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Abstract. The paper contains calculus rules for coderivatives of compositions,
sums and intersections of set-valued mappings. The types of coderivatives consid-
ered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials
in Gâteaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in
Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The
key element of the unified approach to obtaining various calculus rules for various
types of derivatives presented in the paper are simple formulas for subdifferentials
of marginal, or performance functions.

1. Introduction. In a number of recent studies a calculus of coderivatives was

developed, first between finite dimensional spaces in [16] and then for coderivatives

of various types (approximate [13], limiting Fréchet [17], Fréchet [18]) for set-valued

mappings between appropriate Banach spaces (arbitrary in [13] and Asplund in [17,

18]). The primary purpose of this paper is to provide a new insight into the problem

and show that these (and certain other, sometimes even more general) results follow

from the standard calculus rules for corresponding subdifferentials of functions.

In general the calculi of the three main classes of objects of nonsmooth analysis:

subdifferentials, normal cones and coderivatives, are heavily interconnected and every
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result for each of them can, in principle, be obtained from the calculus rule for any other

basic operation with any other object, so that the choice of a sequence in which the

results are proved or presented is often a matter of taste or personal preferences. A cer-

tain justification for giving independent proofs of basic calculus rules for coderivatives

of set-valued mappings comes from the fact that coderivatives occupy an intermediate

position between subdifferentials of functions and normal cones to sets and calculus

rules for the last two classes of objects can easily be deduced from the corresponding

rules for coderivatives. But direct proofs for coderivatives are often heavier and more

complicated and thr reader may get an impressionthat certain results are independent.

For a number of reasons, technical as mentioned above but also substantive, it seems in

many cases convenient to consider subdifferential as the primal object and normal cone

and coderivative as its derivatives (e.g. if we wish that the normal cone be generated

by the subdifferential of the distance function – a useful property known from convex

analysis). In addition, proofs for subdifferentials are typically much simpler.

The main vehicle that carries over the rules of subdifferential calculus to cor-

responding rules for coderivatives are formulae for subdifferentials of performance or,

as they are often called, marginal functions1. Therefore we consider these formulae

(which are very simple and easy to obtain – see also e.g. [7, 12, 21]) in Section 3,

immediately after a brief discussion of necessary concepts and preliminary results from

nonsmooth analysis. In a short Section 4 we show how marginal functions appear in

calculations of coderivatives of the resulting set-valued mappings for two operations:

composition and addition. In sections 5 through 7 the main calculus rules for coderiva-

tives are presented. We consider three types of calculus rules: weak fuzzy calculus for

so-called elementary coderivatives (e.g. Dini-Hadamard or Fréchet, actually the only

elementary coderivatives we consider in the paper), strong fuzzy calculus for Fréchet

coderivatives and exact calculus for approximate coderivatives. In the last two cases

certain qualification conditions are always needed. In Sections 5–7 we prove calculus

rules with very weak “metric qualification conditions” explicitly introduced in [10] but

actually considered in certain cases earlier in [7, 13]. In the last section we consider

more standard (and much stronger) “subdifferential” qualification conditions involving

normal cones and coderivatives.

Some of the results presented here were announced in [10].

We use the following notation:

X, Y, Z for Banach spaces;

1In the proof of the formula for the approximate coderivative of a composition of set-valued
mappings we, in certain respects, follow the same pattern as Jourani and Thibault [13]. The basic
difference is just that we use the marginal function approach which allows us to prove these and all
other results using the same sequence of arguments.
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X∗etc. for their duals;

〈x∗, x〉 for the canonical pairing on X∗ × X;

δS(x) for the indicator function of S;

χF (x, y) for δGraphF (x, y), if F is a set-valued mapping from X into Y ;

ρ(x, S) for the distance from x to S;

Br for the closed ball of radius r around the origin;

B for the unit ball.

Acknowledgement. We are thankful to L. Thibault, B. Mordukhovich and

the referee for helpful remarks. The first author acknowledges support from CNRS

during his stay in the Laboratory of Applied Mathematics, University of Pau, in the

second half of 1995 and by the U. S. National Science Foundation under grant DMS-

9404128.

2. Preliminaries: subdifferentials, normal cones and coderivatives.

By a subdifferential we usually mean a set-valued mapping which associates with every

function defined on a Banach space X and any x ∈ X a set ∂f(x) ⊂ X∗ (possibly

empty), called the subdifferential of f at x, in such a way that

(a) ∂f(x) = Ø if x 6∈ domf ;

(b) ∂f(x) = ∂g(x) if f and g coincide in a neighborhood of x;

(c) if f is convex, then ∂f(x) is the subdifferential of f in the sense of convex

analysis;

(d) 0 ∈ ∂f(x) if f attains a local minimum at x;

(e) if f satisfies the Lipschitz condition near x with constant K, then ‖x∗‖ ≤ K

if x∗ ∈ ∂f(x);

(f) if f(x, y) = f1(x) + f2(y), then ∂f(x, y) = ∂f1(x) × ∂f2(y);

(g) if f(x) = λg(Ax + v), where A : X → Y is a bounded linear operator onto

Y and λ > 0, then ∂f(x) ⊂ λA∗∂g(Ax + v).

Certain subdifferentials make sense only for certain classes of functions and

spaces, so the corresponding specifications are often necessary. (By “make sense” we

mean that they should be able to carry useful information about the function. A

minimal requirement for that is that, say, ∂f(x) 6= Ø for x of a dense subset of the

domain of f for any function of the class.)

Given a subdifferential which makes sense for arbitrary lower semicontinuous

functions, we can define the normal cone (associated with the subdifferential) to a set

S at x ∈ S as the subdifferential of the indicator of S at x:

(2.1) N(S, x) = ∂δS(x).
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Now if F is a set-valued mapping from X into Y and y ∈ F (x), then the coderivative

of F at (x, y) associated with the given subdifferential is the set-valued mapping from

Y ∗ into X∗ defined as follows:

(2.2) D∗F (x, y)(y∗) = {x∗ : (x∗,−y∗) ∈ N(GraphF, (x, y))}.

In the paper we shall consider the following classes of subdifferentials (which are among

the most important both in the theory and applications):

1. Fréchet subdifferential of f at x consists of all vectors x∗ satisfying

(2.3) lim inf
‖h‖→0

‖h‖−1(f(x + h) − f(x) − 〈x∗, h〉) ≥ 0.

Frèchet subdifferential is nonempty on a dense subset of the domain of any lower semi-

continuous function on X if and only if X is an Asplund space (see [6] for the “only if”

part and [5] for the “if” part of the statement).

2. Dini-Hadamard subdifferential of f at x consists of all x∗ satisfying

〈x∗, h〉 ≤ lim inf
(t,u)→(+0,h)

t−1(f(x + th) − f(x)) = d−f(x;h), ∀ h ∈ X.

The quantity on the right is known as Hadamard directional derivative of f at x (along

h). If f is Lipschitz near x, it coincides with the Dini directional derivative.

Dini-Hadamard subdifferential is nonempty on a dense subset of the domain of

any l.s.c. function on a space having a Gâteaux differentiable renorm (more generally on

a space on which there exists a Gâteaux differentiable locally Lipschitz bump function),

in particular on any separable space.

The two subdifferentials just defined belong to the group of so called elementary

subdifferentials. Their definitions are natural modifications of the definitions of the cor-

responding derivatives: Fréchet and Hadamard. More elementary subdifferentials can

be obtained in the same way using other concepts of derivatives. We do not consider

here the so called viscosity subdifferentials which are very close (see [4]).

3. Limiting elementary subdifferentials. Using elementary subdifferentials as the

starting point, we can define subdifferentials of a new type called limiting. Namely, we

say that x∗ belongs to the limiting (Fréchet, Dini-Hadamard) subdifferential of f at x

if there are sequences {xn} and {x∗
n} converging respectively to x in the norm topology

and to x∗ in the weak∗ topology and such that every x∗
n belongs to the (Fréchet,

Hadamard) subdifferential of f at xn.
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The definition is supported by the fact that the spaces on which the elementary

subdifferentials (and hence limiting elementary) are known to make sense have duals

with sequentially weak∗ compact unit balls. Limiting subdifferential (on an appropri-

ate space) is nonempty whenever the function satisfies the Lipschitz condition near the

point.

4. Approximate subdifferential. This is a subdifferential which makes sense on

every Banach space. Approximate subdifferential is first defined for Lipschitz functions.

Namely, given a function satisfying the Lipschitz condition near x and a linear subspace

L ⊂ X, we set

∂−
Lεf(x) = {u∗ : 〈u∗, h〉 ≤ d−f(u;h) + ε‖h‖, ∀h ∈ L},

omitting the subsript ε if ε = 0 and define the approximate subdifferential of f at x by

(2.4) ∂f(x) =
⋂

L∈F

lim sup
u→x

∂−
Lf(u)

⋂

BK =
⋂

L∈F

lim sup
u→x,ε→0

∂−
Lεf(u)

⋂

B(K+ε),

where F is the collection of finite dimensional subspaces of X and K is any number

greater than the Lipschitz constant of f near x. This is always a nonempty set.

The approximate normal cone to a set S at x ∈ S is defined as the cone generated

by the subdifferential of the distance function to S:

(2.5) N(S, x) =
⋃

λ>0

λ∂ρ(x, S).

Now approximate subdifferential can be defined for an arbitrary lower semicontinuous

function through the normal cone to its epigraph as follows:

(2.6) ∂f(x) = {x∗ : (x∗,−1) ∈ N(epif, (x, f(x))}.

These definitions are correct in the sense that they do not depend on the choice of a

specific equivalent norm, the definition of the normal cone by (2.1) gives the same object

as (2.5) and if the function is Lipschitz near x then the last formula gives the same

result as (2.4). (We refer to [7] where a slightly different definitions were introduced.)

In a reflexive (more generally, Asplund and weakly compactly generated) space

the limiting Fréchet subdifferential coincides with the approximate subdifferential for

any l.s.c. function; in an arbitrary WCG (not necessarily reflexive) space the limiting

Hadamard subdifferential coincides with the approximate subdifferential for any locally

Lipschitz function [1, 2] (and is never smaller than the approximate subdifferential).

We also mention the connection between the approximate subdifferential and

the generalized gradient of Clarke (not considered in this paper for the calculus rules
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available for it usually require additional convexification). Namely, Clarke’s normal

cone always coincides with the weak∗ convex closure of the approximate normal cone

at the same point, so that the approximate subdifferential is always a subset of the

generalized gradient. If the function is Lipschitz near the point in question, then the

latter again is the weak∗ convex closure of the approximate subdifferential.

We shall next consider the three basic types of calculus rules that subdifferen-

tials may obey. For the sake of brevity, we shall talk here only about rules for sums

of functions. As was mentioned in the introduction, knowing them is sufficient to get

corresponding rules for other operations and the purpose of the paper is to show how

it can be done for various operations with set-valued mappings.

(A) Weak fuzzy calculus. We say that a subdifferential has the weak fuzzy

calculus on a given space X (or class of spaces) if for any finite collection {f1, . . . , fk}

of lower semicontinuous functions, any x at which all of them are finite, any ε > 0 and

any weak∗ neighborhood U∗ of zero in X∗

x∗ ∈ ∂(f1 + · · · + fk)(x) ⇒ ∃ xi, x∗
i :

‖xi − x‖ ≤ ε, |fi(xi) − fi(x)| ≤ ε, x∗
i ∈ ∂fi(xi), i = 1, . . . , k,

∑

x∗
i ∈ x∗ + U∗.

All subdifferentials we have mentioned have the weak fuzzy calculus on the

corresponding spaces, namely, Dini-Hadamard and limiting Dini-Hadamard subdiffer-

entials on spaces with Gâteaux differentiable Lipschitz bump functions, Fréchet and

limiting Fréchet subdifferentials on Asplund spaces and the approximate subdifferen-

tial on every Banach space.

(B) Strong fuzzy calculus. The subdifferential has a strong fuzzy calculus if for

any finite collection {f1, . . . , fk} of lower semicontinuous functions, any x at which all

of them are finite, any ε > 0

x∗ ∈ ∂(f1 + · · · + fk) ⇒ ∃ xi, x
∗
i :

‖xi − x‖ ≤ ε, |fi(xi) − fi(x)| ≤ ε, x∗
i ∈ ∂fi(xi), i = 1, . . . , k, ‖

∑

i x
∗
i − x∗‖ ≤ ε,

provided fi satisfy the following general metric qualification condition (equivalent to

the uniform lower semicontinuity property of [2, 11] -see [9]):
there is a nonnegative nondecreasing function ω(t) (generally, extended-real-
valued) which is continuous and equal to zero at zero and such that

ρ
(

(u, α), epi
(

∑

fi

))

≤ ω
(

∑

ρ((u, αi), epifi)
)

for all u sufficiently close to x and all α, αi satisfying
∑

αi = α.
Fréchet subdifferential on an Asplund space is the only known example of a

subdifferential with strong fuzzy calculus [5, 8].
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We further observe that both the weak and the strong fuzzy calculus rules we

have formulated are consequences of the following property which we call the basic

fuzzy principle:

0 ∈ argmin(f1 + · · · + fk) ⇒ ∃ xi, x
∗
i :

‖xi − x‖ ≤ ε, |fi(xi) − fi(x)| ≤ ε, x∗
i ∈ ∂fi(xi), i = 1, . . . , k, ‖

∑

i x
∗
i ‖ ≤ ε,

provided the general metric qualification condition is satisfied for f1, . . . , fk at x. We

shall say, slightly modifying the definition given in [6], that X is a ∂-trustworthy space

if the basic fuzzy principle holds for ∂ on X. All spaces mentioned above are ∂-

trustworthy for the corresponding subdifferentials, namely, spaces with Gâteaux differ-

entiable Lipschitz bump functions for the Dini-Hadamard and limiting Dini-Hadamard

subdifferentials [6], Asplund spaces for Fréchet and limiting Fréchet subdifferential [5]

and all Banach spaces for the approximate subdifferential [9].

(C) Exact calculus. A subdifferential has exact calculus if for any finite collec-

tion {f1, . . . , fk} of lower semicontinuous functions and any x at which all of them are

finite

(2.7) ∂(f1 + · · · + fk)(x) ⊂ ∂f1(x) + · · · + ∂fk(x),

provided the following linear-rate metric qualification condition is satisfied:
there is a K > 0 such that the inequality

ρ
(

(u, α), epi
∑

fi

)

≤ K
∑

ρ((u, αi), epifi)

for all u sufficiently close to x and all α, αi satisfying
∑

αi = α and αi close
to fi(x) for all i.

The approximate subdifferential on any Banach space and the limiting Fréchet

subdifferential on an Asplund space are the two known examples of subdifferentials

with exact calculus. (We note that Clarke’s generalized gradient and the “moderate”

subdifferential of Michel-Penot and the “b-subdifferential” of Treiman do have the

property like (2.7) under certain subdifferential qualification condition but it is not

known whether they have the exact calculus as stated here, under the linear-rate metric

qualification condition.)

The metric qualification conditions stated above are actually very weak. To see

this, consider the (closed) positive and negative orthants in l2 or, even simpler, the

cones {(x, y, z) ∈ R
3 : z ≥ (x2 + y2)1/2} and {(x, y, z) ∈ R

3 : z ≤ −(x2 + y2)1/2} the

linear-rate metric qualification condition is obviously satisfied for the indicator functions

of each of these two pairs of sets at zero whereas even the standard qualification

condition of convex analysis (e.g. relative interiors have a nonempty intersection –
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see [24]) fails to be valid. Traditionally, stronger qualification conditions in terms of

subdifferentials themselves rather than distance estimates have been used in theorems

containing calculus rules for subdifferentials etc. We shall discuss this question in the

concluding section.

3. Subdifferentials of marginal functions. Consider a function f(x, y) on

the product of Banach spaces X and Y and set

ϕ(x) = min
y

f(x, y).

We shall be interested in connection between subdifferentials of the marginal function

ϕ at a certain x with the corresponding subdifferentials of f at points (x, y) with y in

the solution set argmin f(x, ·) = {y : f(x, y) = ϕ(x)}. To get desired results for the

limiting and approximate subdifferentials we need certain amount of well posedness of

the approximation problems involved which can be naturally expressed in terms of lower

semicontinuity type properties of the solution maps. So we start with the definitions

of the lower semicontinuity properties needed. Given a set-valued mapping F from X

into Y and an S ⊂ F (x), F is called (sequentially) lower semicontinuous at (x, S) (see

[20]) if for any sequence {xn} converging to x, there exists a subsequence {xnk
} and a

sequence {yk} converging to a certain y ∈ S such that yk ∈ F (xnk
) for each k.

It is an easy matter to see that when S is a singleton {y}, this definition

corresponds to usual lower semicontinuity of F at (x, y). Another extreme case (in

which we call F , following [17], sequentially lower semicompact at x) is when S = Y

(which is equivalent to S = F (x) if GraphF is closed). This is actually a very weak

property. Intermediate cases may also be of an interest.

We shall also consider topological versions of the properties. Namely, let us say

that F is topologically lower semicontinuous at (x, S) if for any net {xν} converging

to x there is a subnet {xνα
} and a net {yα} converging to a certain y ∈ S and such

that yα ∈ F (xνα
) for all α. It is clear that for S being a singleton the topological and

sequential properties are equivalent. But topological lower semicompactness may be a

stronger property if dim Y = ∞.

Proposition 3.1. Let ∂ be either of the elementary subdifferentials (Dini-

Hadamard or Fréchet). Assume that y ∈ argmin f(x, ·), that is ϕ(x) = f(x, y), and

x∗ ∈ ∂ϕ(x). Then (x∗, 0) ∈ ∂f(x, y).

P r o o f. If x∗ ∈ ∂ϕ(x), then by definition

lim inf
t→0

t−1(ϕ(x + th) − ϕ(x) − t〈x∗, h〉) ≥ 0,



Subdifferentials of performance functions . . . 367

either for any h (in case of the Dini-Hadamard subdifferential) or uniformly for h of

the unit ball (in case of the Fréchet subdifferential). Therefore, as ϕ(x) = f(x, y),

lim inf
t→0

inf
‖v‖≤1

t−1(f(x + th, y + tv) − f(x, y) − t〈x∗, h〉) ≥ 0,

either for any h or uniformly for h ∈ B. In either case this means that (x∗, 0) belongs

to the corresponding subdifferential of f at x.

It is possible to slightly generalize Proposition 3.1 as follows: for any ε > 0, let

us denote by ∂εf(x) the subdifferential at x of the function fε(u) = f(u) + ε‖x − u‖.

Then the same argument as in the proof of Proposition 3.1 gives

(3.1) x∗ ∈ ∂−
ε ϕ(x) & y ∈ argmin f(x, ·) ⇒ (x∗, 0) ∈ ∂εf(x, y). �

Proposition 3.2. Let ∂ be a limiting or the approximate subdifferential, and

let f(x, y) = ϕ(x). Assume that f is l.s.c. and the solution mapping argmin f(x, ·) is

lower semicontinuous at (x, y) Then

x∗ ∈ ∂ϕ(x) ⇒ (x∗, 0) ∈ ∂f(x, y).

Proposition 3.3. Assume that f is lower semicontinuous and

– either ∂ is a limiting subdifferential and the solution mapping

S(x) = argmin f(x, ·) is sequentially lower semicompact at x;

– or ∂ is the approximate subdifferential and the solution mapping is topologi-

cally lower semicompact at x.

Then

x∗ ∈ ∂ϕ(x) ⇒ (x∗, 0) ∈
⋃

y∈argmin f(x,·)

∂f(x, y).

We shall give a joint proof of Propositions 3.2 and 3.3 paying main attention

to the case of ∂ being the approximate subdifferential. (For an alternative proof of

this see [7].) The proof for limiting subdifferentials is much simpler and is actually a

by-product of the arguments of the first part of the proof below. Consider first the

case when f satisfies the Lipschitz condition with constant K. Then ϕ also satisfies

the Lipschitz condition with the same constant. Let x∗ ∈ ∂ϕ(x). This means that for

any finite dimensional L ⊂ X there is a sequence {xn} converging to x such that

(3.2) x∗ ∈ lim sup
n→∞

∂−
Lϕ(xn).
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If the solution mapping is l.s.c. at (x, y), we may be sure, taking if necessary a sub-

sequence, that there are yn ∈ S(xn) converging to y. By Proposition 3.1, (x∗, 0) ∈

lim sup
n→∞

∂−
L×Y f(xn, yn). This immediately proves Proposition 3.2 in case of a Lipschitz

f . (The same argument without restrictions to any finite dimensional subspaces proves

the proposition for the limiting subdifferentials of an arbitrary lower semicintinuous f

as well as the part of Proposition 3.3 relating to limiting subdifferentials. In the latter

case we have to refer to sequential lower semicontinuity at (x, S(x)) rather than at

(x, y) so that we shall have a certain y ∈ S(x), not the given one.)

To prove the second part of Proposition 3.3 related to the approximate subdiffer-

ential, we choose for any finite dimensional L an x(L) ∈ X and an x∗(L) ∈ ∂−
Lϕ(x(L))

such that ‖x(L)−x‖ ≤ (dim L)−1 and x∗(L) ∈ x∗+L⊥+(dim L)−1B which is possible

by (3.2). Then x(L) → x and x∗(L) → x∗ (weak-star) as L runs along the net of finite

dimensional subspaces of X naturally ordered by inclusion. As the solution mapping is

topologically lower semicompact, it follows that there is a net Lα of finite dimensional

subspaces of X (such that every finite dimensional subspace belongs to some Lα) and

a net yα ⊂ Y such that yα ∈ S(xα) for any α (here and below we set xα = x(Lα)

and x∗
α = x∗(Lα)). By Proposition 3.1 this implies that (x∗

α, 0) ∈ ∂−ϕLα
(xα) and,

consequently,

(x∗, 0) ∈ ∂−fLα×Y (xα, yα) + U(Lα),

where U(L) = (L⊥ + (dim L)−1B) × {0}.

We further observe that, as f satisfies the Lipschitz condition,

∂−fM×Y (u, v) ⊂ ∂−fL×Y (u, v)

if L ⊂ M and, obviously, U(M) ⊂ U(L) in this case. Therefore

(x∗, 0) ∈ ∂−fL×Y (xα, yα) + U(L)

whenever L ⊂ Lα. It immediately follows that for any L there is a sequence {(xn, yn)}

converging to (x, y) such that (x∗, 0) ∈ lim sup∂−fL×Y (xn, yn). (Just take (xn, yn) =

(xαn
, yαn

) such that L ⊂ Lαn
, dim Lαn

→ ∞ and ‖y − yαn
‖ ≤ 1/n.) Therefore

(x∗, 0) ∈ ∂f(x, y).

This completes the proof of Proposition 3.3 for the case of a Lipschitz f . Passing

to the general case, we first note that nothing would change if we had chosen x∗(L)

subject to a looser condition x∗(L) ∈ ∂−ϕLε(L)(x(L) with, say, ε(L) = (dim L)−1. On

the other hand, it is an easy matter to see that

(3.3) ρ((x, α), epiϕ) = inf
y

ρ((x, y, α), epif)

(if, say we take the sum norm in X × Y × R) and if α = ϕ(x) = f(x, y), then 0 =

ρ((x, α), epiϕ) = ρ((x, y, α), epif). Then x∗ ∈ ∂ϕ(x) means that there is a λ > 0 such
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that (x∗,−1) ∈ λ∂ρ((x, ϕ(x)), epiϕ). By Proposition 2.4 of [7] for any finite dimensional

L ⊂ X there are sequences {εn} converging to zero and {xn} converging to x with ϕ(xn)

converging to ϕ(x) such that

(x∗,−1) ∈ lim sup
n→∞

∂−
(L×R)εn

ρ((xn, ϕ(xn)), epiϕ),

so that everything reduces to the above considered case of a Lipschitz function.

Remark. It is not clear whether it is possible to get the result of Proposition

3.3 for the approximate subdifferential under the sequential lower semicompactness

assumption. What follows from the proof in this case is that for a Lipschitz function

the proposition holds if X is Dini-Hadamard trustworthy (for in this case no restrictions

to finite dimensional subspaces is needed).

4. Operations with set-valued mappings. We consider here three oper-

ations with set-valued mappings: composition, addition and intersection. Given two

set-valued mappings, F from X into Y and G from Y into Z, the composition G ◦F is

defined as follows:

(G ◦ F )(x) =
⋃

y∈F (x)

G(y).

If F1, . . . , Fk are set-valued mappings from X into Y , then adding (algebraically)

their values at every x we get the sum of Fi:

(F1 + · · · + Fk)(x) = F1(x) + · · · + Fk(x),

and intersection of values gives the intersection of Fi:

(
⋂

Fi)(x) =
⋂

Fi(x).

The following proposition is elementary.

Proposition 4.1. (a) For the composition G ◦ F of set-valued mappings F

from X into Y and G from Y into Z we have

χG◦F (x, z) = inf
y

(χF (x, y) + χG(y, z));

(b) for the sum F = F1 + · · · + Fk of set-valued mappings from X into Y we

have

χF (x, y) = inf{χF1
(x, y1) + · · · + χFk

(x, yk) : y1 + · · · + yk = y};

(c) for the intersection F =
⋂

Fi of set-valued mappings from X into Y we

have

χF (x, y) = χF1
(x, y) + · · · + χFk

(x, y).
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We see that in each case the indicator function of the resulting operation appears

as a result of two subsequent operations: addition and minimization one of which can be

absent. Thus, knowing estimates for subdifferentials of sums of functions and marginal

functions, we can obtain estimates for coderivatives of composed set-valued mappings.

5. Weak fuzzy calculus of elementary coderivatives. In this section either

∂ is the Dini-Hadamard subdifferential and X, Y, Z, as well as their products2, are

Dini-Hadamard trustworthy spaces, or ∂ is the Fréchet subdifferential and the spaces

are Asplund. (In fact, what we need is that ∂ satisfies the weak fuzzy calculus rule.)

Proposition 5.1. Let F : X → Y and G : Y → Z be set-valued mappings

with closed graphs. Let z ∈ (G ◦ F )(x) and x∗ ∈ D∗(G ◦ F )(x, z)(z∗). Then for any

y ∈ F (x)
⋂

G−1(z), any ε > 0 and any weak∗ neighborhoods U∗, V ∗ and W ∗ of zeros

in X∗, Y ∗ and Z∗ respectively there are x ∈ X, y1, y2 ∈ Y , z ∈ Z, and x∗ ∈ X∗,

y∗1, y∗2 ∈ Y ∗, z∗ ∈ Z∗ such that

(5.1)















‖x − x‖ < ε, ‖yi − y‖ < ε, ‖z − z‖ < ε;

x∗ ∈ D∗F (x, y1)(y
∗
1), y∗2 ∈ D∗G(y2, z)(z∗);

x∗ ∈ x∗ + U∗, y∗1 − y∗2 ∈ V ∗, z∗ ∈ z∗ + W ∗.

P r o o f. Consider the sets S1 = GraphF × Z and S2 = X × GraphG. Then

(5.2) inf
y

(χF (x, y) + χG(y, z)) = inf
y

(δS1
(x, y, z) + δS2

(x, y, z)).

Therefore by Propositions 3.1 and 4.1(a)

(5.3) (x∗, 0,−z∗) ∈ ∂(δS1
+ δS2

)(x, y, z).

As the sets Si are closed, the functions δSi
are lower semicontinuous and we can apply

the weak fuzzy calculus rule to conclude that for given ε > 0, U∗, V ∗, W ∗ there are

xi, yi, zi and x∗
i , y∗i , z∗i , (i = 1, 2), such that

(5.4)















‖xi − x‖ < ε, ‖yi − y‖ < ε, ‖zi − z‖ < ε;

(x∗
1,−y∗1,−z∗1) ∈ ∂δS1

(x1, y1, z1), (x∗
2, y

∗
2,−z∗2) ∈ ∂δS2

(x2, y2, z2);

x∗
1 + x∗

2 ∈ x∗ + U∗, y∗1 − y∗2 ∈ V ∗, z∗1 + z∗2 ∈ z∗ + W ∗.

2It is not known whether a product of two ∂-trustworthy space is ∂-trustworthy. This is certainly
the case for the Dini-Hadamard subdifferential if there are Gâteaux differentiable Lipschitz bump
functions on the spaces.
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It remains to notice that (by the axioms (f) and (c) of subdifferential) ∂δS1
(x, y, z) =

∂χF (x, y) × {0} and ∂δS2
(x, y, z) = {0} × ∂χG(y, z) and set x = x1, x∗ = x∗

1, z = z2

and z∗ = z∗2 . �

Proposition 5.2. Let Fi : X → Y, (i = 1, . . . , k) be set-valued mappings

with closed graphs. Set F (x) = F1(x) + · · · + Fk(x) and assume that y ∈ F (x) and

x∗ ∈ D∗F (x, y)(y∗). Assume further that yi ∈ Fi(x), y1 + · · · + yk = y. Then for any

ε > 0 and any weak∗ neighborhoods U∗, V ∗ of zeros in X∗ and Y ∗ respectively there

are xi, yi, x∗
i , y∗i (i = 1, . . . , k) such that

(5.5)















‖xi − x‖ < ε, ‖yi − yi‖ < ε,

x∗
i ∈ D∗F i(xi, yi)(y

∗
i ),

x∗
1 + · · · + x∗

k ∈ x∗ + U∗, y∗i ∈ y∗ + W ∗ (i = 1, . . . , k),

P r o o f. Consider the following sets and functions on X × Y k+1:

Si = {(x, y, y1, . . . , yk) : yi ∈ Fi(x)}, i = 1, . . . , k;

S0 = {(x, y, y1, . . . , yk) : y = y1 + · · · + yk};

fi(x, y, y1, . . . , yk) = δSi
(x, y, y1, . . . , yk), i = 0, . . . , k.

Then by Proposition 4.1(b)

χF (x, y) = inf
y1,...,yk

k
∑

i=0

fi(x, y, y1, . . . , yk).

By Proposition 3.1

(5.6) (x∗,−y∗, 0, . . . , 0) ∈ ∂

(

k
∑

i=0

fi

)

(x, y, y1, . . . , yk),

so applying the weak fuzzy calculus rule (as all fi are l.s.c.) we shall find (for given

ε, U∗, V ∗) xi, vi, yij, x∗
i , v∗i , y∗ij, (i, j = 1, . . . , k), such that

(5.7)































‖xi − x‖ < ε, ‖vi − y‖ < ε, ‖yij − y‖ < ε;

(x∗
i ,−v∗i ,−y∗i1, . . . ,−y∗ik) ∈ ∂fi(xi, vi, yi1, . . . , yik);

k
∑

i=1

x∗
i ∈ x∗ + U∗,

k
∑

i=0

v∗i ∈ y∗ + V ∗/2,
k
∑

i=0

y∗ij ∈ V ∗/2 (j = 1, . . . , k).

We have for i = 1, . . . , k (as fi does not depend on y and yij for j 6= i): v∗i = 0, y∗ij = 0

if i 6= j. Set y∗i = y∗ii, yi = yii. Then (x∗
i ,−y∗i ) ∈ ∂χFi

(xi, yi) which is the same as
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x∗
i ∈ D∗F i(xi, yi)(y

∗
i ) for i = 1, . . . , k. Furthermore (as S0 is a convex set), y∗0j = −v∗0

for every j = 1, . . . , k. So by (5.7) v∗0 ∈ y∗ + V ∗/2 and −v∗0 + y∗i ∈ V ∗/2, that is

y∗i ∈ y∗ + V ∗. This completes the proof. �

Proposition 5.3. Let Fi be as in Proposition 5.2 and F (x) =
⋂

Fi(x).

Assume that y ∈ F (x) and x∗ ∈ D∗F (x, y)(y∗). Then for any ε > 0 and any weak∗

neighborhoods U∗, V ∗ of zeros in X∗ and Y ∗ respectively there are xi, yi, x∗
i , y∗i

(i = 1, . . . , k) such that

‖xi − x‖ < ε, ‖yi − yi‖ < ε,
x∗

i ∈ D∗F i(xi, yi)(y
∗
i ),

x∗
1 + · · · + x∗

k ∈ x∗ + U∗, y∗1 + · · · + y∗k ∈ y∗ + W ∗.

P r o o f. By Proposition 4.1(c), χF =
∑

χFi
and the direct application of the

weak fuzzy calculus rule gives the desired result. �

6. Strong fuzzy calculus for Fréchet coderivatives. In this section all

spaces are Asplund (Fréchet trustworthy) and ∂ is the Fréchet subdifferential.

The strong fuzzy calculus rule requires the general metric qualification condi-

tion. So we have to find out first what this condition means for indicator functions.

Proposition 6.1. Let S1, . . . , Sk be closed subsets of X, and let x ∈
⋂

Si.

Then the indicator functions δSi
satisfy the general metric qualification condition at

x ∈
⋂

Si if and only if there is a nondecreasing nonnegative function ω(t) on R+ which

is continuous and equal to zero at zero and such that

(6.1) ρ(x,
⋂

Si) ≤ ω
(

∑

ρ(x, Si)
)

for all x of a neighborhood of x.

P r o o f. If we consider the sum norm ‖(x, α)‖ = ‖x‖ + |α| in X × R, then for

any set S

ρ((x, α), epiδS) = ρ(x, S) + α−

(where α− = max{0,−α}). Therefore if (6.1) is valid, then setting f = δ∩Si
, we have

for α =
∑

αi.

ρ((x, α), epiδ∩Si
) = ρ(x,

⋂

Si) + α−

≤ ω (
∑

ρ(x, Si)) + α− ≤ ω (
∑

ρ(x, Si)) +
∑

α−
i

≤ ω′
(

∑

(ρ(x, Si) + α−
i )
)

= ω′ (
∑

ρ((x, αi), epiδSi
)) ,

where ω′(t) = ω(t) + t.
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Conversely, let

ρ((x, α), epiδ∩Si
) ≤ ω(

∑

ρ((x, αi), epiδSi
).

Then taking α = αi = 0, we get (6.1).

Thus, if F1, . . . , Fk are set-valued mappings from X into Y , then the indicator

functions of their graphs satisfy the general metric qualification condition at (x, y) if

and only if for a certain function ω with the properties described above

ρ((x, y),
⋂

GraphF i) ≤ ω

(

∑

i

ρ((x, y),GraphF i)

)

for all (x, y) of a neighborhood of (x, y). �

Proposition 6.2. Let F : X → Y and G : Y → Z be set-valued

mappings with closed graphs. Set H(x, z) = F (x)
⋂

G−1(z), let z ∈ (G ◦ F )(x),

x∗ ∈ D∗(G ◦ F )(x, z)(z∗) and y ∈ H(x, z). Assume that there is a nonnegative nonde-

creasing function ω on R+, which is continuous and equal to zero at zero, such that

ρ((x, y, z),GraphH) ≤ ω(ρ((x, y),GraphF ) + ρ((x, y),GraphG))

for all (x, y, z) of a neighborhood of (x, y, z). Then for any ε > 0 there are x ∈ X,

y1, y2 ∈ Y , z ∈ Z, and x∗ ∈ X∗, y∗1, y∗2 ∈ Y ∗, z∗ ∈ Z∗ such that

(6.2)















‖x − x‖ < ε, ‖yi − y‖ < ε, ‖z − z‖ < ε;

x∗ ∈ D∗F (x, y1)(y
∗
1), y∗2 ∈ D∗G(y2, z)(z∗);

‖x∗ − x∗‖ < ε, ‖y∗1 − y∗2‖ < ε, ‖z∗ − z∗‖ < ε.

P r o o f. The same as the proof of Proposition 5.1. We only need to observe

that S1
⋂

S2 = GraphH, ρ((x, y),GraphF ) = ρ((x, y, z), S1), and ρ((y, z),GraphG)

= ρ((x, y, z), S2) and apply the strong fuzzy calculus rule to pass from (5.3) (with ∂

being the Fréchet subdifferential) to (6.2). �

Proposition 6.3. Let Fi : X → Y, (i = 1, . . . , k) be set-valued mappings

with closed graphs. Set F (x) = F1(x) + · · · + Fk(x) and assume that y ∈ F (x) and

x∗ ∈ D∗F (x, y)(y∗). Let yi ∈ Fi(x), y1 + · · · + yk = y. Assume finally that there is a

nonnegative nondecreasing function ω on R+, which is continuous and equal to zero at

zero, such that

ρ((x, y),GraphF ) ≤ ω
(

∑

ρ((x, yi),GraphF i) + ‖y −
∑

yi‖
)

for all (y, y1, . . . , yk) of a neighborhood of (y, y1, . . . , yk).
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Then for any ε > 0 there are xi, yi, x∗
i , y∗i (i = 1, . . . , k) such that

(6.3)















‖xi − x‖ < ε, ‖yi − yi‖ < ε;

x∗
i ∈ D∗F i(xi, yi)(y

∗
i ) (i = 1, . . . , k);

‖x∗
1 + · · · + x∗

k − x∗‖ < ε, ‖y∗i − y∗‖ < ε.

P r o o f. The same as the proof of Proposition 5.2. We only need to observe

that ρ((x, yi),GraphF i) = ρ((x, y, y1, . . . , yk), Si) for i = 1, . . . , k and ‖y −
∑

yi‖ is the

distance from (x, y, y1, . . . , yk) to S0 and apply the strong fuzzy calculus to get (6.3)

from (5.6). �

Proposition 6.4. Let Fi be as in Proposition 6.3 and F (x) =
⋂

Fi(x). As-

sume that y ∈ F (x) and x∗ ∈ D∗F (x, y)(y∗). Assume finally that there is a nonnegative

nondecreasing function ω on R+, which is continuous and equal to zero at zero, such

that (6.1) holds.

Then for any ε > 0 there are xi, yi, x∗
i , y∗i (i = 1, . . . , k) such that

‖xi − x‖ < ε, ‖yi − yi‖ < ε,

x∗
i ∈ D∗F i(xi, yi)(y

∗
i ) (i = 1, . . . , k),

‖x∗
1 + · · · + x∗

k − x∗‖ < ε, ‖y∗1 + · · · + y∗k − y∗‖ < ε.

7. Exact calculus for approximate subdifferentials. In this section X, Y, Z

are arbitrary Banach spaces and ∂ is the approximate subdifferential. Results analogous

to those presented in the section are also valid for the limiting Fréchet subdifferential,

and no change in proofs is required. Exact calculus for approximate subdifferentials

requires the linear-rate metric qualification condition which is a special case of the

general metric qualification condition corresponding to ω(t) = Kt. Therefore for such

ω(·) Proposition 6.1 gives the characterization for the linear-rate metric qualification

condition for indicator functions as well.

Proposition 7.1. Let F : X → Y and G : Y → Z be set-valued mappings

with closed graphs. Let z ∈ (G ◦ F )(x). Set H(x, z) = F (x)
⋂

G−1(z).

(a) Assume that for a certain y ∈ H(x, z) the set-valued mapping H is lower

semicontinuous at (x, y, z) and the inequality

(7.1) ρ((x, y, z),GraphH) ≤ K(ρ((x, y),GraphF ) + ρ((y, z),GraphG))

is satisfied for all (x, y, z) in a neighborhood of (x, y, z). Then

(7.2) D∗(G ◦ F )(x, z)(z∗) ⊂ (D∗F (x, y)) ◦ (D∗G(y, z))(z∗)
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for all z∗.

(b) Assume that H is topologically lower semicompact at (x, z) and for any

y ∈ H(x, z) there is a K > 0 such that (7.1) holds for all (x, y, z) of a neighborhood of

(x, y, z). Then

(7.3) D∗(G ◦ F )(x, z)(z∗) ⊂
⋃

y∈H(x,z)

(D∗F (x, y)) ◦ (D∗G(y, z))(z∗)

for all z∗.

P r o o f. Let x∗ ∈ D∗(G ◦ F )(x, z)(z∗). If (a) holds then, as in the proof of

Proposition 5.1, we get (5.3) (with ∂ being the approximate subdifferential) applying

Propositions 3.2 and 4.1(a) to (5.2). Then, as in the proof of Proposition 6.2, we observe

that (7.1) implies the linear-rate metric qualification condition for δS1
and δS2

. This

means that the exact calculus rule can be applied to these functions at (x, y, z) which

implies the existence of a y∗ such that (x∗,−y∗, 0) ∈ ∂δS1
(x, y, z) and (0, y∗,−z∗) ∈

∂δS2
(x, y, z), from which we get that y∗ ∈ D∗G(y, z)(z∗) and x∗ ∈ D∗F (x, y)(y∗) (by

specifying the expressions for ∂δS1
and ∂δS1

with the help of the properties (f) and (c)

of subdifferential as it was done in the proof of Proposition 5.1).

This completes the proof of (a).

In case of (b) we have to apply Proposition 3.3 instead of Proposition 3.2 to

get, instead of (5.3), the inclusion

(x∗, 0,−z∗) ∈
⋃

y∈H(x,z)

∂(δS1
+ δS2

)(x, y, z).

The rest of the proof is exactly the same as in (a). �

Proposition 7.2. Let Fi : X → Y (i = 1, . . . , k) be set-valued mappings

with closed graphs. Set F (x) = F1(x) + · · · + Fk(x). Let (x, y) ∈ GraphF . Define the

set-valued mapping H : X × Y → Y k:

H(x, y) = {(y1, . . . , yk) : yi ∈ Fi(x),
∑

i

yi = y}.

(a) Assume that there are (y1, . . . , yk) ∈ H(x, y) and a K > 0 such that H is

lower semicontinuous at (x, y, y1, . . . , yk) and

(7.4) ρ((x, y),GraphF ) ≤ K
(

∑

ρ((x, yi),GraphF i) + ‖y −
∑

yi‖
)

for all (x, y, y1, . . . , yk) of a neighborhood of (x, y, y1, . . . , yk). Then

(7.5) D∗F (x, y)(y∗) ⊂ D∗F (x, y1)(y
∗) + · · · + D∗F (x, yk)(y

∗)
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for all y∗.

(b) Assume that H is topologically lower semicompact at (x, y) and for any

(y1, . . . , yk) ∈ H(x, y) there is a K > 0 such that (7.4) holds for all (x, y, y1, . . . , yk) of

a neighborhood of (x, y, y1, . . . , yk). Then

(7.6) D∗F (x, y)(y∗) ⊂
⋃

(y1,...,yk)∈H(x,y)

(D∗F 1(x, y1)(y
∗) + · · · + D∗F k(x, yk)(y

∗))

for all y∗.

P r o o f. Assume that the condition of (a) holds. Let x∗ ∈ D∗F (x, y)(y∗).

Then applying Propositions 3.2 and 4.1(b), we get (5.6) (with ∂ being the approximate

subdifferential and the same functions fi as in the proof of Proposition 5.2). Then,

as in the proof of Proposition 6.3, we observe that (7.4) is exactly the linear-rate

metric qualification condition for functions fi. Now applying to (5.6) the exact calculus

rule, we find x∗
i , v∗i , y∗ij such that (x∗

i ,−v∗i ,−y∗i1, . . . ,−y∗ik) ∈ ∂fi(x, y, y1, . . . , yk) such

that
∑k

i=0 x∗
i = x∗,

∑k
i=0 v∗i = y∗,

∑k
i=0 y∗ij = 0 for every i = 1, . . . , k. As each fi

(i = 1, . . . , k) depends only on x and yi, we have v∗i = 0 and y∗ij = 0 (i 6= j) for such

i (as in the proof of Proposition 5.2) and as f0 is a convex function not depending on

x, we have x∗
0 = 0 and v∗0 = y∗ii for i = 1, . . . , k. It follows that y∗ii = v∗0 = y∗ and

∑k
i=1 x∗

i = x∗.

Assuming (b), we have to use Proposition 3.3 instead of 3.2. So instead of (5.6)

we shall have

(x∗,−y∗, 0, . . . , 0) ∈
⋃

(y1,...,yk)∈H(x,y)

∂
(

∑

fi

)

(x, y, y1, . . . , yk)

which means that there is a certain (y1, . . . , yk) ∈ H(x, y) for which (5.6) holds. The

rest of the proof is as in (a). �

Proposition 7.3. Let F and Fi be as in Proposition 6.4. Assume that

y ∈ F (x) and

ρ((x, y),GraphF ) ≤ K (
∑

ρ((x, yi),GraphF i))

for all (x, y) in a neighborhood of (x, y). Then, given x∗ and y∗ such that x∗ ∈

D∗F (x, y)(y∗), there are y∗1, . . . , y
∗
k such that y∗1 + · · · + y∗k = y∗ and

x∗ ∈ D∗F 1(x, y)(y∗1) + · · · + D∗F k(x, y)(y∗k).

P r o o f. This is an immediate consequence of the exact calculus rule and Propo-

sition 6.1. �



Subdifferentials of performance functions . . . 377

8. Subdifferential qualification conditions. By that we mean sufficient

criteria for metric qualification conditions stated in terms of subdifferentials (or normal

cones, or coderivatives).

Proposition 8.1. Assume that X is a ∂-trustworthy space as well as its

powers. Let Si, (i = 1, . . . , k) be closed subsets of X, and let x ∈
⋂

Si = S. Assume

finally that there are α ∈ (0, 1) and ε > 0 such that

(8.1) xi ∈ Si\S, ‖xi − x‖ ≤ ε, x∗
i ∈ N(Si, xi), ‖

∑

x∗
i ‖ ≤ ε ⇒ max

i
‖x∗

i ‖ ≤ α.

Then there is a K > 0 such that

(8.2) ρ(x, S) ≤ K
∑

ρ(x, Si)

for all x of a neighborhood of x.

Moreover, if ∂ has exact calculus on Xk+1, then the condition x∗
i ∈ N(Si, xi)

in the left part of (8.1) can be strengthened and replaced by x∗
i ∈ (k + 1)∂ρ(xi, Si).

(To see how much weaker is the linear-rate metric condition (8.2) in comparison

with (8.1), consider again the positive and the negative orthants in R
2 or l2.)

P r o o f. A sketch of the proof for two sets can be found in [10]. The complete

argument follows (which is basically a slight modification of that given in the proof of

Theorem 5.1 of [7]).

Assuming the contrary, we shall find a sequence {un} converging to x such that

εn = ρ(un,
⋂

Si) > 2n
∑

ρ(un, Si). This means that there are uin ∈ Si such that

(8.3)
∑

i

‖un − uin‖ < εn/2n.

(Observe that ρ(uin,
⋂

Si) ≥ (1 − (1/2n))εn in this case.) Applying Ekeland’s varia-

tional principle to the function
∑

‖x − xi‖ +
∑

δSi
(xi), we shall find, taking (8.3) into

account, a vn and v1n ∈ S1, . . . , vkn ∈ Sk such that

(8.4) ‖un − vn‖ +
∑

‖uin − vin‖ ≤ εn/2

and the function

(x, x1, . . . , xk) 7→
∑

‖x − xi‖ + n−1(‖x − vn‖ +
∑

‖xi − vin‖)

attains minimum on X × S1 × . . . × Sk at (vn, v1n, . . . , vkn).

Observe that, as follows from (8.3), (8.4), neither vn nor any of vin can belong

to
⋂

Si. This means that at least for one i we have vn 6= vin.
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Consider first the case when ∂ has exact calculus. As the function above satisfies

the Lipschitz condition with constant not exceeding k + 1, the function

f(x, x1, . . . , xk) =
∑

‖x − xi‖ + n−1
(

‖x − vn‖ +
∑

‖xi − vin‖
)

+ (k + 1)
∑

ρ(xi, Si)

attains an unconditional minimum at (vn, v1n, . . . , vkn).

This means that (0, 0, . . . , 0) ∈ ∂f(vn, v1n, . . . , vkn). As f is a sum of Lipschitz

functions, hence satisfying the linear metric qualification condition, we can apply the

exact fuzzy calculus rule and find u∗
in ∈ ∂‖ · ‖(vn − vin) and v∗in ∈ (k + 1)∂ρ(vin, Si)

such that

‖
∑

v∗in‖ ≤ n−1, ‖ − u∗
in + v∗in‖ ≤ n−1, i = 1, . . . , k.

As there is an index i for which vn 6= vin, we have ‖u∗
in‖ = 1 at least for one i. Thus,

we have sequences {vin} ⊂ Si\S, i = 1, . . . , k, converging to x and {v∗in} such that

v∗in ∈ (k + 1)∂ρ(vin, Si) and ‖
∑

v∗in‖ → 0, and on the other hand maxi ‖v
∗
in‖ → 1.

Setting xn = vn we see that the result contradicts the assumptions.

In the general case when ∂ may not have exact calculus, we consider instead of

f the function

g(x, x1, . . . , xk) =
∑

‖x − xi‖ + n−1
(

‖x − vn‖ +
∑

‖xi − vin‖
)

+
∑

δSi
(xi)

Clearly, this function attains its minimum at (vn, v1n, . . . , vkn) so that we have as above

(0, 0, . . . , 0) ∈ ∂g(vn, v1n, . . . , vkn).

We can consider g as the sum of a Lipschitz (actually convex continuous) func-

tion

g1(x, x1, . . . , xk) =
∑

‖x − xi‖ + n−1 (‖x − vn‖ + ‖xi − vin‖)

and a lower semicontinuous function

g2(x, x1, . . . , xk) =
∑

δSi
(xi).

Therefore g satisfies the general metric qualification condition and we can apply the

basic fuzzy principle and find xn, x1n, . . . , xkn, w1n, . . . , wkn such that ‖xn − vn‖ → 0,

‖xin − vin‖ → 0, ‖win − vin‖ → 0 as n → ∞ with xn and win so close to vn and vin

respectively that xn 6= win for at least one i and, on the other hand, (x∗
n, w∗

1n, . . . , w∗
kn) ∈

∂g1(xn, w1n, . . . , wkn) and (w∗
n, x∗

1n, . . . , x∗
kn) ∈ ∂g2(x1n, . . . , xkn) such that ‖x∗

n−w∗
n‖ <

n−1, ‖x∗
in − w∗

in‖ < n−1, i = 1, . . . , k.

As all terms in g1 are convex continuous, for some u∗
in ∈ ∂‖ · ‖(xn − win) we

have by standard rules of convex analysis: ‖x∗
n −

∑

u∗
in‖ ≤ n−1 and ‖u∗

in −w∗
in‖ ≤ n−1.

On the other hand, by the property (f) of subdifferentials, x∗
in ∈ ∂δSi

(xin) = N(Si, xin)

and w∗
in = 0. As in the first part of the proof, ‖u∗

jn‖ = 1 for at least one index j and
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therefore the norm of the corresponding x∗
in goes to one as n → ∞ and we again see

that (8.1) is satisfied for x∗
in and therefore come to a contradiction proving the claim.

As an immediate corollary of the proposition, we get the following result.

Corollary 8.2. Let ∂ and X be as in Proposition 8.1, and let the spaces

Y and Z belong to the same class as X (as well as powers and products of the three

spaces). Let F , G and H be as in Proposition 6.2, and let y ∈ H(x, z). Assume finally

that there are ε > 0 and α ∈ (0, 1) such that

‖x − x‖ < ε, ‖y − y‖ < ε, ‖z − z‖ < ε;

x∗ ∈ D∗F (x, y1)(y
∗
1), y∗2 ∈ D∗G(y2, z)(z∗);

‖x∗‖ < ε, ‖y∗1 − y∗2‖ < ε, ‖z∗‖ < ε















⇒ max{‖y∗1‖, ‖y
∗
2‖} ≤ α.

Then there is a K > 0 such that

(8.5) ρ((x, y, z),GraphH) ≤ K(ρ((x, y),GraphF ) + ρ((y, z),GraphG))

for all (x, y, z) sufficiently close to (x, y, z).

P r o o f. Apply Proposition 8.1 to S1 = GraphF ×Z and S2 = X×GraphG. �

Corollary 8.3. Let ∂, X, Y be as in Corollary 8.2. Let F and Fi be as

in Proposition 6.3, and let yi ∈ Fi(x),
∑

yi = y. Assume that there are ε > 0 and

α ∈ (0, 1) such that

(8.6)
‖xi − x‖ +

∑

‖yi − y‖ < ε, yi ∈ Fi(xi);

‖y∗i − y∗‖ < ε, ‖y∗‖ < ε, x∗
i ∈ D∗F i(xi, yi)(y

∗
i ), ‖

∑

x∗
i ‖ < ε

}

⇒ max
i

‖x∗
i ‖ ≤ α.

Then there is a K > 0 such that

(8.7) ρ((x, y),GraphF ) ≤ K
∑

ρ((x, yi),GraphG)

for all (x, y, y1, . . . , yk) sufficiently close to (x, y, y1, . . . , yk) and such that y1+· · ·+yk =

y.

P r o o f. Let Si, i = 0, . . . , k be as in the proofs of Propositions 5.2 and 6.3.

Then (8.6) reduces precisely to (8.1): we have seen that for such Si

(x∗, y∗, y∗1, . . . , y
∗
k) ∈ N((x, y, y1, . . . , yk), Si),

implies y∗ = 0, y∗j = 0 if j 6= i for i = 1, . . . , k, and x∗ = 0, y∗ = y∗1 = · · · = y∗k for

i = 0. Therefore (8.2) holds which in our case is precisely (8.7).

In the context of Asplund spaces, the condition (8.6) was recently introduced

in [18] under the name “fuzzy qualification condition”and used to obtain the strong
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fuzzy calculus rule. We see that this condition is strictly stronger that the linear-rate

metric qualification condition, and all the more than the “uniform lower semicontinuity

condition” of [2, 11] known to be sufficient for the strong fuzzy calculus in Asplund

spaces.

The three concluding results are corollaries from Proposition 8.1 for approximate

subdifferentials.

Corollary 8.4. Let X be a Banach space, and let ∂ stand for approximate

subdifferential. Let Si, i = 1, . . . , k be closed subsets of X and x ∈
⋂

Si. Suppose

further that all Si with a possible exception of one of them are compactly epi-Lipschitz3

at x. Then the condition

(8.8) x∗
i ∈ N(x, Si),

∑

x∗
i = 0 ⇒ x∗

1 = · · · = x∗
k = 0

is sufficient for the existence of a K > 0 such that (8.2) holds for all x sufficiently close

to x.

As stated, the result was proved in [15, 12]; earlier it was proved in [7] under a

stronger assumption that the sets are epi-Lipschitz at x.

For approximate coderivatives of set-valued mappings a corresponding calculus

rule can be obtained under a weaker (than the compactly epi-Lipschitz property of the

graph) condition, as was first observed in [19] for limiting Fréchet subdifferentials in

Asplund spaces.

We shall say following [9] that a set-valued mapping F is sequentially codi-

rectionally compact at (x, y) ∈ GraphF if for any sequence {xn, yn, x∗
n, y∗n} such that

yn ∈ F (xn), x∗
n ∈ D∗F (xn, yn)(y∗n), (xn, yn) → (x, y), ‖x∗

n‖ → 0 zero belongs to the

norm closure of {y∗n}, provided it belongs to the weak∗ closure of the sequence. This is

a sequential version of the property introdused in [23] (for arbitrary cone-valued map-

pings, not necessarily coderivatives). Both versions are satisfied when the graph of F

is compactly epi-Lipschitz at (x, y).

Corollary 8.5. Let X, Y, Z be Banach spaces, let F and G be set-valued

mappings from X into Y and from Y into Z respectively, and let ∂ stand for the

approximate subdifferential. Set as above H(x, z) = F (x)
⋂

G−1(z) and assume that

(x, y, z) ∈ GraphH. Suppose finally that the following two conditions are satisfied:

(a) either G is sequentially codirectionally compact at (y, z) or F−1 is sequen-

tially codirectionally compact at (y, x);

3 S is compactly epi-Lipschitz at x (see [3]) if there are ε > 0 and a compact set P ⊂ X such that
for any t ∈ [0, ε]

(x + εB) ∩ S + tB ⊂ S + tP.
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(b) 0 ∈ D∗F (x, y)(y∗) & y∗ ∈ D∗G(y, z)(0) ⇒ y∗ = 0.

Then there is a K > 0 such that (8.5) holds for all (x, y, z) of a neighborhood of (x, y, z).

P r o o f. Again we consider the sets S1 = GraphF × Z and S2 = X × GraphG.

All we need to verify is that the conditions of Proposition 8.1 are satisfied for these sets

at (x, y, z). Assuming the contrary, we find sequences of (xin, yin, zin) ∈ Si converging

to (x, y, z) and (x∗
in, y∗in,−z∗in) ∈ 3∂ρ((xin, yin, zin), Si) , i = 1, 2, such that

(8.9) ‖x∗
1n + x∗

2n‖ → 0, ‖y∗1n + y∗2n‖ → 0, ‖z∗1n + z∗2n‖ → 0

and for any n the maximum of the norms of the six functionals is not smaller than one.

We then observe (as in the proofs of Propositions 5.1, 6.2 and 7.1) that x∗
2n = 0 and

z∗1n = 0 which implies that maxi ‖y
∗
in‖ ≥ 1 and consequently by (8.9) that

(8.10) lim inf
n→∞

‖y∗in‖ ≥ 1, i = 1, 2.

Setting xn = x1n, x∗
n = x∗

1n, zn = z2n, z∗n = z∗2n, we have

(x∗
n, y∗1n) ∈ 3∂ρ((xn, y1n),GraphF ), (y∗2n,−z∗n) ∈ 3∂ρ((y2n, zn),GraphG).

Let y∗ belong to the weak∗ closure of {y∗2n} (note that this is a bounded sequence).

Then by (8.9) (and in view of the upper semicontinuity of approximate subdifferentials

of a Lipschitz function),

(0,−y∗) ∈ 2∂ρ((x, y),GraphF ), (y∗,−z∗) ∈ 2∂ρ((y, z),GraphG).

By (b) this implies that y∗ = 0 and by (a) zero must belong to the norm closure of

either of {y∗in}, in contradiction with (8.10). �

Corollary 8.6. Let X, Y be Banach spaces, let Fi, i = 1, . . . , k, be set-

valued mappings from X into Y with closed graphs, and let ∂ stand for the approximate

subdifferential. Let F = F1 + · · · + Fk, let y ∈ F (x), and let yi ∈ Fi(x) be such that
∑

yi = y. Suppose finally that the following two conditions are satisfied:

(a) the mappings F−1
i with possible exception of one of them are sequentially

codirectionally compact at (yi, x) respectively;

(b) x∗
i ∈ D∗F i(x, yi)(0),

∑

x∗
i = 0 ⇒ x∗

1 = · · · = x∗
k = 0.

Then there is a K > 0 such that (8.7) holds for any (x, y, y1, . . . , yk) of a neighborhood

of (x, y, y1, . . . , yk) satisfying
∑

yi = y.

P r o o f. The general scheme of the proof is exactly as in the previous case.

Take the same Si as in the proofs of Propositions 5.2 and 6.3: Si = {(x, y, y1, . . . , yk) ∈

X × Y k+1 : yi ∈ Fi(x)} for i = 1, . . . , k and S0 = {(x, y, y1, . . . , yk) ∈ X × Y k+1 :
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∑

yi = y}. Assuming that the conditions of Proposition 8.1 are not satisfied for

Si at (x, y, y1, . . . , yk), we shall find sequences of (xin, yin, y1in, . . . , ykin) ∈ Si and

(x∗
in, v∗in, y∗1in, . . . , y∗kin) ∈ (k + 1)∂ρ((xin, yin, y1in, . . . , ykin), Si) such that

(8.11)
∑

i

‖x∗
in‖ → 0,

∑

i

‖v∗in‖ → 0,
∑

i

‖y∗jin‖ → 0, j = 1, . . . , k

and for any n maximum of the norms of the functionals is not smaller than one. As

in the proofs of Propositions 5.2, 6.3 and 7.2, we notice that x∗
0n = 0, y∗jin = 0 if

i ≥ 1, j 6= i, v∗in = 0 if i ≥ 1 and y∗j0n = v∗0n for i = 1, . . . , k. So setting yin = yiin and

y∗in = y∗iin for i = 1, . . . , k, y∗0n = v∗on, we conclude that ‖y∗in‖ → 0 for all i = 0, . . . , k,

(8.12) (x∗
in,−y∗in) ∈ (k + 1)∂ρ((xin, yin),GraphF i),

and maxi ‖x
∗
in‖ ≥ 1, so that, taking if necessary a subsequence, we conclude from (8.11)

(8.13) lim inf
n→∞

‖x∗
in‖ ≥ 1

at least for two indices i. As {x∗
in} are bounded sequences, we can find points x∗

i in

their respective weak∗ closures such that (x∗
1, . . . , x

∗
k) belongs to the weak-star closure

of {(x∗
1n, . . . , x∗

kn)} in (X∗)k and
∑

x∗
i = 0 (by (8.11)). By (8.12), x∗

i ∈ D∗F i(x, yi)(0)

which by (b) implies that all x∗
i are zeros. By (a) this means that the sequences x∗

in

save at most one of them contain subsequences norm converging to zero. But this

contradicts the established fact that (8.13) must be valid at least for two sequences.

This completes the proof of the corollary. �

We leave to the reader the elementary task of combining Corollaries 8.2, 8.3, 8.5

and 8.6 with the corresponding propositions of §§ 5 – 7 to obtain calculus rules under

subdifferential qualification conditions.

We also note that the last three corollaries are valid also for the limiting Fréchet

subdifferential in Asplund spaces [17]. Actually, the proofs of analogues of the last two

corollaries in this case are even simpler: one only needs to pass to limits in Corollaries

8.2 and 8.3 applied to the Fréchet subdifferential on corresponding spaces.

Remark (added in proof). In [17], [19] a property similar to sequential

coderivative compactness (SCC) was called “partial sequential normal compactness”.

To eliminate the confusion we have to note that in the original version of [19] another

property was defined in which sequences {(xn, yn)} sufficiently close to (x, y), not only

those converging to (x, y), were considered while the name “partial normal compact-

ness” (PNS) wes used for a closely connected but differentproperty, and no sequential

property was used in the original version of [17]. And it is in the development of (PNS)

that the mentioned net predecessor of (SCC) was introduced in [23] and also in [14].
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