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STABILITY OF SUPPORTING AND EXPOSING ELEMENTS OF

CONVEX SETS IN BANACH SPACES

D. Azé∗, R. Lucchetti

Communicated by A.L. Dontchev

Abstract. To a convex set in a Banach space we associate a convex function
(the separating function), whose subdifferential provides useful information on the
nature of the supporting and exposed points of the convex set. These points are
shown to be also connected to the solutions of a minimization problem involving the
separating function. We investigate some relevant properties of this function and of
its conjugate in the sense of Legendre-Fenchel. Then we highlight the connections
between set convergence, with respect to the slice and Attouch-Wets topologies,
and convergence, in the same sense, of the associated functions. Finally, by using
known results on the behaviour of the subdifferential of a convex function under
the former epigraphical perturbations, we are able to derive stability results for
the set of supported points and of supporting and exposing functionals of a closed
convex subset of a Banach space.

1. Introduction. In this paper, we work with a function characterizing convex
sets which is neither the indicator function nor the support function. This function,
which we call the separating function of the convex set C, is defined in the following
way: For all x ∈ X, and setting inf Ø = +∞, let f[C,u] be defined as

f[C,u](x) = inf{t ∈ R : x + tu ∈ C},
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where u is a norm one vector.

The subdifferential of this function carries on some information on the exposed points
and exposing functionals of the closed convex set. Moreover, the mapping which assigns
to the set its separating function enjoys some bicontinuity properties with respect to the
slice and Attouch-Wets topologies. This observation, along with continuity properties of
the subdifferential with respect to the quoted variational convergences, leads to stability
results for the sets of support points, exposed points and supporting functionals when
the closed convex set moves along these topologies. The paper is organized as follows.
In section 2 we precise our notations and recall some results that will be used in the
sequel. In section 3 the separating function is introduced and some of its properties are
reviewed. We also give a quantitative version of the celebrated Bishop-Phelps Theorem
([16]). In section 4 we include all the results related to stability. In particular we
prove a continuity result for the subdifferential of convex functions in Asplund spaces,
using the Attouch-Wets topology, and we establish stability properties for the set of
supporting and exposing elements of a closed convex set of a Banach space.

2. Preliminaries and notations. Let us begin with some definitions. Given
a normed vector space (X, ‖.‖), we shall indicate by BX the closed unit ball and by SX

the unit sphere. The closed ball with center x and radius r is denoted by B(x, r), but
when x = 0, we shall also write rBX . The product of normed spaces X ×Y is endowed
with the norm

‖(x, y)‖ = max(‖x‖, ‖y‖).
We shall indicate by X∗ the (continuous) dual of the Banach space X and by 〈·, ·〉 the
usual pairing between X and X∗.

Given a function f : X −→ R ∪ {+∞} and given λ ∈ R we denote by [f ≤ λ]
the set of those x ∈ X with f(x) ≤ λ, and by epi f the set

epi f = {(x, t) ∈ X × R : f(x) ≤ t}.

As it is easy to show, epi f is closed if and only if f is lower semicontinuous and convex
if and only if f is convex. In the sequel, as it is usual in an optimization setting, we shall
often identify a function with its epigraph: in particular, when we want to topologize
the set of the lower semicontinuous (and convex) functions f : X −→ R ∪ {+∞}, we
intend to define a topology on the closed (and convex) subsets of X × R.

We denote by F(X) the set of the closed subsets of X, by C(X) (resp. C(X∗))
the set of the subsets of X (resp. X∗) which are convex and σ(X,X∗)-closed (resp.
σ(X∗,X)-closed). Conv (X) will be the set of the extended real-valued (i.e. valued in
R ∪ {+∞}) convex functions defined on X and Γ0(X) (resp. Γ0(X

∗)) the set of the
proper (i.e. not identically equal to +∞) functions on X (resp. X∗) whose epigraphs
belong to C(X × R), (resp. C(X∗ × R)). The sets Γ0(X) and Γ0(X

∗) are connected
by one to one mappings L and L∗, the Legendre-Fenchel transforms, defined for all
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f ∈ Γ0(X), g ∈ Γ0(X
∗), x ∈ X, y ∈ X∗, by L(f) = f∗ and L∗(g) = g∗, where

f∗(y) = sup{〈x, y〉 − f(x) : x ∈ X}

and
g∗(x) = sup{〈x, y〉 − g(y) : y ∈ X∗}.

Given ε ≥ 0 the ε-subdifferential ∂εf of a function f ∈ Conv (X) is the set

∂εf = {(x, y) ∈ X × X∗ : f(x) + f∗(y) − 〈x, y〉 ≤ ε}.

The set ∂0f will be simply denoted by ∂f .

We introduce now some ways of associating functions to sets (and vice-versa).
The indicator function of the subset C ⊂ X is the function iC from X into R ∪ {+∞}
defined by iC(x) = 0 if x ∈ C and iC(x) = +∞ if x ∈ X \ C. Given C ∈ C(X) we
denote by σC the support function of C. It is defined as:

σC(x∗) = sup{〈c, x∗〉 : c ∈ C} = i∗C .

C◦ ⊂ X∗ is the polar set of C, defined by

C◦ = {y ∈ X∗ : σC(y) ≤ 1}.

The recession cone 0+C of a closed convex set C is the set of those u ∈ X such that
for all x ∈ C one has x + R+u ⊂ C. It is also equal to

0+C = {u ∈ X : for all u∗ ∈ dom σC , 〈u, u∗〉 ≤ 0}.(1)

Given C ∈ C(X), an element x ∈ C is said to be a support point (for C) if there exists
u∗ ∈ X∗ \ {0}, which is called a support functional for C at x, such that

σC(u∗) = 〈x, u∗〉.(2)

The point x ∈ C is said to be exposed if x is the only element of C satisfying (2),
it is said to be strongly exposed if every sequence (xn) ⊂ C converges to x whenever
(〈xn, u∗〉) converges to σC(u∗). Given (C, u) ∈ C(X) × SX , and ε ≥ 0 we denote by
ε-SuppuC the set

ε-SuppuC = {(x,w∗) ∈ C × X∗ : σC(w∗) − ε ≤ 〈x,w∗〉, 〈u,w∗〉 = −1}.

When ε = 0 we set
SuppuC = 0-SuppuC.

We also set

ExpuC = {(x,w∗) ∈ SuppuC : (SuppuC)−1(w∗) = {x}},
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where
(SuppuC)−1(w∗) = {z ∈ X : (z,w∗) ∈ SuppuC}.

We shall see later that a support point can be characterized by being solution of a
certain minimization problem. Moreover, a strongly exposed point is a solution of a
problem which has a particular nature, described by the next definition.

An optimization problem inf
x∈X

f(x), where f : X −→ R ∪ {+∞} is defined on

a metric space (X, d), is said to be well posed if it admits a (unique) solution which is
the limit of each sequence (xn) in X with lim

n→∞
f(xn) = inf

x∈X
f(x).

The epigraphical sum f +
e

g (or inf-convolution) of two functions f , g from X

into R is the function defined for all x ∈ X by

(f +
e

g)(x) = inf
z∈X

(f(z) + g(x − z)).

It is said to be exact at x if inf
z∈X

(f(z) + g(x − z)) = min
z∈X

(f(z) + g(x − z)).

We shall need a result of [8] on the computation of the conjugate of the sum of
two convex functions in general normed spaces.

Theorem 2.1. Let X be a normed space and let f , g ∈ Conv (X) be proper
convex functions. Assume that for some real numbers λ, s > 0, r > 0 one has

sBX ⊂ [f ≤ λ] ∩ rBX − [g ≤ λ] ∩ rBX .(3)

Then for all y ∈ X∗

(f + g)∗(y) = (f∗ +
e

g∗)(y)

and the epigraphical sum is exact.

To conclude our preliminaries, let us introduce the set topologies we shall use
in the paper. Given x ∈ X and given subsets A, C of X we set

d(x,A) = inf{‖x − z‖ : z ∈ A},

with the convention d(x,Ø) = +∞,

D(A,C) = inf{‖x − z‖ : (x, z) ∈ A × C}

and
e(C,D) = sup{d(x,D) : x ∈ C},

with the conventions e(Ø,D) = 0 and e(C,Ø) = +∞ if C 6= Ø. The Hausdorff distance
between C and D is defined by

h(C,D) = max(e(C,D), e(D,C)).
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For each r ∈ R+, ε ∈ R
∗
+ we define

er(C,D) = e(C ∩ rBX ,D),

hr(C,D) = max(er(C,D), er(D,C)),

U−
r,ε = {(C,D) ∈ 2X : er(C,D) ≤ ε},

U+
r,ε = {(C,D) ∈ 2X : er(D,C) ≤ ε},

Ur,ε = {(C,D) ∈ 2X : hr(C,D) ≤ ε} = U−
r,ε ∩ U+

r,ε.

The family of sets U−
r,ε (resp. U+

r,ε) is a basis for a quasi-uniformity on the hyperspace
F(X). We denote by τAW−

(resp. τAW+
) the topology induced by this quasi-uniformity.

We denote by τAW the supremum of τAW−
and τAW+

. This topology, the Attouch-Wets
topology (see [2]), is associated with a metrizable uniformity on F(X) whose basis is
constituted by the sets Ur,ε when (r, ε) ranges over R+ × R

∗
+. In terms of sequences,

C = τAW - lim
n→∞

Cn if and only if lim
n→∞

hρ(C,Cn) = 0 for all (large) ρ.

The inferior limit of a sequence (Cn) of closed subsets of a metric space (X, d)
is the set Li

n→∞
Cn of those x ∈ X such that lim

n→∞
d(x,Cn) = 0. Equivalently, it is the

set of x ∈ X for which there exists a sequence (xn) converging to x such that xn ∈ Cn

eventually. Instead the superior limit Ls
n→∞

Cn is the set of x ∈ X for which there exists

a sequence (xk) converging to x such that xk ∈ Cnk
, where {nk} is a subsequence of

the integers. We shall say that the sequence (Cn) converges to C in Kuratowski sense
if Ls

n→∞
Cn ⊂ C ⊂ Li

n→∞
Cn.

Together with the Attouch-Wets topology, we shall consider another topology
on the subset C(X) of the hyperspace F(X) of the closed subsets of the normed space
X: the slice topology. To briefly introduce it, let us define the family of sets

O− = {{C ∈ C(X) : O ∩ C 6= Ø} : O runs over the family of the open subsets of X}

and

(Bc)++ = {{C ∈ C(X) : D(C,X \ A) > 0} : A runs over the convex bounded sets}.

Then the slice topology is defined as the smallest topology containing the families O−

and (Bc)++. More precisely, O− gives rise to the lower slice topology and (Bc)++

generates the upper slice topology. For more information on this hypertopology, we
refer to [11], [13], [27], [28], [10]. Here we just mention the following facts, that will be
used in the sequel:

• A sequence (Cn) of closed convex sets converges for the lower slice topology to a
closed convex set C if and only if C ⊂ Li

n→∞
Cn;
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• a sequence (Cn) of closed convex sets converges for the slice topology to a closed
convex set C if and only if the sequence (σCn

) slice converges to σC ;

• given {f, fn : n ∈ N} ⊂ Γ0(X), then (fn) slice converges to f if and only if the
two following conditions hold:

a) for all u ∈ X, there exists a sequence (un) −→ u such that

lim sup
n→∞

fn(un) ≤ f(u),

b) for all u∗ ∈ X∗, there exists a sequence (u∗
n) −→ u∗ such that

lim sup
n→∞

f∗
n(u∗

n) ≤ f∗(u∗).

3. Separating functions of convex sets. In the sequel C will be a convex
subset of a normed vector space X different from Ø and X 1 . We shall study the
supported points of C by associating to it a direction u and a closed hyperplane H, not
containing u, which allow defining a function, that carries useful information about C.
To do this, let us set the following notations:

(A)






u ∈ SX and − u /∈ 0+C

H = {x ∈ X : 〈x, u∗〉 = 0} for some u∗ ∈ X∗ with 〈u, u∗〉 = −1.

We shall indicate by π the projection on H in the direction u, namely π(x) = x+〈x, u∗〉u
for all x ∈ X.

Remark 3.1. It is useful for the sequel to observe the following: the dual
space H∗ of H is isomorphic to the subspace Ĥ∗ ⊂ X∗ defined as Ĥ∗ = {x∗ ∈ X∗ :
〈u, x∗〉 = 0}. A natural isomorphism j : H∗ −→ Ĥ∗ is for instance j(a∗) = x∗, where
x∗
|H = a∗ and 〈u, x∗〉 = 0. Moreover the dual norm of the norm of X restricted to H is

equivalent to the restriction of the dual norm of X on H∗. Thus in the sequel we shall
identify H∗ with the hyperplane {x∗ ∈ X∗ : 〈u, x∗〉 = 0}.

Following [20] and [29], we can now introduce the function which will play
a fundamental role in the study of the convex set C. For all x ∈ X, and setting
inf Ø = +∞, let f[C,u] be defined as

f[C,u](x) = inf{t ∈ R : x + tu ∈ C} = (iC +
e

(iRu − 〈., x∗〉))(x),

1This assumption guarantees in particular the existence of a unit vector u ∈ X such that −u /∈ 0+C,
which is all we need when in our statements we shall assume subsequent hypothesis (A).
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where x∗ ∈ SX∗ is such that 1 = ‖u‖ = 〈u, x∗〉. We say that f[C,u] is the separating
function of C with respect to the direction u. We also introduce the restriction f[C,u,H]

of f[C,u] to H. Let us observe here that the assumption of existence of a vector u such
that −u /∈ 0+C is necessary to avoid the trivial situation when the separating function
f[C,u] never assumes real values. Moreover, when −u ∈ 0+C it may happen that the
function f[C,u] is not lower semicontinuous even when C is closed. Indeed let C ⊂ R×R

be the epigraph of the convex function h(x) = (|x| − 1)−2 + i[−1,1](x) and u = (0,−1).
We obtain

f[C,u](x + tu) =






−∞ if (x, t) ∈]0, 1[×R

+∞ if (x, t) 6∈]0, 1[×R.

On the other hand, as we shall see later (see Proposition 3.1), the function f[C,u] has
nice properties whenever −u /∈ 0+C.

Let us set C+
u = C + R+u. Observe that C+

u = {x : f[C,u](x) ≤ 0} and that
f[C,u] is proper whenever there exists u∗ ∈ C◦ with 〈u, u∗〉 < 0, a condition equivalent
to −u 6∈ 0+C. Observe also that x + f[C,u](x)u ∈ C whenever (x + Ru) ∩ C is closed
and that f[C,u] = f[C+

u ,u]. Moreover, for all x ∈ X and µ ∈ R one has

f[C,u](x + µu) = f[C,u](x) − µ.(4)

Recalling that x and its projection are related by the formula π(x) = x + 〈x, u∗〉u we
then have, for all x ∈ X

f[C,u,H](π(x)) = f[C,u](x) − 〈x, u∗〉.(5)

Moreover

x = π(x) + (f[C,u,H](π(x)) − f[C,u](x))u,

whenever x ∈ dom f[C,u], and for all y ∈ X

f[C,u](x) = f[(C+y),u](x + y).

Finally, we observe that, in the case where C = epi h with h ∈ Conv (X) and u = (0, 1)
we get, for all x ∈ X:

f[C,u](x, 0) = h(x)

and for all (x, t) ∈ X × R

f[C,u](x, t) = h(x) − t.

Proposition 3.1. Let C be a closed subset of X. Then for all u ∈ SX for
which −u 6∈ 0+C one has

f[C,u] ∈ Γ0(X).
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P r o o f. We only need to prove lower semicontinuity of f[C,u]. Let x ∈ X and
let (xn) be a sequence converging to x and such that

lim
n→∞

f[C,u](xn) = l,

with l = lim inf
z→x

f[C,u](z). There is nothing to prove if l = ∞. Otherwise, observe that

l > −∞, as there is v∗ ∈ C◦ such that 〈u, v∗〉 < 0. Thus there is a sequence tn → 0
such that xn + (l + tn)u ∈ C. As C is closed, x+ lu ∈ C. Thus f[C,u](x) ≤ l which ends
the proof of the proposition. �

The function f[C,u] provides a complete description of the set C. Indeed if C is
closed convex and if u ∈ SX four cases occur

u 6∈ 0+C, − u 6∈ 0+C C = {x + tu : x ∈ H, f[C,u,H](x) ≤ t ≤ −f[C,−u,H](x)}

u ∈ 0+C, − u 6∈ 0+C C = {x + tu : x ∈ H, f[C,u,H](x) ≤ t}

u 6∈ 0+C, − u ∈ 0+C C = {x + tu : x ∈ H, t ≤ −f[C,−u,H](x)}

u ∈ 0+C, − u ∈ 0+C C = {x + tu : x ∈ H, f[C,u,H](x) ≤ t ≤ −f[C,−u,H](x)}

Proposition 3.2. Let C be a convex subset of a normed vector space X. Then
a) for all v∗ ∈ X∗

f∗
[C,u](v

∗) =






σC(v∗) if 〈u, v∗〉 = −1

+∞ if 〈u, v∗〉 6= −1
.

Moreover, assuming (A), one has
b) for all w∗ ∈ H∗ = {w∗ ∈ X∗ : 〈u,w∗〉 = 0} :

f∗
[C,u,H](w

∗) = σC(w∗ + u∗).

P r o o f. Let x∗ ∈ X∗ be such that 〈u, x∗〉 = 1. As

f[C,u](x) = (iC +
e

(iRu − 〈., x∗〉))(x),

we derive that

f∗
[C,u](v

∗) = σC(v∗) + σRu(v∗ + x∗)

= σC(v∗) + i{x∗:〈u,x∗〉=0}(v
∗ + x∗)

= σC(v∗) + i{x∗:〈u,x∗〉=−1}(v
∗),
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which is the asserted expression.

Let us now compute f∗
[C,u,H]. Let x0 ∈ H ∩ dom f[C,u]. For all x ∈ X one has

x = x0 + tu + π(x − x0)

with t = −〈x − x0, u
∗〉, which leads to

BX ⊂ [f[C,u] ≤ λ] ∩ rBX − [iH ≤ λ] ∩ rBX ,

where r ≥ max(1 + ‖x0‖, ‖π‖(1 + ‖x0‖), and λ ≥ 0 is such that λ ≥ f(x0) + r. Thus
we can apply Theorem 2.1 yielding, for all w∗ ∈ H∗

f∗
[C,u,H](w

∗) = (f[C,u] + iH)∗(w∗)

= inf
v∗∈X∗

(f∗
[C,u](w

∗ − v∗) + σH(v∗))

= inf
t∈R

f∗
[C,u](w

∗ − tu∗).

As w∗ − tu∗ ∈ H∗ (only) for t = −1, we obtain f∗
[C,u,H](w

∗) = σC(w∗ + u∗) which
concludes the proof of the proposition. �

The following result shows the main connections between supporting points of
the convex set C and a minimum problem associated to the separating function.

Theorem 3.3. Let C ⊂ X be a closed convex subset.

a) Let x ∈ C be a support point, let Ĥ be the corresponding supporting hyper-
plane:

Ĥ = {z ∈ X : 〈z,w∗〉 = 〈x,w∗〉},
for some w∗ ∈ X∗. Finally, let H be the hyperplane parallel to Ĥ through the origin.
Then, for each u ∈ SX such that 〈u,w∗〉 < 0, one has

inf
a∈H

f[C,u,H](a) = f[C,u,H](π(x)).

Moreover, if x is exposed, the problem infH f[C,u,H] has unique solution π(x), and if x
is strongly exposed, the problem infH f[C,u,H] is well posed.

b) Conversely, let w∗ ∈ X∗ \{0} and let Ĥ be a closed affine hyperplane through
x ∈ C parallel to the linear hyperplane H ∋ 0 of the form

Ĥ = {z ∈ X : 〈z,w∗〉 = 〈x,w∗〉}.

If there is u ∈ SX such that 〈u,w∗〉 < 0 and infa∈H f[C,u,H](a) = f[C,u,H](π(x)), then
x is a support point for C, with supporting functional w∗. Moreover, if the problem
infH f[C,u,H] is well posed, then x is strongly exposed.
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P r o o f. a) Assume that 〈., w∗〉 attains its maximum over C at x. One has

f[C,u](x) = 0, so that x = π(x) + f[C,u,H](π(x))u and f[C,u,H](π(x)) =
〈x,w∗〉
〈u,w∗〉 . Now let

a ∈ H. For each t ∈ R such that a + tu ∈ C, one has 〈a + tu,w∗〉 ≤ 〈x,w∗〉, implying

t〈u,w∗〉 ≤ 〈x,w∗〉, so that t ≥ 〈x,w∗〉
〈u,w∗〉 , hence f[C,u,H](a) ≥ f[C,u,H](π(x)) and then

inf
a∈H

f[C,u,H](a) = f[C,u,H](π(x)).

Assume now that Ĥ strongly exposes x ∈ C ∩ Ĥ. Let (an) be a sequence in H such
that (f[C,u,H](an)) converges to f[C,u,H](π(x)). Setting xn = an + f[C,u,H](an)u we get
xn ∈ C and

〈xn, w∗〉 = f[C,u,H](an)〈u,w∗〉,
hence the sequence (〈xn, w∗〉) converges to f[C,u,H](π(x))〈x,w∗〉 = 〈x,w∗〉. Thus (xn)
converges to x so that (an) converges to π(x).

b) Assume that infH f[C,u,H] = f[C,u,H](π(x)), for some x ∈ C ∩ Ĥ and u ∈ X
such that 〈u,w∗〉 < 0. Let z ∈ C, then z = π(z) + tu where

t ≥ f[C,u,H](π(z)) ≥ f[C,u,H](π(x)),

yielding
〈z,w∗〉 = t〈u,w∗〉 ≤ f[C,u,H](π(x))〈u,w∗〉 = 〈x,w∗〉.

Thus w∗ supports C at x. Now assume that f[C,u,H] is well posed and let (xn) be a
sequence in C such that (〈xn, w∗〉) converges to 〈x,w∗〉. Setting an = π(xn) we get

xn = an + λnu where λn =
〈xn, w∗〉
〈u,w∗〉 converges to f[C,u,H](π(x)). As

f[C,u,H](an) − λn = f[C,u](xn) ≤ 0,

we get f[C,u,H](π(x)) ≤ f[C,u,H](an) ≤ λn and thus (f[C,u,H](an)) → f[C,u,H](π(x)). By
well posedness of f[C,u,H], then (an) converges to π(x), thus (xn) converges to x. We

have shown that Ĥ strongly exposes x. �

We now show how the ε-subdifferential of the function f[C,u,H] characterizes the
set of ε-support points and support functionals of C 2 .

Proposition 3.4. Let C be a convex subset of a normed vector space X,
assume (A) and let ε ≥ 0. Then, for all a ∈ H ∩ domf[C,u,H], the translation tu∗ is
a one to one mapping from ∂εf[C,u,H](a) onto (ε-SuppuC)(x) = {u∗ ∈ X∗ : (x, u∗) ∈
ε-SuppuC} with x = a + f[C,u,H](a)u. In other words,

(a, a∗) ∈ ∂εf[C,u,H] ⇐⇒ (a + f[C,u,H](a)u, u∗ + a∗) ∈ ε-SuppuC.(6)

2Remembering Remark 3.1, we are here identifying a∗ ∈ H∗ with the element (still denoted by a∗)
of X∗ acting as a∗ on H and such that 〈u, a∗〉 = 0.
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Moreover
(x,w∗) ∈ SuppuC ⇐⇒ (π(x), w∗ − u∗) ∈ ∂f[C,u,H].(7)

P r o o f. Let a∗ ∈ ∂εf[C,u,H](a), v∗ = tu∗(a∗) = u∗ + a∗ and x = a + f[C,u,H](a).
We have:

f∗
[C,u,H](a

∗) + f[C,u,H](a) ≤ 〈a, a∗〉 + ε,

and 〈x, v∗〉 = 〈a, a∗〉 − f[C,u,H](a). Relying on Proposition 3.2, we derive

σC(v∗) − ε ≤ 〈x, v∗〉,

and, as 〈u, v∗〉 = −1, v∗ ∈ (ε-SuppuC)(x). Conversely let v∗ ∈ (ε-SuppuC)(x) and let
a∗ = v∗ − u∗ 3 . One has:

σC(a∗ + u∗) − ε ≤ 〈x, a∗ + u∗〉,

and H ∋ a = x + 〈x, u∗〉u which give

f[C,u,H](a) = f[C,u,H](x + 〈x, u∗〉u) = f[C,u](x) − 〈x, u∗〉 = −〈x, u∗〉.

Thus we get
f∗
[C,u,H](a

∗) + f[C,u,H](a) ≤ 〈a, a∗〉 + ε,

hence a∗ ∈ ∂εf[C,u,H](a).

Now observing that (x,w∗) ∈ SuppuC implies f[C,u](x) = 0 and thus x =
π(x) + f[C,u,H](π(x))u, we immediately derive (7) from (6). �

With the help of the Ekeland variational principle, Proposition 3.4 provides a
simple proof of the Bishop-Phelps Theorem (see [16]) on density of support points and
support functionals. Let us recall that given a Banach space X and f ∈ Γ0(X), it is an
immediate consequence of the Ekeland variational principle applied to f − 〈., w∗〉 that
given ε > 0, z ∈ X and w∗ ∈ ∂εf(z) there exists x ∈ X and v∗ ∈ ∂f(x) with

‖x − z‖ ≤ √
ε,

‖v∗ − w∗‖ ≤ √
ε,

|f(z) − f(x)| ≤ √
ε(‖w∗‖∗ +

√
ε).

(8)

Theorem 3.5. Let C 6= X be a closed nonempty convex subset of a Banach
space X. Then the set of support points is dense in ∂C and the set of support functionals
is dense in dom σC .

3As 〈u, a∗〉 = 0, we can consider a∗ as an element of H∗.
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P r o o f. Let z ∈ ∂C. One has R+(z −C) 6= X so that there exists u ∈ SX with
u 6∈ R+(z − C) thus −u 6∈ 0+C. Let H be the linear hyperplane associated to some
u∗ ∈ dom σC with 〈u, u∗〉 = −1. Set b = π(z). As u 6∈ R+(z − C), we get f[C,u](z) = 0
thus z = b + f[C,u,H](b)u. Let ε > 0 and let w∗ ∈ ∂εf[C,u,H](b). Returning to (8), we
get the existence of a ∈ H, a∗ ∈ ∂f[C,u,H](a) with ‖a − b‖ ≤ √

ε, ‖a∗ − w∗‖ ≤ √
ε, and

|f[C,u,H](a) − f[C,u,H](b)| ≤
√

ε(
√

ε + ‖w∗‖√ε). From Proposition 3.4 we obtain

(x, v∗) ∈ SuppuC,

with x = a + f[C,u,H](a)u, v∗ = a∗ + u∗ and ‖z − x‖ ≤ √
ε(2

√
ε + ‖w∗‖√ε).

Now let w∗ ∈ dom σC . We can choose u ∈ SX such that 〈u,w∗〉 < 0 and
k > 0 such that 〈u, kw∗〉 = −1. Let H = [〈u,w∗〉 = 0] and let z ∈ C be such that
σC(w∗) − ε ≤ 〈z,w∗〉. Setting b = π(z), we have w∗ − kw∗ ∈ ∂εf[C,u,H](b), thus there
exist a ∈ H and v∗ ∈ ∂f[C,u,H](a) with ‖w∗ − kw∗ − v∗‖ ≤ ε. From Proposition 3.4 we
derive that v∗ + kw∗ is a support functional for the set C. �

4. Stability of supported and exposed points. This section is dedicated
to stability of the supported and exposed elements of a closed convex set C, under per-
turbations in the sense of the slice and Attouch-Wets topologies. As we want to study
this with the help of the separating functions, and we learned that their subdifferen-
tials provide information on supporting points, we start with some auxiliary results on
the approximation of the points of single valuedness of the subdifferential of a convex
function. Then we connect convergence of the sets to convergence of the associated
separating functions and finally we provide the main stability results. Our first result
is a technical lemma, the convex version of Proposition 7.1.3 in [11].

Lemma 4.1. Let {f, fn : n ∈ N} ⊂ Γ0(X) be such that f = τAW - lim
n→∞

fn and

let x0 ∈ int(dom f). Then for all ε > 0 there exist δ > 0 and N ∈ N such that

sup
x∈x0+δBX

|fn(x) − f(x0)| < ε

for all n ≥ N.

P r o o f. Let y ∈ ∂f(x0) be arbitrary. There exists δ1 > 0 such that for all
x ∈ x0 + δ1U we have

〈x − x0, y〉 + f(x0) −
ε

2
> f(x0) − ε.

Since the graph of x 7−→ 〈x − x0, y〉 + f(x0) −
ε

2
lies below epi f , by slice convergence

the set
{

(x, α) ∈ X × R : x ∈ x0 + δ1BX , α = 〈x − x0, y〉 + f(x0) −
ε

2

}



Stability of supporting and exposing elements of convex sets. . . 319

lies below epi fn for all n ∈ N sufficiently large. This means that

sup
x∈x0+δBX

f(x0) − fn(x) < ε.

By upper semicontinuity of f at x0 there exists 0 < δ2 <
ε

4
such that f(x) <

f(x0) + ε whenever x ∈ x0 + δ2BX . It follows that

(x0 + δ2BX) ×
[
f(x0) +

ε

2
, f(x0) + ε

]
⊂ epi f.

This means that the ball with center

(
x0, f(x0) +

3

4
ε

)
and radius δ2 lies in epi f . Take

µ so large that µBX × [−µ, µ] contains this ball. Then if hµ(fn, f) <
δ2

2
it easily follows

from the Ra
◦

dström cancellation law that the ball with center

(
x0, f(x0) +

3

4
ε

)
and

radius δ2 lies in epi fn. Thus, for each x ∈ x0 +
δ2

2
BX , we have

fn(x) < f(x0) +
3

4
ε +

1

2
δ2 < f(x0) + ε

for n large. �

Corollary 4.2. Let {f, fn : n ∈ N} ⊂ Γ0(X) be such that f = τAW - lim
n→∞

fn

and let x0 ∈ int (dom f). Then there exist δ > 0, ρ > 0 and N ∈ N such that for all
n ≥ N, x ∈ x0 + δBX , y ∈ ∂fn(x), we have ‖y‖ ≤ ρ.

P r o o f. Choose by Lemma 4.1 δ′ > 0 and N ∈ N such that |fn(x) − f(x0)| < ε
for all x ∈ x0 + δ′BX , n ≥ N. In particular, each fn is uniformly bounded above
and below on x0 + δ′BX . As a result, {fn : n ≥ N} is an equi-Lipschitzian family

on x0 +
3

4
δ′BX . Taking a uniform Lipschitz constant ρ for the family restricted to

x0 +
3

4
δ′BX and setting δ =

1

2
δ′, we claim that

sup{‖y‖ : y ∈ ∂fn(x), n ≥ N, x ∈ x0 + δBX} ≤ ρ.

Otherwise there would exist x ∈ x0 + δBX , n ≥ N and y ∈ ∂fn(x) such that ‖y‖ > ρ.

Choose a unit vector w with 〈w, y〉 > ρ. Since ‖x− x0‖ ≤ 1

2
δ′, x +

1

4
δ′w ∈ x0 +

3

4
δ′BX

and

f

(
x +

1

4
δ′w

)
− f(x) > ρ

(
x +

1

4
δ′w − x

)
,

contradicting Lipschitz continuity of fn on the ball x +
3

4
δ′BX . �
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Lemma 4.1 and Corollary 4.2 fail to be true when replacing the τAW topology
by the slice topology. Indeed let X be a separable Hilbert space endowed with an
orthonormal basis (en)n∈N and let f ≡ 0, fn = iXn

with Xn = span {e0, · · · , en}. We

have f = τS- lim
n→∞

fn, 0 ∈ int (dom f), but setting xn =
en+1

n
we get (xn) −→ 0 and

fn(xn) = +∞.

Given f ∈ Γ0(X), we set

∂∗f = {(x, y) ∈ ∂f : ∂f(x) = {y}},

∆f = {(x, f(x), y) : (x, y) ∈ ∂f},
and

∆∗f = {(x, f(x), y) : (x, y) ∈ ∂∗f}.
Observe that given x ∈ C with a = π(x) we derive from Proposition 3.4 that

v∗ ∈ (ExpuC)(x) if and only if ∂f∗
[C,u,H](v

∗ − u∗) = {a}.

A normed space X is said to be an Asplund space if every continuous convex function
defined on a nonempty open convex subset of X is Fréchet differentiable on a dense Gδ

subset of its domain. A result due to P. Kenderov (see for example [25, Theorem 3.20])
asserts that given a maximal monotone operator T ⊂ X × X∗ defined on an Asplund
space and satisfying int (domT ) 6= Ø, there exists a dense Gδ subset of int (dom T ) on
which T is single valued and norm-norm upper semicontinuous.

Theorem 4.3. Let X be Asplund, let {f, fn, : n ∈ N} ⊂ Γ0(X) be such
that f = τAW - lim

n→∞
fn and let int (dom f) be nonempty. Then there exists a subset

E of int (dom ∂∗f) that is dense and Gδ subset of dom f such that for all x ∈ E,
(x, f(x), y) ∈ Li

n→∞
∆∗fn, where y is the unique subgradient of f at x.

P r o o f. By Kenderov’s Theorem on maximal monotone operators, the points x
of int (dom f) where ∂f is single-valued and norm-norm upper semicontinuous contain
a dense Gδ subset E of int(dom f). Fix x0 ∈ E and let y0 be the unique subgradient of

f at x0. Let ε > 0 be such that x0 + εBX ⊂ dom f . There exists 0 < δ0 <
ε

2
such that

‖y − y0‖ <
ε

2
for all x ∈ x0 + δ0BX , y ∈ ∂f(x). Choose, by Lemma 4.1 and Corollary

4.2, 0 < δ1 <
ε

2
, ρ > 0 and N1 ∈ N such that both

sup
x∈x0+δ1BX

|fn(x) − f(x0)| < ε(9)

and
sup

x∈x0+δ1BX

sup
y∈∂fn(x)

‖y‖ ≤ ρ(10)
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hold. By (9), for all n ≥ N1 we have x0 + δ1BX ⊂ dom fn and since X is Asplund there
exists xn ∈ x0+δ1BX such that ∂fn(xn) is a singleton. Fix µ > max(‖x0‖+δ1, ρ). From
a known result on convergence of functions and related convergence of subdifferentials
(see for example [24], Proposition 1.5), there exists an index N ≥ N1 such that for all
n ≥ N, hµ(∂f, ∂fn) < δ1. Now let n ≥ N be fixed and let yn be the unique element
of ∂fn(xn). Since (xn, yn) ∈ µBX×X∗ ∩ ∂fn, there exists (w, y) ∈ ∂f such that both

‖xn−w‖ < δ1 and ‖yn −y‖ < δ1 hold. Since w ∈ x0 + δ0BX , we have ‖y−y0‖ <
ε

2
and

so ‖yn − y0‖ <
ε

2
+ δ1 < ε. By (9), |fn(xn) − f(x0)| < ε and since δ1 < ε, we also have

‖xn − x0‖ < ε. Thus for all n ≥ N, we have found (xn, f(xn), yn) ∈ ∆∗fn such that

‖(x0, f(x0), y0) − (xn, f(xn), yn)‖ < ε.

This proves that (x0, f(x0), y0) ∈ Li
n→∞

∆∗fn as required. �

We now turn to the problem of relating convergence of sets to convergence of
the associated separating functions.

Theorem 4.4. Let X be a normed vector space and let {C, Cn : n ∈ N} ⊂
C(X). Let u, H be as in assumption (A). If f[C,u,H] = τS- lim

n→∞
f[Cn,u,H], then

C+
u = τS- lim

n→∞
(Cn)+u .

Conversely, if (A) holds for C and C = τS- limn→∞ Cn, then

f[C,u,H] = τS- lim
n→∞

f[Cn,u,H].

P r o o f. Let us start with the lower part of convergence. Let c ∈ C+
u . Then

c = π(c) + λu, with (π(c), λ) ∈ epi f[C,u,H]. Then there exists a sequence (xn, λn) ⊂
epi f[Cn,u,H] such that (xn) → π(c) and (λn) → λ. Then xn + λnu ∈ (Cn)+u and the
sequence (xn + λnu) converges to c. Now suppose D(B,C+

u ) > 0 for some convex
bounded set B. Call

B̂ = {(x, λ) : x ∈ H, x + λu ∈ B}.
It is easy to verify that B̂ is closed bounded in X × R and that D(B̂, epi f[C,u,H]) > 0.

Then D(B̂, epi f[Cn,u,H]) > 0 eventually. Suppose now, for the sake of contradiction,

(D(B, (Cn)+u )) → 0. Then there exist bn ∈ B, cn ∈ (Cn)+u such that (|bn − cn|) → 0.

Writing bn = π(bn) + λnu, cn = π(cn) + rnu, we have (π(bn), λn) ∈ B̂, (π(cn), rn) ∈
epi f[Cn,u,H] and d[(π(bn), λn), (π(cn), rn)] → 0, but this is impossible. So (Cn)+u ∈
(Bc)++ and this shows the first part of the theorem. To prove the second part, let
x ∈ dom f[C,u,H] ∩ H. As z = x + f[C,u,H](x)u ∈ C, there exists a sequence (zn)
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such that zn ∈ Cn and limn→∞ zn = z. Let us write zn = xn + λnu with xn ∈ H;
one has limn→∞ xn = x, limn→∞ λn = f[C,u,H](x) and f[Cn,u,H](xn) ≤ λn and thus
lim supn→∞ f[Cn,u,H](xn) ≤ f[C,u,H](x). Now let

v∗ ∈ dom f∗
[C,u,H] ⊂ dom σC − u∗.

There exists a sequence (w∗
n) converging in X∗ to u∗ + v∗ in such a way that

lim sup
n→∞

σC(w∗
n) ≤ σC(u∗ + v∗).

Setting λn = −(〈u,w∗
n〉)−1, we have lim

n→∞
λn = 1. Setting w̃∗

n = λnw∗
n we have w̃∗

n =

u∗ + v∗n with 〈u, v∗n〉 = 0 and (v∗n) converging to v∗. Moreover

lim sup
n→∞

f∗
[Cn,u,H](v

∗
n) = lim sup

n→∞
σCn

(λnw∗
n) ≤ f∗

[C,u,H](v
∗),

yielding the announced result. �

Corollary 4.5. Let X be a normed vector space and let {C, Cn : n ∈ N} ⊂
C(X). Let u, H be as in assumption (A). If f[C,u,H] = τS- lim

n→∞
f[Cn,u,H] and f[C,−u,H] =

τS- lim
n→∞

f[Cn,−u,H], then

C = τS- lim
n→∞

Cn.

P r o o f. Observe that C = C+
u ∩ C+

−u. Then, from Theorem 4.4 we have
convergence of (Cn)+u to C+

u and of (Cn)+−u to C+
−u. We must show that this implies

convergence of the sequence (Cn) to C. Let c ∈ C. There are sequences (c+
n ) ⊂ (Cn)+u

and (c−n ) ⊂ (Cn)+−u converging to c. Write c+
n = xn+tnu, c−n = yn−snu, with xn, yn ∈ C

and tn, sn > 0. Then Cn ∋ sn

sn + tn
xn +

tn
sn + tn

yn → c. This proves lower convergence.

Upper convergence follows from the formula D(A,C) = max (D(A,C+
u ),D(A,C+

−u)),
which is easy to prove and is left to the reader. �

Corollary 4.6. Let X be a normed vector space and let {C, Cn : n ∈ N} ⊂
C(X). Suppose moreover Cn = (Cn)+u , C = C+

u and assume (A) for C. Then C =
τS- lim

n→∞
Cn if and only if f[C,u,H] = τS- lim

n→∞
f[Cn,u,H].

The assumption −u /∈ 0+C plays an essential role in the former results. For, if
−u ∈ 0+C we already remarked that it can happen that f[C,u,H] is not lower semicon-
tinuous. This means that, even when Cn = C for all n ∈ N, we do not have in such a
case f[C,u,H] = τS- lim

n→∞
f[Cn,u,H]. Moreover, if −u ∈ 0+C, even the implication

C = τS- lim
n→∞

Cn =⇒ C+
u = τS- lim

n→∞
(Cn)+u



Stability of supporting and exposing elements of convex sets. . . 323

is no longer true, as the following example shows: X = R
2, Cn = {(x, y) : y ≤ nx},

u = (0, 1).

If we replace the slice topology by the τAW topology we are able to provide
quantitative estimates. The first result is the following.

Proposition 4.7. Let u, H be as in assumption (A). There exists p > 0 such
that, for all r ≥ 0 and for all C,D ∈ C(X) the following estimate holds:

hr(C
+
u ,D+

u ) ≤ 2hrp(f[C,u,H], f[D,u,H]).

P r o o f. Take C ∈ C(X) and x ∈ C+
u ∩ rBX . Write x = π(x) − 〈x, u∗〉u. We

have

f[C,u,H](π(x)) = f[C,u](x) − 〈x, u∗〉 ≤ −〈x, u∗〉 ≤ r‖u∗‖,

and ‖π(x)‖ ≤ r(1 + ‖u∗‖) =: p. Thus (π(x),−〈x, u∗〉) ∈ epi f[C,u,H] ∩ pBX×R. Then
for each ε > 0 there is (z, a) ∈ epi f[D,u,H] such that ‖(π(x),−〈x, u∗〉) − (z, a)‖X×R ≤
erp(f[C,u,H], f[D,u,H]) + ε. Consider w := z + au ∈ D+

u . To conclude, observe that
‖w − x‖ ≤ 2erp(f[C,u,H], f[D,u,H]) + ε and interchange the roles of C and D. �

To obtain an inequality in the opposite sense, we need the following lemma.

Lemma 4.8. Let C0 ∈ C(X) be such that (A) holds true. Then there exist a
τAW -neighborhood N of C0 and p > 0 such that for all C ∈ C(X),

f[C,u](x) ≥ −p(‖x‖ + 1) for all x ∈ X.

P r o o f. Let v∗0 ∈ dom f∗
[C0,u] in such a way that σC0

(v∗0) = −1 (see Proposition

3.2). Let us define

N =

{
C ∈ C : d((v∗0 , σC0

(v∗0)), epi σC) <
1

2

}
.

The set N ∋ C0 is open due to the continuity of polarity with respect to the Attouch-

Wets topology. For all C ∈ N , there exists (v∗, λ) ∈ epiσC such that ‖v∗−v∗0‖ <
1

2
and

|λ − σC0
(v∗0)| <

1

2
. Let us set t = −(〈u, v∗〉)−1 ∈ (0, 2). One has (tv∗, tλ) ∈ epi f∗

[C,u]

and, for all x ∈ X,

f[C,u](x) ≥ 〈x, tv∗〉 − tλ ≥ −p(‖x‖ + 1),

where p = max(2‖v∗0‖ + 1, 2|σC0
(v∗0)| + 1). This ends the proof. �
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Proposition 4.9. Let C0 ∈ C(X) be such that (A) holds true. Then there
exist p > 0, q > 0 and a τAW -neighborhood N of C0, such that for each C, D ∈ N and
for each r ≥ 0

hr(f[C,u,H], f[D,u,H]) ≤ qhp(r+1)+r(C,D).

P r o o f. From Lemma 4.8, there exist a τAW−neighborhood N of C0 and p > 1
such that for all C ∈ N ,

f[C,u](x) ≥ −p(‖x‖ + 1) for all x ∈ X.

Let C, D ∈ N and let (x, t) ∈ epi f[C,u,H] ∈ rBH×R. One has

−p(1 + r) ≤ f[C,u,H](x) ≤ t ≤ r,

thus x + f[C,u,H](x)u ∈ C ∩ (p(1 + r) + r)BX . For ε > 0, there exists y ∈ D with

‖x + f[C,u,H](x)u − y‖ ≤ ep(1+r)+r(C,D) + ε.

One has y = z + su with z = π(y) ∈ H, thus (z, s) ∈ epi f[D,u,H]. We get

|f[C,u,H](x) − s| = |〈x + f[C,u,H](x)u − z − su, u∗〉| ≤ ‖u∗‖(ep(1+r)+r(C,D) + ε),

and
‖x − z‖ = ‖π(x + f[C,u,H](x)u − y)‖ ≤ ‖π‖(ep(1+r)+r(C,D) + ε).

We derive that

d((x, t), epi f[D,u,H]) ≤ ‖(x, t) − (z, s + t − f[C,u,H](x))‖

≤ max(‖π‖, ‖u∗‖)(ep(1+r)+r(C,D) + ε),

hence letting ε go to 0

er(f[C,u,H], f[D,u,H]) ≤ max(‖π‖, ‖u∗‖)ep(1+r)+r(C,D).

Interchanging C and D, the result follows. �

From Proposition 4.7 and 4.9, we get immediately the following

Theorem 4.10. Let X be a normed vector space and let

{C, Cn : n ∈ N} ⊂ C(X).

Let u, H be as in assumption (A). If f[C,u,H] = τAW - lim
n→∞

f[Cn,u,H], then

C+
u = τAW - lim

n→∞
(Cn)+u .
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Conversely, if (A) holds for C and C = τAW - lim
n→∞

Cn, then

f[C,u,H] = τAW - lim
n→∞

f[Cn,u,H].

Corollary 4.11. Let X be a normed vector space and let {C, Cn : n ∈
N} ⊂ C(X). Let u, H be as in assumption (A). If f[C,u,H] = τAW - lim

n→∞
f[Cn,u,H] and

f[C,−u,H] = τAW - lim
n→∞

f[Cn,−u,H], then

C = τAW - lim
n→∞

Cn.

P r o o f. As in Corollary 4.5 we must show that convergence of (Cn)+u to C+
u and

of (Cn)+−u to C+
−u implies convergence of the sequence (Cn) to C. This follows from the

formula eρ(D,C) ≤ max (eρ(D
+
u , C+

u ), eρ(D
+
−u, C+

−u)), which is left to the reader. �

Corollary 4.12. Let X be a normed vector space and let {C, Cn : n ∈
N} ⊂ C(X). Suppose moreover Cn = (Cn)+u , C = C+

u and assume (A) for C. Then
C = τAW - lim

n→∞
Cn if and only if f[C,u,H] = τAW - lim

n→∞
f[Cn,u,H].

We finally are able to prove the promised results on stability of the supporting
elements under perturbations. We start with the slice topology, and we shall focus our
attention to lower convergence of the support points, but before let us briefly explain
what happens with upper convergence.

The Bishop-Phelps Theorem shows that convergence of a sequence of sup-
port points, in a fixed given closed convex set C, does not guarantee that the limit
point is a support point for C. On the other hand, if we have convergence of pairs
(xn, u∗

n) ∈ SuppCn to a limit pair (x, u∗), then (x, u∗) is a support point for the set C,
if the sequence (Cn) converges to C in the sense of Kuratowski, as a standard direct
computation shows. So, let us focus on lower convergence of support points.

Theorem 4.13. Let X be a Banach space and let {C, Cn : n ∈ N} ⊂ C(X) be
such that C = τS- lim

n→∞
Cn. Then assuming (A) for C, one has

SuppuC ⊂ Li
n→∞

(SuppuCn).

P r o o f. Let (x, v∗) ∈ SuppuC and let H be any closed hyperplane such that
(A) is satisfied. As 〈u, v∗〉 = −1, we derive that f[C,u](x) = 0, thus x = a+f[C,u,H](a)u,
where a = π(x). Using Proposition 4.4 one gets

f[C,u,H] = τS- lim
n→∞

f[Cn,u,H].
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From Proposition 3.4 we have (a, v∗ − u∗) ∈ ∂f[C,u,H]. Using Theorem 8.3.7 of [11], we
get the existence of a sequence ((an, a∗n)) ⊂ H × H∗ such that ((an, f[C,u,H](an), a∗n))
converges to (a, f[C,u,H](a), v∗ − u∗). Setting xn = an + f[C,u,H](an)u and v∗n = u∗ + a∗n
we get (xn, v∗n) ∈ SuppuCn and the sequence ((xn, v∗n)) converges to (x, v∗), yielding
the announced result. �

Theorem 4.14. Let X be a Banach space and let {C, Cn : n ∈ N} ⊂ C(X) be
such that C = τAW - lim

n→∞
Cn. Then assuming (A) for C, one has for all r ≥ 0

lim
n→∞

er(SuppuC,SuppuCn) = 0.

P r o o f. From Proposition 4.9, we derive that

f[C,u,H] = τAW - lim
n→∞

f[Cn,u,H].

Let r ≥ 0 and let (x,w∗) ∈ SuppuC ∩ rBX×X∗ . From Proposition 3.4, we have

(π(x), f[C,u,H](π(x)), w∗ − u∗)) ∈ ∆(f[C,u,H]) ∩ ρBX×R×X∗ ,

with ρ = max(r‖u∗‖, ‖π‖r, r + ‖u∗‖). Using a result of [15] (see for example [11],
Theorem 8.3.10) one has

lim
n→∞

eρ(∆(f[C,u,H]),∆(f[Cn,u,H])) = 0.

It follows the existence of sequences (an) ⊂ H and (a∗n) ⊂ H∗ such that

‖(π(x), f[C,u,H](π(x)), w∗ − u∗) − (an, f[Cn,u,H](an), a∗n)‖ < ερ(n) + (n + 1)−1

with ερ(n) = eρ(∆(f[C,u,H]),∆(f[Cn,u,H])). Let us set

(xn, w∗
n) = (an + f[Cn,u,H](an)u, u∗ + a∗n).

One has (xn, w∗
n) ∈ SuppuCn,

‖w∗
n − w∗‖ = ‖a∗n − a∗‖ < ερ(n) + (n + 1)−1

and
‖xn − x‖ = ‖an + f[Cn,u,H]u − a − f[C,u,H]u‖ ≤ 2(ερ(n) + (n + 1)−1),

yielding
‖(xn, w∗

n) − (x∗, w∗)‖ ≤ 2(ερ(n) + (n + 1)−1),

thus
er(SuppuC,SuppuCn) ≤ 2(ερ(n) + (n + 1)−1),
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which ends the proof of the theorem. �

In order to obtain stability results involving ExpuC instead of SuppuC, we need
an additional assumption of nonflatness at infinity for the convex set C:

there exists v∗ ∈ H∗ such that f∗
[C,u,H] is continuous at v∗.(11)

Observe that assumption (11) is satisfied whenever C is bounded and that obvious
examples can be given in which this assumption is not satisfied and the conclusion of
our next theorem is not in force. Given a set D ⊂ X × X∗ and w∗ ∈ X∗ we set

D(X) = {w∗ ∈ X∗ : there exists x ∈ X : (x,w∗) ∈ D},

and
D−1(w∗) = {x ∈ X : (x,w∗) ∈ D}.

Theorem 4.15. Let X be a reflexive Banach space and let {C, Cn : n ∈ N} ⊂
C(X) be such that C = τAW - lim

n→∞
Cn. Assuming (11) and (A), then

(SuppuC)(X) ⊂ Li
n→∞

(ExpuCn)(X).

P r o o f. Let (z,w∗) ∈ SuppuC and let H be any closed hyperplane such that
(A) is satisfied, so that z = π(z) + f[C,u,H](π(z))u. Applying Theorem 4.3 to the
function f∗

[C,u,H], there exists E ⊂ int (dom ∂∗f
∗
[C,u,H]), which is a Gδ dense subset of

dom f∗
[C,u,H], such that for all v∗ ∈ E one has

(v∗, f∗
[C,u,H](v

∗), b) ∈ Li
n→∞

∆∗f
∗
[Cn,u,H],

where ∂f∗
[C,u,H](v

∗) = {b}. Let ((v∗n, f∗
[C,u,H](v

∗
n), bn)) be a sequence converging to

(v∗, f∗
[C,u,H](v

∗), b) and such that (v∗n, f∗
[C,u,H](v

∗
n), bn) ∈ ∆∗f

∗
[Cn,u,H]. As

∂f∗
[C,u,H](v

∗
n) = {bn},

one gets, from Proposition 3.4,

(xn, w∗
n) ∈ ExpuCn,

where xn = bn + f[Cn,u,H](bn)u and w∗
n = v∗n + u∗. As

f[Cn,u,H](bn) = 〈bn, v∗n〉 − f∗
[Cn,u,H](v

∗
n),

we derive that the sequence (f[Cn,u,H](bn)) converges to f[C,u,H](b) and (xn) converges
to x = b + f[C,u,H](b)u, yielding

(x, v∗ + u∗) ∈ Li
n→∞

(ExpuCn).
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Thus
v∗ + u∗ ∈ Li

n→∞
(ExpuCn)(X).

As a∗ = w∗−u∗ is limit of a sequence (v∗n) ⊂ E, we derive that w∗ := lim
n→∞

(v∗n +u∗) be-

longs to Li
n→∞

(ExpuCn)(X), since v∗n + u∗ ∈ Li
n→∞

(ExpuCn)(X) and Li
n→∞

(ExpuCn)(X)

is closed. �

Example 4.1. Let X = R
2, C = [−1, 1] × R+, u = (0, 1), u∗ = (0,−1),

H = R×{0} identified to R. One has f[C,u,H](x) = i[−1,1](x) and f∗
[C,u,H](y) = |y|. One

easily checks that
(SuppuC)(X) = R × {−1},

and
(ExpuC)(X) = R

∗ × {−1}.
We see that (ExpuC)(X) = (SuppuC)(X), as expected by applying Theorem 4.15 to
the sequence Cn ≡ C. Nevertheless observe that

ExpuC = {((1, 0), (x,−1)) : x > 0} ∪ {((−1, 0), (y,−1)) : y < 0}

and
(SuppuC)−1(0,−1)) = [−1, 1] × {0},

so that one cannot expect stability for the exposed points but only for the exposed
functionals.

Aknowlegement. We are indebted to G. Beer for useful discussions, concerning
mainly Theorem 4.3.
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[9] D. Azé, J.-P. Penot. Recent quantitative results about the convergence of con-
vex sets and functions. In Functional Analysis and Approximation, P.-L. Papini
(ed.), Pitagora, Bologna, 1989, pp. 90-110.
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