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Abstract. In this paper we prove that the Newton method applied to the
generalized equation y ∈ f(x) + F (x) with a C1 function f and a set-valued map
F acting in Banach spaces, is locally convergent uniformly in the parameter y if
and only if the map (f +F )−1 is Aubin continuous at the reference point. We also
show that the Aubin continuity actually implies uniform Q-quadratic convergence
provided that the derivative of f is Lipschitz continuous. As an application, we give
a characterization of the uniform local Q-quadratic convergence of the sequential
quadratic programming method applied to a perturbed nonlinear program.

This paper is about the Newton method for solving equations involving set-

valued maps and parameters. Such “equations”, commonly known as generalized equa-

tions, are of the form:

Find x ∈ X such that y ∈ f(x) + F (x),(1)

where y is a parameter, f is a function and F is a map, possibly set-valued. Throughout

X and Y are Banach spaces, y ∈ Y , f : X 7→ Y is C1 on X and F : X 7→ 2Y has

closed graph. The generalized equation (1) is an abstract model for various problems
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including equations (F = 0), inequalities (F is the positive ortant in R
m) and variational

inequalities (F is the normal cone to a convex and closed set in X). In particular, (1)

may represent first-order necessary conditions in optimization, e.g., the Karush-Kuhn-

Tucker conditions in mathematical programming (see the discussion at the end of this

paper) or the Pontryagin maximum principle in optimal control.

We study the following Newton-type method for solving (1): If xk is the current

iterate, the next iterate xk+1 is found from the relation

y ∈ f(xk) + ∇f(xk)(xk+1 − xk) + F (xk+1), for k = 0, 1, · · · ,(2)

where ∇f(x) denotes the Fréchet derivative of f at x and x0 is a given starting point.

For F = {0} the procedure (2) is the classical Newton method for solving the equation

y = f(x). In the case when F is a (continuous) function, (2) is a Newton-type procedure

using a partial linearization. If (1) represents the variational system associated with an

optimization problem, then (2) is the corresponding version of the sequential quadratic

programming method.

We use the following notation: All norms are denoted by ‖ · ‖. Defining the

distance from a point x ∈ X to a set A ⊂ X as dist(x,A) = inf{‖x − y‖ : y ∈ A}, the

excess e from the set A to the set C is given by e(C,A) = sup{dist(x,A) : x ∈ C}.

The inverse F−1 of a map F is defined as F−1(y) = {x ∈ X : y ∈ F (x)} and graphF is

the set {(x, y) ∈ X × Y : y ∈ F (x)}. We denote by Ba(x) the closed ball centered at x

with radius a.

Recall that a set-valued map Γ from Y to the subsets of X is Aubin continuous

at (y0, x0) ∈ graphΓ with constants a, b and M if for every y1, y2 ∈ Bb(y0) and for every

x1 ∈ Γ(y1) ∩ Ba(x0) there exists an x2 ∈ Γ(y2) with

‖x1 − x2‖ ≤ M ‖ y1 − y2 ‖ .

The constant M is called the modulus of Aubin continuity. The Aubin continuity of

Γ is equivalent to the openness with linear rate of Γ−1 (the covering property) and to

the metric regularity of Γ−1 (a basic well-posedness property in optimization). If f

is a function which is strictly differentiable at some x0, then the Aubin continuity of

f−1 at (f(x0), x0) is equivalent to the surjectivity of ∇f(x0), by the Graves theorem

[10] which is a stronger version of the Lyusternik theorem [13], for a discussion see [6].

Both Lyusternik and Graves theorems are consequences of the general observation that

the Aubin property is “robust under (non)linearization”. Namely, the following result

was established in [7]: Let f : X → Y be a function which is strictly differentiable at

x∗, let F be a set-valued map from X to the subsets of Y with closed graph, and let
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y∗ ∈ f(x∗) + F (x∗). Then the Aubin continuity of the map (f + F )−1 at (y∗, x∗) is

equivalent to the Aubin continuity of [f(x∗) + ∇f(x∗)(· − x∗) + F (·)]−1 at (y∗, x∗).

There are several characterizations of the Aubin continuity in the literature.

Rockafellar [18] showed that a closed-valued map Γ is Aubin continuous at a point

(x0, y0) ∈ graphΓ if and only if the distance function dist(y,Γ(x)) is Lipschitz continu-

ous in both x and y around (x0, y0). (This result is proved in [18] in a finite-dimensional

setting, but the proof can be easily extended to very general spaces). In finite dimen-

sions, Mordukhovich [14] gave a characterization of the Aubin property in terms of a

“coderivative”. The Aubin continuity of maps with convex and closed graphs is char-

acterized by the Robinson-Urcescu theorem. In particular, the Aubin continuity of the

solution set of a system of equalities and inequalities in finite-dimensions is equiva-

lent to the Mangasarian-Fromovitz condition. In a recent paper [9] we showed that

the solution set of a nonlinear variational inequality over a convex polyhedral set in

R
n is Aubin continuous if and only if it is locally single-valued and Lipschitz contin-

uous (strongly regular in the sense of Robinson). This basically means that for such

maps the (extended) Graves theorem is equivalent to the (extended) Robinson implicit

function theorem (for a discussion of these extensions see [7]). We also gave in [9]

a characterization of the Aubin continuity (or, equivalently, strong regularity) of the

Karush-Kuhn-Tucker map in nonlinear programming.

In the last two decades, a number of papers have appeared dealing with Newton-

type methods for nonsmooth equations and variational inequalities; for motivations and

recent state-of-the-art works see e.g. Bonnans [3], Kummer [12], Pang [15], Qi [16],

Robinson [17] and Xiao and Harker [19]. In particular, Kummer [11] gave a necessary

and sufficient condition for superlinear convergence of the Newton method, which is

mainly designed for derivative-type approximations of a nonsmooth function around

an isolated zero. We also mention a recent paper by Azé and Chou [1] who considered

a general inclusion problem in infinite dimensions, using a condition for a kind of

derivative of a set-valued map which implies both the Aubin property and convergence

of a Newton-type iterative procedure.

Our approach here is somewhat different; it rests on the idea that the Newton

method can be used to prove open mapping and inverse function type theorems which

is present already in the proofs of Lyusternik and Graves. In the main step of his orig-

inal proof in [10], Graves used a perturbed version of the (modified) Newton method

showing that the surjectivity of the derivative implies convergence of the Newton iter-

ates which is uniform in a neighborhood of the reference point. Essentially the same

procedure was also used by Lyusternik in [13] and a similar fact is contained in his

proof. Here we develop further this idea identifying the Aubin property as a necessary
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and sufficient condition for a kind of convergence of the Newton method which is “sta-

ble” under perturbations (and thus more meaningful for practical computations). We

also retain the original form of the problem as a generalized equation and in this way

our results address directly the motivating applications, e.g. variational inequalities,

without employing derivative-type approximations.

In a previous paper [4] we considered the generalized equation (1) without a

parameter (e.g., y = 0) and proved that if x∗ is a solution, then the Aubin continuity of

the map (f + F )−1 at (0, x∗) is a sufficient condition for local Q-quadratic convergence

of the Newton method (2). The paper [5] is a continuation of [4], where we report on

results of similar type for approximate and nonsmooth versions of the Newton method

as well as a Kantorovich-type theorem. In the present paper we give, generally speaking,

an answer to the question what kind of “well-posedness” of the Newton method would

correspond to the well-posedness represented by the Aubin property. First, we consider

the perturbed generalized equation (1) and prove (Theorem 1) that the Aubin property

of (f + F )−1 at (y∗, x∗) is equivalent to a kind of convergence of the Newton method

which is uniform in the sense that the attraction region does not depend on small

variations of the value of the parameter y near y∗ and for such values of y the method

finds a solution x which is at distance from x∗ proportional to the variation of y.

Then we show in Theorem 2 that the Aubin property actually implies uniform Q-

quadratic convergence, provided that the derivative of f is Lipschitz continuous. This

is a generalization of the result of [4]. As an illustration of the the results obtained we

consider a parametric nonlinear program, obtaining a characterization of the uniform

local convergence of the sequential quadratic programming method.

The main result of the paper follows.

Theorem 1. Let x∗ be a solution of (1) for y = 0, let f be a function which

is Fréchet differentiable in an open neighborhood O of x∗, and let its derivative ∇f be

continuous in O. Let F have closed graph. Then the following are equivalent:

(i) The map (f + F )−1 is Aubin continuous at (0, x∗);

(ii) There exist positive constants σ, b and c such that for every y ∈ Bb(0) and

for every x0 ∈ Bσ(x∗) there exists a Newton sequence xk starting from x0 which is

convergent to a solution x of (1) for y, moreover, if x0 is a solution of (1) for y0, then

the limit x satisfies ‖x − x0‖ ≤ c‖y − y0‖.

The implication (ii) ⇒ (i) follows directly from the definition of Aubin conti-

nuity. In the proof of (i) ⇒ (ii) we use the following lemma:

Lemma 1. Let (x∗, y∗) ∈ graph(f + F ), let f be a function which is Fréchet

differentiable in an open neighborhood of x∗, let its derivative ∇f be continuous at x∗,
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and let F have closed graph. Suppose that the map (f + F )−1 is Aubin continuous at

(y∗, x∗). Then there exist positive constants α, β and M such that for every x ∈ Bα(x∗),

if Px = [f(x) + ∇f(x)(· − x) + F (·)]−1, then

e(Px(y′) ∩ Bα(x∗), Px(y′′)) ≤ M‖y′ − y′′‖

for every y′, y′′ ∈ Bβ(y∗).

P r o o f. From a result in [7], the map Q = [f(x∗) +∇f(x∗)(· − x∗) + F (·)]−1 is

Aubin continuous at (y∗, x∗); let a, b and M ′ be the associated constants. Choose ε > 0

such that M ′ε < 1 and α > 0 such that ‖∇f(x) −∇f(x∗)‖ ≤ ε for every x ∈ Bα(x∗).

Take α > 0 smaller if necessary so that 2α ≤ a and 4εα < b. Further, choose β > 0

such that

β + 4εα ≤ b and
2M ′β

1 − M ′ε
≤ α.(3)

Let x ∈ Bα(x∗), let y′, y′′ ∈ Bβ(y∗) and let

x′ ∈ Px(y′) ∩ Bα(x∗) = [f(x) + ∇f(x)(· − x) + F (·)]−1(y′) ∩ Bα(x∗).

Denote x1 = x′. Then

x1 ∈ Q(y′ − f(x) −∇f(x)(x1 − x) + f(x∗) + ∇f(x∗)(x1 − x∗)) ∩ Ba(x
∗)

and

‖x − x1‖ ≤ ‖x − x∗‖ + ‖x∗ − x1‖ ≤ 2α.

Using (3) we obtain

‖y′ − f(x) −∇f(x)(x1 − x) + f(x∗) + ∇f(x∗)(x1 − x∗) − y∗‖

≤ ‖y′ − y∗‖ + ‖f(x) − f(x∗) −∇f(x∗)(x − x∗)‖

+‖(∇f(x∗) −∇f(x))(x − x1)‖

≤ β + ε(‖x − x∗‖ + ‖x − x1‖) ≤ β + 3εα ≤ b.

This same inequality holds for y′′. From these estimates and from the Aubin continuity

of Q we obtain that there exists an

x2 ∈ Q(y′′ − f(x) −∇f(x)(x1 − x) + f(x∗) + ∇f(x∗)(x1 − x∗));

that is,

y′′ ∈ f(x) + ∇f(x)(x1 − x) + ∇f(x∗)(x2 − x1) + F (x2),

and such that

‖x2 − x1‖ ≤ M ′‖y′ − y′′‖.
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Proceeding by induction, suppose that there exist an integer n > 2 and points

x2, x3, · · · , xn with

y′′ ∈ f(x) + ∇f(x)(xi−1 − x) + ∇f(x∗)(xi − xi−1) + F (xi),

and

‖xi − xi−1‖ ≤ M ′‖y′ − y′′‖(M ′ε)i−2, i = 3, 4, · · · , n.

Then

‖xn − x∗‖ ≤
n

∑

j=2

‖xj − xj−1‖ + ‖x1 − x∗‖

≤ 2M ′β
n

∑

j=2

(M ′ε)j + α

≤
2M ′β

1 − M ′ε
+ α ≤ 2α ≤ a

and

xn ∈ Q(y′′ − f(x) −∇f(x)(xn−1 − x) + f(x∗) + ∇f(x∗)(xn−1 − x∗)) ∩ Ba(x
∗).

Taking into account that

‖xn − x‖ ≤
n

∑

j=2

‖xj − xj−1‖ + ‖x1 − x‖

≤
2M ′β

1 − M ′ε
+ 2α ≤ 3α,

we obtain for both y = y′ and y = y′′,

‖y − f(x) −∇f(x)(xn − x) + f(x∗) + ∇f(x∗)(xn − x∗) − y∗‖ ≤ β + 4εα ≤ b.

Then there exists an

xn+1 ∈ Q(y′′ − f(x) −∇f(x)(xn − x) + f(x∗) + ∇f(x∗)(xn − x∗));

that is,

y′′ ∈ f(x) + ∇f(x)(xn+1 − x) + ∇f(x∗)(xn+1 − xn) + F (xn+1),(4)

and such that

‖xn+1 − xn‖ ≤ M ′‖(∇f(x∗) −∇f(x))(xn − xn−1)‖

≤ M ′ε‖xn − xn−1‖ ≤ M ′‖y′ − y′′‖(M ′ε)n.
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The induction step is complete. Thus xn is a Cauchy sequence, hence there exists x′′

such that xn → x′′ as n → ∞. Moreover, passing to the limit in (4), we get

x′′ ∈ Px(y′′) = [f(x) + ∇f(x)(· − x) + F (·)]−1(y′′)

and

‖x′ − x′′‖ ≤ lim sup
n→∞

n
∑

i=2

‖xi − xi−1‖

≤ lim sup
n→∞

n
∑

i=2

(M ′ε)i−2M ′‖y′ − y′′‖

≤
M ′

1 − M ′ε
‖y′ − y′′‖.

Hence, the lemma holds with M = M ′/(1 − M ′ε). �

P r o o f o f T h e o r em 1. Let α, β and M be the constants in Lemma 1 and let

Px = [f(x)+∇f(x)(·−x)+F (·)]−1 for x ∈ Bα(x∗). Let ε > 0 satisfy Mε < 1 and choose

a > 0 such that Ba(x
∗) ⊂ O and ‖∇f(x′) − ∇f(x′′)‖ ≤ ε whenever x′, x′′ ∈ Ba(x

∗).

Choose σ > 0 such that

σ ≤ α,
2σ

1 − Mε
< a and 2εσ < β,

and let b > 0 satisfy

b(1 + Mε) + 2εσ ≤ β and
Mb + 2σ

1 − Mε
≤ a.

Let x0 ∈ Bσ(x∗). Then

x∗ ∈ Px0
(−f(x∗) + f(x0) + ∇f(x0)(x

∗ − x0)) ∩ Bα(x0).

Further,

‖f(x∗) − f(x0) −∇f(x0)(x
∗ − x0)‖

≤ ‖

∫

1

0

(∇f(x∗ + t(x0 − x∗)) −∇f(x0))(x0 − x∗)dt‖

≤ ε‖x0 − x∗‖ ≤ εσ ≤ β.

Let y ∈ Bb(0). From Lemma 1 it follows that there exists x1 ∈ Px0
(y), i.e.,

y ∈ f(x0) + ∇f(x0)(x1 − x0) + F (x1),
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such that

‖x1 − x∗‖ ≤ M‖y + f(x∗) − f(x0) −∇f(x0)(x
∗ − x0)‖

≤ M(‖y‖ + ε‖x0 − x∗‖) ≤ Mb + Mεσ ≤ Mb + σ ≤ a.

Then

‖x1 − x0‖ ≤ ‖x1 − x∗‖ + ‖x∗ − x0‖ ≤ Mb + Mεσ + σ.(5)

Note that

x1 ∈ Px1
(y + f(x1) − f(x0) −∇f(x0)(x1 − x0)) ∩ Bα(x1)

and

‖y + f(x1) − f(x0) −∇f(x0)(x1 − x0)‖

≤ b + ε‖x1 − x0‖ ≤ b + ε(Mb + Mεσ + σ) ≤ β.

Then from Lemma 1 there exists an

x2 ∈ Px1
(y) = [f(x1) + ∇f(x1)(· − x1) + F (·)]−1(y)

such that

‖x2 − x1‖ ≤ M‖f(x1) − f(x0) −∇f(x0)(x1 − x0)‖ ≤ Mε‖x1 − x0‖.

Further,

‖x2 − x∗‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ + ‖x0 − x∗‖

≤ (1 + Mε)‖x1 − x0‖ + ‖x0 − x∗‖

≤
Mb + Mεσ + σ

1 − Mε
+ σ ≤

Mb + 2σ

1 − Mε
≤ a.(6)

Suppose that for some integer n > 2 the points x2, x3, · · · , xn are obtained by

the Newton method (2), that is, xi ∈ Pxi−1
(y), and

‖xi − xi−1‖ ≤ (Mε)i−1‖x1 − x0‖ i = 3, 4, · · · , n.

Then, by repeating the argument in (6) we obtain that xi ∈ Ba(x
∗). Further, we have

‖y + f(xn) − f(xn−1) −∇f(xn−1)(xn − xn−1)‖

≤ b + ε‖xn − xn−1‖ ≤ b + ε‖x1 − x0‖ ≤ β.

Then from

xn ∈ Pxn
(y + f(xn) − f(xn−1) −∇f(xn−1)(xn − xn−1)) ∩ Bα(xn)
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and from Lemma 1 we conclude that there exists a Newton iterate

xn+1 ∈ Pxn
(y) = [f(xn) + ∇f(xn)(· − xn) + F (·)]−1(y)(7)

satisfying

‖xn+1 − xn‖ ≤ Mε‖xn − xn−1‖ ≤ (Mε)n‖x1 − x0‖.(8)

This completes the induction step. Hence, there exists a Newton sequence xn which is

a Cauchy sequence, and, passing to the limit in (7), we obtain that xn is geometrically

convergent to a solution x ∈ (f + F )−1(y).

Let y0 ∈ Bb(0) and x0 ∈ (f + F )−1(y0) ∩ Bσ(x∗). Then x0 ∈ Px0
(y0) ∩ Bα(x0).

From Lemma 1 we obtain that there exists x1 ∈ Px0
(y) such that ‖x1−x0‖ ≤ M‖y−y0‖.

By repeating the argument between (5) and (8) we obtain a Newton sequence xn

satisfying (7) and (8) and convergent to a solution x ∈ (f + F )−1(y). Moreover,

‖xn − x0‖ ≤
n

∑

i=1

‖xi − xi−1‖ ≤
n

∑

i=1

(Mε)iM‖y − y0‖

≤
M

1 − Mε
‖y − y0‖.

Passing to the limit with n and taking c = M/(1 − Mε) we complete the proof. �

In the following theorem we show that if the derivative of f is Lipschitz contin-

uous around x∗, then the Aubin continuity implies the existence of a Q-quadratically

convergent Newton sequence.

Theorem 2. Let x∗ be a solution of (1) for y = 0, let f be a function which

is Fréchet differentiable in an open neighborhood O of x∗, and let its derivative ∇f be

Lipschitz continuous in O. Let F have closed graph and let the map (f +F )−1 be Aubin

continuous at (0, x∗). Then there exist positive constants σ, b and γ such that for every

y ∈ Bb(0) and for every x0 ∈ Bσ(x∗) there exists a Newton sequence xk starting from

x0 which is Q-quadratically convergent with a constant γ to a solution x of (1) for y,

that is,

‖xk+1 − x‖ ≤ γ‖xk − x‖2, k = 0, 1, 2, · · · .

P r o o f. Let (f + F )−1 be Aubin continuous at (0, x∗) with modulus c. Then,

from the very definition, there exists δ > 0 such that for every y ∈ Bδ(0) there exists

x ∈ (f + F )−1(y) ∩ Bc‖y‖(x
∗). To prove the existence of a Newton sequence which

convergence quadratically to x uniformly in y we use induction as in the proof of

Theorem 1, but the idea is different. Let α, β and M be the constant in the statement
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of Lemma 1 and let L be the Lipschitz constant of ∇f in O. Choose positive σ and b

such that Bcb(x
∗) ⊂ O,

σ ≤ α/2, b ≤ min{β/2, δ}, cb ≤ α/2,

L(cb + σ)2 ≤ β, ML(cb + σ)2 ≤ α,
1

2
ML(cb + σ) ≤ 1.

Let x0 ∈ Bσ(x∗), y ∈ Bb(0), and let x ∈ (f + F )−1(y) ∩ Bc‖y‖(x
∗). Then ‖x − x∗‖ ≤

cb ≤ α. Note that

x ∈ Px0
(y − f(x) + f(x0) + ∇f(x0)(x − x0)) ∩ Bα(x∗)

and

‖y − f(x) + f(x0) + ∇f(x0)(x − x0)‖

≤ b +
1

2
L‖x − x0‖

2 ≤ b +
1

2
L(cb + σ)2 ≤ β.

Hence, from Lemma 1 there exists an x1 ∈ Px0
(y), that is,

y ∈ f(x1) + ∇f(x0)(x1 − x0) + F (x1),

such that

‖x − x1‖ ≤ M‖f(x) − f(x0) −∇f(x0)(x − x0)‖ ≤
1

2
ML‖x − x0‖

2.

Then

‖x1 − x∗‖ ≤ ‖x1 − x‖ + ‖x − x∗‖

≤
1

2
ML‖x − x0‖

2 + cb

≤
1

2
ML(cb + σ)2 + cb ≤ α.

Further,

x ∈ Px1
(y − f(x) + f(x1) + ∇f(x1)(x − x1)) ∩ Bα(x∗),

and from

‖x − x1‖ ≤
1

2
ML(cb + σ)2 ≤ α

we have

‖y − f(x) + f(x1) + ∇f(x1)(x − x1)‖

≤ b +
1

2
L‖x − x1‖

2 ≤ b +
1

2
L(

1

2
ML(cb + σ)2)2 ≤ β.
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Then there exists a Newton iterate x2 ∈ Px1
(y) with

‖x2 − x‖ ≤ M‖f(x) − f(x1) −∇f(x1)(x − x1)‖ ≤
1

2
ML‖x1 − x‖2.

The induction step is fairly obvious. Taking γ ≥ ML/2 we are done. �

By assuming that the function f is merely continuously differentiable near x∗,

one can obtain an analogous result where the uniform Q-quadratic convergence is re-

placed by the weaker uniform superlinear convergence. Note that the argument we use

is purely metric and goes through for more general spaces, e.g. X complete metric and

Y Fréchet. Also, note that the Newton sequence in Theorem 1 may be different from

the one obtained in Theorem 2. By replacing the Aubin continuity with the stronger

requirement the map (f + F )−1 be locally single-valued and Lipschitz, one can obtain

analogous results where for every starting point there exists a unique Newton sequence.

As an illustration of our general results we consider the following nonlinear

programming problem with canonical perturbations:

minimize g0(w, x) + 〈v, x〉 in x subject to(9)

gi(w, x) − ui

{

= 0 for i ∈ [1, r],
≤ 0 for i ∈ [r + 1,m],

where the functions gi : R
d × R

n → R, i = 0, 1, . . . ,m are twice continuously differ-

entiable and the vectors w ∈ R
d, v ∈ R

n and u = (u1, . . . , um) ∈ R
m are parameters.

Denote p = (v, u,w). Introducing the Lagrangian

L(w, x, λ) = g0(w, x) + λ1g1(w, x) + · · · + λmgm(w, x),

the Karush-Kuhn-Tucker (KKT) conditions for (9) are of the form

{

v + ∇xL(w, x, λ) = 0,
−u + ∇λL(w, x, λ) ∈ ND(λ) for D = R

r × R
m−r
+

,
(10)

where ND(λ) is the normal cone to the set D at the point λ. These can be written as

the variational inequality

0 ∈ (v, u) + f(w, x, λ) + NC(x, λ),(11)

where

f(w, x, λ) = (∇xL(w, x, λ),−∇λL(w, x, λ)), C = R
n × D.

The sequential quadratic programming (SQP) algorithm for solving (9), for a recent

survey see [2], is a direct application of the Newton method to the variational inequality
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(11). Since the linearization of (11) is a KKT system of a quadratic programming

problem, the Newton iteration can be obtained in the following way: If (xk, λk) denotes

the current iterate of the SQP algorithm, then the new iterate (xk+1, λk+1) is obtained

by computing xk+1 as a local minimizer of the following quadratic program:

minimize
1

2
〈Bk(x − xk), x − xk〉 + 〈v + g0(xk, w), x − xk〉(12)

subject to

−ui + gi(w, xk) + ∇xgi(w, xk)(x − xk)

{

= 0 for i ∈ [1, r],
≤ 0 for i ∈ [r + 1,m],

where Bk is the Hessian of the Lagrangian evaluated at (xk, λk, v, u, w). The new λk+1

is the multiplier associated with xk+1 for (12).

Let (x∗, λ∗) satisfy the KKT conditions (10) or equivalently the variational

inequality (11) for given u∗, v∗, and w∗, and let the index sets I1, I2 in {1, 2, . . . ,m}

be defined as:

I1 = {i ∈ [r + 1,m] | gi(w
∗, x∗) − u∗

i = 0, λ∗
i > 0} ∪ {1, . . . , r},

I2 = {i ∈ [r + 1,m] | gi(w
∗, x∗) − u∗

i = 0, λ∗
i = 0}.

By combining the results obtained in the present paper with Theorems 3 and 6 in [9]

we obtain the following corollary:

Corollary 1. Let x∗ be a solution of (9) for p∗ = (v∗, u∗, w∗) with an associate

multiplier λ∗. Then the following are equivalent:

(i) There exist constants σ, β, γ and c such that for every p = (v, u,w) ∈ Bβ(p∗)

and for every initial point (x0, λ0) ∈ Bσ(x∗, λ∗) there exists a unique sequence of iterates

(xk, λk) of the SQP algorithm which is Q-quadratically convergent with the constant γ

to a point (x, λ) where x is a solution of (9) for p and λ is an associated Lagrange

multiplier, moreover, with the property that if z0 = (x0, λ0) is a primal-dual pair for

(9) for some p0, then the limit z = (x, λ) satisfies ‖z − z0‖ ≤ c‖p − p0‖;

(ii) The constraint gradients ∇xgi(w
∗, x∗) for i ∈ I1 ∪ I2 are linearly inde-

pendent and the strong second-order sufficient condition for local optimality holds for

(u∗, v∗, w∗, x∗, λ∗); that is,

〈x′,∇2
xxL(w∗, x∗, λ∗)x′〉 > 0 for all x′ 6= 0 in the subspace

M = {x′ |x′ ⊥ ∇xgi(w
∗, x∗) for all i ∈ I1}.
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The general theory presented here can be also utilized for convergence analysis of

Newton-type methods applied to discrete approximations in optimal control. Without

going into this further, we only mention that if the SQP algorithm is applied to a

problem obtained by a discretization of a nonlinear optimal control problem, then,

under standard constraint qualification and second-order sufficient conditions, e.g., as

in [8], the algorithm is locally superlinearly/quadratically convergent uniformly in the

choice of the starting point and the size of the discretization grid.
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