=H_{+}=\operatorname{span}\left\{z^{i} \mid i=0,1, \ldots\right\}$. Then

$$
\psi_{V}(t, z)=\exp \sum t_{k} z^{k}, \quad L_{V}=\partial_{x}, \quad \tau_{V}(t)=1
$$

Every linear functional on H_{+}is a linear combination of conditions of the type

$$
e(k, \lambda)=\left.\partial_{z}^{k}\right|_{z=\lambda}
$$

and $h\left(L_{(0)}\right)=h\left(\partial_{x}\right)$ is an operator with constant coefficients. The set of rational solutions of the KP hierarchy [11, 13] coincides with the set of Bäcklund-Darboux transformations of H_{+}. The formula (43) with $\tau_{V}=1$ is called a "superposition law for wobbly solitons" (cf. [15], eq. (5.7)). The so called polynomial solutions of KP [7, 13] correspond to the case $h(z)=z^{d}$, i.e. all conditions are supported at 0 .

Without any constraints on conditions C, there is a weaker version of Theorem 2.

Proposition 3. For $g(z)=z^{n}$

$$
\tau_{W}(x)=\frac{W r\left(f_{k}(x)\right)}{W r\left(f_{k}(0)\right)} \tau_{V}(x)
$$

where $\tau_{W}(x)=\tau_{W}(x, 0,0, \ldots)$.
Proof. Formula (6) implies

$$
\begin{equation*}
\Psi_{W}(x, z)=e^{x z}\left(1-\partial_{x} \log \tau_{W}(x) z^{-1}+\cdots\right) \tag{44}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
& z^{-n}\left(\partial_{x}^{n}+p_{1}(x) \partial_{x}^{n-1}+\cdots+p_{0}(x)\right) \Psi_{V}(x, z) \\
& =e^{x z}\left(1-\partial_{x} \log \tau_{V}(x) z^{-1}+p_{1}(x) z^{-1}+\cdots\right)
\end{aligned}
$$

Comparing the coefficients at z^{-1} and noting that

$$
p_{1}(x)=-\partial_{x} \log W r\left(f_{k}(x)\right)
$$

completes the proof.

REFERENCES

[1] M. Adler, P. van Moerbeke. Birkhoff strata, Bäcklund transformations, and regularization of isospectral operators. Adv. Math. 108 (1994), 140-204.
[2] B. Bakalov, E. Horozov, M. Yakimov. Tau-functions as highest weight vectors for $W_{1+\infty}$ algebra. hep-th/9510211. J. Phys. A: Math. \& Gen. 29 (1996), 5565-5573.
[3] B. Bakalov, E. Horozov, M. Yakimov. Bispectral algebras of commuting ordinary differential operators. Preprint (1996), q-alg/9602011.
[4] B. Bakalov, E. Horozov, M. Yakimov. Highest weight modules over $W_{1+\infty}$ algebra and the bispectral problem. Preprint (1996), q-alg/9602012.
[5] J. L. Burchnall, T. W. Chaundy. Commutative ordinary differential operators. Proc. Lond. Math. Soc. 21(1923), 420-440; Proc. Royal Soc. London (A) 118 (1928), 557-583; Proc. Royal Soc. London (A) 134 (1932), 471-485.
[6] G. Darboux. Leçons sur la théorie générale des surfaces, 2ème partie. Paris: Gauthiers-Villars, 1889.
[7] E. Date, M. Jimbo, M. Kashiwara, T. Miwa. Transformation groups for soliton equations. In: Proc. RIMS Symp. Nonlinear integrable systems - Classical and Quantum theory, (Kyoto 1981), M. Jimbo, T. Miwa (eds.), Singapore: World Scientific, 1983, 39-111.
[8] J. J. Duistermatat, F. A. Grünbaum. Differential equations in the spectral parameter. Commun. Math. Phys. 103 (1986), 177-240.
[9] E. L. Ince. Ordinary Differential Equations. New York, Dover, 1944.
[10] V. G. Kac, A. Raina. Bombay lectures on highest weight representations of infinite dimensional Lie algebras. Adv. Ser. Math. Phys No 2, Singapore: World Scientific, 1987.
[11] I. Krichever. Commutative rings of linear ordinary differential operators. Funct. Anal. Appl. 12 (3) (1978), 20-31.
[12] M. Sato. Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. RIMS Kokyuroku 439 (1981), 30-40.
[13] G. Segal, G. Wilson. Loop groups and equations of KdV type. Publ. Math. IHES 61 (1985), 5-65.
[14] P. van Moerbeke. Integrable foundations of string theory. CIMPA-Summer school at Sophia-Antipolis (1991), In: Lectures on integrable systems, O. Babelon et al. (eds.), Singapore: World Scientific, 1994, 163-267.
[15] G. Wilson. Bispectral commutative ordinary differential operators. J. Reine Angew. Math. 442 (1993), 177-204.
B. Bakalov
e-mail: bbakalov@fmi.uni-sofia.bg
Department of Mathematics and Informatics
Sofia University
5, J. Bourchier Blvd.
1126 Sofia, Bulgaria
present address:
Department of Mathematics
MIT, Cambridge
MA 02139
USA
e-mail: bakalov@math.mit.edu
E. Horozov
e-mail: horozov@fmi.uni-sofia.bg
Department of Mathematics and Informatics
Sofia University
5, J. Bourchier Blvd.
1126 Sofia, Bulgaria

