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ABSTRACT. To a convex set in a Banach space we associate a convex function
(the separating function), whose subdifferential provides useful information on the
nature of the supporting and exposed points of the convex set. These points are
shown to be also connected to the solutions of a minimization problem involving the
separating function. We investigate some relevant properties of this function and of
its conjugate in the sense of Legendre-Fenchel. Then we highlight the connections
between set convergence, with respect to the slice and Attouch-Wets topologies,
and convergence, in the same sense, of the associated functions. Finally, by using
known results on the behaviour of the subdifferential of a convex function under
the former epigraphical perturbations, we are able to derive stability results for
the set of supported points and of supporting and exposing functionals of a closed
convex subset of a Banach space.

1. Introduction. In this paper, we work with a function characterizing convex
sets which is neither the indicator function nor the support function. This function,
which we call the separating function of the convex set C| is defined in the following
way: For all z € X, and setting inf @ = +o0, let f|c,) be defined as

fiew () =inf{t eR:x +tu € C},
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where u is a norm one vector.

The subdifferential of this function carries on some information on the exposed points
and exposing functionals of the closed convex set. Moreover, the mapping which assigns
to the set its separating function enjoys some bicontinuity properties with respect to the
slice and Attouch-Wets topologies. This observation, along with continuity properties of
the subdifferential with respect to the quoted variational convergences, leads to stability
results for the sets of support points, exposed points and supporting functionals when
the closed convex set moves along these topologies. The paper is organized as follows.
In section 2 we precise our notations and recall some results that will be used in the
sequel. In section 3 the separating function is introduced and some of its properties are
reviewed. We also give a quantitative version of the celebrated Bishop-Phelps Theorem
([16]). In section 4 we include all the results related to stability. In particular we
prove a continuity result for the subdifferential of convex functions in Asplund spaces,
using the Attouch-Wets topology, and we establish stability properties for the set of
supporting and exposing elements of a closed convex set of a Banach space.

2. Preliminaries and notations. Let us begin with some definitions. Given
a normed vector space (X, ||.||), we shall indicate by Bx the closed unit ball and by Sx
the unit sphere. The closed ball with center x and radius r is denoted by B(z,r), but
when x = 0, we shall also write rBx. The product of normed spaces X x Y is endowed
with the norm

1z, y) || = max(f[z]], [ly]])-

We shall indicate by X* the (continuous) dual of the Banach space X and by (-,-) the
usual pairing between X and X*.

Given a function f: X — R U {400} and given A\ € R we denote by [f < )]
the set of those x € X with f(x) < A, and by epi f the set

epi f={(z,t) e X xR: f(x) < t}.

As it is easy to show, epi f is closed if and only if f is lower semicontinuous and convex
if and only if f is convex. In the sequel, as it is usual in an optimization setting, we shall
often identify a function with its epigraph: in particular, when we want to topologize
the set of the lower semicontinuous (and convex) functions f : X — R U {400}, we
intend to define a topology on the closed (and convex) subsets of X x R.

We denote by F(X) the set of the closed subsets of X, by C(X) (resp. C(X™))
the set of the subsets of X (resp. X*) which are convex and o(X, X*)-closed (resp.
o(X*, X)-closed). Conv (X) will be the set of the extended real-valued (i.e. valued in
R U {+00}) convex functions defined on X and I'p(X) (resp. I'o(X*)) the set of the
proper (i.e. not identically equal to +00) functions on X (resp. X*) whose epigraphs
belong to C(X x R), (resp. C(X* x R)). The sets I'o(X) and T'o(X*) are connected
by one to one mappings £ and L,, the Legendre-Fenchel transforms, defined for all
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feTo(X), g eTo(X"), z € X,y e X" by L(f) = f* and Li(g) = g*, where

[ (y) = sup{(z,y) — f(z) 1 2 € X}

and
g"(z) = sup{(z,y) —g(y) ry € X"}

Given € > 0 the e-subdifferential 0. f of a function f € Conv (X) is the set
O-f ={(z,y) € X x X" : f(z) + f*(y) — (x,y) < €}

The set Jp f will be simply denoted by Jf.

We introduce now some ways of associating functions to sets (and vice-versa).
The indicator function of the subset C' C X is the function i¢ from X into R U {400}
defined by ic(x) = 0if z € C and i¢c(x) = +oo if z € X \ C. Given C € C(X) we
denote by o¢ the support function of C. It is defined as:

oc(x*) =sup{{c,z*) : c€ C} =1ip.
C° C X* is the polar set of C, defined by
C°={ye X" :0c(y) <1}

The recession cone 07C of a closed convex set C is the set of those © € X such that
for all x € C' one has x + Ryu C C. It is also equal to

(1) 0"C ={u e X : for all u* € domoc, (u,u*) <0}.

Given C € C(X), an element x € C' is said to be a support point (for C) if there exists
u* € X*\ {0}, which is called a support functional for C' at z, such that

(2) oc(u’) = (z,u”).

The point « € C' is said to be exposed if = is the only element of C satisfying (2),
it is said to be strongly exposed if every sequence (z,) C C converges to x whenever
({(xn,u*)) converges to oc(u*). Given (C,u) € C(X) x Sx, and € > 0 we denote by
e-Supp,,C' the set

e-Supp,C = {(z,w*) € C x X* : o¢(w*) — e < (x,w"), (u,w*) = —1}.

When € = 0 we set
Supp,C = 0-Supp,,C.

We also set

Exp,C = {(z,w*) € Supp,C : (Supp,C) ' (w*) = {z}},
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where
(SuppuC)*l(w*) ={z€ X : (z,w") € Supp,C}.

We shall see later that a support point can be characterized by being solution of a
certain minimization problem. Moreover, a strongly exposed point is a solution of a
problem which has a particular nature, described by the next definition.

An optimization problem 12)f( f(z), where f : X — R U {400} is defined on
T

a metric space (X,d), is said to be well posed if it admits a (unique) solution which is
the limit of each sequence (z,,) in X with linrolo flzy) = in)f{ f(x).
n— zE

The epigraphical sum f + g (or inf-convolution) of two functions f, g from X
€

into R is the function defined for all x € X by
(f +9)(x) = Inf (£(=) + gl — 2).

It is said to be exact at x if iél)f((f(z) +g(z—2)) = Hél)I(l(f(Z) + g(z — 2)).

We shall need a result of [8] on the computation of the conjugate of the sum of
two convex functions in general normed spaces.

Theorem 2.1. Let X be a normed space and let f, g € Conv(X) be proper
convex functions. Assume that for some real numbers A, s > 0, r > 0 one has

(3) sBx C [f <AlNrBx —[g < A]NrBx.
Then for all y € X*
(F+9) () =" +40)

and the epigraphical sum is exact.

To conclude our preliminaries, let us introduce the set topologies we shall use
in the paper. Given x € X and given subsets A, C' of X we set

d(xz,A) = inf{||z — 2| : z € A},
with the convention d(z, ) = +oo,
D(A,C) =inf{||lx — 2] : (z,2) € Ax C}

and
e(C,D) = sup{d(z,D) : x € C},

with the conventions e(@, D) = 0 and e(C, ) = +o0 if C # (). The Hausdorff distance
between C' and D is defined by

h(C, D) = max(e(C, D), e(D,C)).



Stability of supporting and exposing elements of convex sets. . . 311

For each r € Ry, e € RY we define

e-(C,D) = e(CNrBx,D),
h.(C,D) = max(e.(C,D),e.(D,C
U. = {(C,D)e2¥:¢/(C,D)<ce},
ul. = {(C,D)e2X:e,(D,C
U.. = {(C,D)e2*:n.(C,D

The family of sets U, (resp. L{ﬂ: _) is a basis for a quasi-uniformity on the hyperspace
F(X). We denote by Taw_ (resp. Taw, ) the topology induced by this quasi-uniformity.
We denote by 74w the supremum of 74y and 74, . This topology, the Attouch-Wets
topology (see [2]), is associated with a metrizable uniformity on F(X) whose basis is
constituted by the sets U, . when (r,¢) ranges over Ry x R’ . In terms of sequences,
C = Taw- nlLIgo Cy, if and only if nlLr%o hy(C,Cy) = 0 for all (large) p.

The inferior limit of a sequence (C),) of closed subsets of a metric space (X, d)

is the set Li (), of those x € X such that lim d(x,C,) = 0. Equivalently, it is the
n—oo n—oo

set of x € X for which there exists a sequence (x,,) converging to = such that z,, € C),

eventually. Instead the superior limit Ls C, is the set of x € X for which there exists
n—oo

a sequence (xy) converging to z such that z, € C,,, where {n;} is a subsequence of
the integers. We shall say that the sequence (C),) converges to C in Kuratowski sense
if Ls C,CcCC Li C,.
n—oo n—oo
Together with the Attouch-Wets topology, we shall consider another topology

on the subset C(X) of the hyperspace F(X) of the closed subsets of the normed space
X: the slice topology. To briefly introduce it, let us define the family of sets

O  ={{C eC(X):0NC # @} : O runs over the family of the open subsets of X}
and

(BTt ={{C e€C(X): D(C, X \ A) >0} : A runs over the convex bounded sets}.

Then the slice topology is defined as the smallest topology containing the families O~
and (B)T*. More precisely, O~ gives rise to the lower slice topology and (B¢)™*
generates the upper slice topology. For more information on this hypertopology, we
refer to [11], [13], [27], [28], [10]. Here we just mention the following facts, that will be
used in the sequel:

e A sequence (C,) of closed convex sets converges for the lower slice topology to a
closed convex set C' if and only if C' C LioO Ch;
n—
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e a sequence (C),) of closed convex sets converges for the slice topology to a closed
convex set C' if and only if the sequence (o¢,,) slice converges to o¢;

e given {f, f, : m € N} C I'g(X), then (f,) slice converges to f if and only if the
two following conditions hold:

a) for all u € X, there exists a sequence (u,) — w such that

lim sup fr, (uy,) < f(u),

n—oo

b) for all u* € X*, there exists a sequence (u;,

*) — u* such that

limsup f,(u;,) < f*(u*).

n—~o0

3. Separating functions of convex sets. In the sequel C' will be a convex
subset of a normed vector space X different from @ and X !. We shall study the
supported points of C' by associating to it a direction u and a closed hyperplane H, not
containing u, which allow defining a function, that carries useful information about C.
To do this, let us set the following notations:

uw€ Sy and —u ¢ 0tC
(A)
H={ze X : (x,u") =0} for some u* € X* with (u,u*) = —1.

We shall indicate by 7 the projection on H in the direction w, namely m(x) = z+(z, u*)u
for all z € X.

Remark 3.1. It is useful for the sequel to observe the following: the dual
space H* of H is isomorphic to the subspace H* C X* defined as H* = {z* € X*:
(u,2*) = 0}. A natural isomorphism j : H* — H* is for instance j(a*) = z*, where
2y = a* and (u,z*) = 0. Moreover the dual norm of the norm of X restricted to H is
equivalent to the restriction of the dual norm of X on H*. Thus in the sequel we shall
identify H* with the hyperplane {z* € X* : (u,z*) = 0}.

Following [20] and [29], we can now introduce the function which will play
a fundamental role in the study of the convex set C'. For all x € X, and setting
inf @ = 400, let fic,) be defined as

fiow(z) =inf{t e R:z +tu € C} = (ic + (iRy — (-, 27)))(2),

!This assumption guarantees in particular the existence of a unit vector u € X such that —u ¢ 07 C,
which is all we need when in our statements we shall assume subsequent hypothesis (\A).
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where z* € Sy« is such that 1 = [jul| = (u,2*). We say that fic,) is the separating
function of C with respect to the direction u. We also introduce the restriction fic ., m
of fic,u) to H. Let us observe here that the assumption of existence of a vector u such
that —u ¢ 07 C is necessary to avoid the trivial situation when the separating function
J[cu) never assumes real values. Moreover, when —u € 07C it may happen that the
function fic ) is not lower semicontinuous even when C'is closed. Indeed let C'C R xR
be the epigraph of the convex function h(z) = (|z| —1)72 + i—1,1)(z) and u = (0, —1).
We obtain

—oo if (z,t) €]0,1[xR

fiow (@ +tu) =
+oo if (x,t) €]0, 1[xR.

On the other hand, as we shall see later (see Proposition 3.1), the function fc ) has
nice properties whenever —u ¢ 07 C.

Let us set C;f = C' 4+ Ryu. Observe that Cf = {z : fic(z) < 0} and that
fic,u) 18 proper whenever there exists u* € C° with (u,u*) < 0, a condition equivalent
to —u & 07C. Observe also that = + fic(z)u € C whenever (z + Ru) N C is closed
and that fjc . = f[cj[,u]' Moreover, for all x € X and p € R one has

(4) fiow(@ + pu) = fiow(x) — p.

Recalling that x and its projection are related by the formula 7(z) = =z + (x,u*)u we
then have, for all x € X

(5) ficu,m(m(x)) = fiou (@) — (z,u").
Moreover
= 7(z) + (fieum(T(T) = fiow(T))u,

whenever x € dom f|¢ ), and for all y € X

fiew) () = ficry)u (@ +y).

Finally, we observe that, in the case where C' = epih with h € Conv (X) and u = (0,1)
we get, for all x € X:

f[C,u]($7 O) = h(l‘)
and for all (z,t) € X xR
f[C,u](x¢t) = h(l‘) —t.

Proposition 3.1. Let C be a closed subset of X. Then for all uw € Sx for
which —u & 0TC one has

fic,u) € To(X).
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Proof. We only need to prove lower semicontinuity of fic,). Let z € X and
let (z,) be a sequence converging to z and such that

lim f[C,u} (xn) =1,

n—oo
with [ = lim inf f;c,(2). There is nothing to prove if I = co. Otherwise, observe that
Z2—T )

[ > —o0, as there is v* € C° such that (u,v*) < 0. Thus there is a sequence ¢, — 0
such that z, + (I +t,)u € C. As C'is closed, x +lu € C. Thus fi¢ () < which ends
the proof of the proposition. O

The function f|c,,) provides a complete description of the set C'. Indeed if C'is
closed convex and if u € Sx four cases occur

u g OJrCa —u ¢ 0tC | C= {33 +iu: x € H, f[C,u,H}(x) <t< _f[C,fu,H}(x)}

ue0tC,—ug0tC | C={x+tu: € H, fioum(r) <t}

ug0tC,—ue0tC|C={a+tu: x€ H, t < —fic_,mx)}

ue0tC,—uec0tC | C={e+tu: z€H, fioum) <t < —fio—uwm(®)}

Proposition 3.2. Let C be a convex subset of a normed vector space X. Then
a) for all v* € X*

oc(v*) if (u,v") = -1
fiow @) =
+00 if (u,v*) # —1

Moreover, assuming (A), one has
b) for all w* € H* = {w* € X*: (u,w*) =0} :

fieum”) = oc(w" +u’).

Proof. Let #* € X* be such that (u,z*) = 1. As
f[C,u](x) = (ZC "J; (Z]Ru - <,$*>))(l‘),
we derive that

f[*c,u](v*) = 0'0(2}*) —I-U]Ru(v* —|—Jj*)
= UC(U*) + ’L{x*<u7x*>:0} ('U* + x*)
= O'C(U*) +i{x*:<u,x*):,1}(v*)7
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which is the asserted expression.

Let us now compute f[*C,u,H]' Let 2o € H Ndom f|c,,). For all z € X one has
x =z + tu+ m(xr — 20)
with t = —(x — z¢, u*), which leads to
Bx C [fic) £ AINTBx — [ig < AJNrBx,

where r > max(1 + ||zo||, |7||(1 + ||zo]|), and A > 0 is such that A > f(zg) + r. Thus
we can apply Theorem 2.1 yielding, for all w* € H*

fewm@®) = (fiew + i)™ (w")
= U*ig)f(*(ffkc,u] (w* = v*) + o (v"))
= %gé fiow (W™ — tu®).
As w* — tu* € H* (only) for ¢ = —1, we obtain f[’“CMH}(w*) = oc(w* 4+ u*) which

concludes the proof of the proposition. O
The following result shows the main connections between supporting points of
the convex set C' and a minimum problem associated to the separating function.
Theorem 3.3. Let C' C X be a closed convex subset.

a) Let x € C be a support point, let H be the corresponding supporting hyper-

plane:
H={zeX:(z,w") = (z,w")},

for some w* € X*. Finally, let H be the hyperplane parallel to H through the origin.
Then, for each u € Sx such that (u,w*) < 0, one has

al?;f; f[o,u,H] (a) = f[qu,H] (m(x)).

Moreover, if x is exposed, the problem inty fic . g has unique solution m(x), and if x
is strongly exposed, the problem infy fc . m) is well posed.

b) Conversely, let w* € X*\ {0} and let H be a closed affine hyperplane through
x € C parallel to the linear hyperplane H 5 0 of the form
H={zeX: (zw) = (z,u*)}.

If there is u € Sx such that (u,w*) < 0 and infeey fiou,m(a) = fioum(m(z)), then
x s a support point for C, with supporting functional w*. Moreover, if the problem
infy fio,um is well posed, then x is strongly exposed.
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Proof. a) Assume that (.,w*) attains its maximum over C at z. One has
ficw)(®) = 0, 50 that @ = 7(x) + ficum(m(x))u and fic m(m(z)) = % Now let

)

a € H. For each ¢t € R such that a + tu € C, one has (a + tu,w*) < (z,w*), implying
(2, w*)
(u, w*)’

;glf{ ficu,m(a) = ficum(m(z)).

t{u, w*) < (x,w*), so that t > hence fic,u,m1(a) > ficum(m(x)) and then

Assume now that H strongly exposes x € C'N H. Let (an) be a sequence in H such

that (fic,u,m(an)) converges to fic ., m)(m(x)). Setting z, = an + ficu,m)(an)u we get
T, € C and

<$n7 w*> = f[C,u,H} (an)<u7 w*>,
hence the sequence ({7, w")) converges to fic., m)(7(z)){(z, w*) = (z,w*). Thus (z,)
converges to x so that (a,) converges to 7(x).
b) Assume that infy fic u m) = fiou,m(m(z)), for some x € C'N Handue X
such that (u,w*) < 0. Let z € C, then z = 7(z) + tu where

t > fieum(m(2)) = fiowm(m(2)),
yielding
<Z’w*> = t<u?w*> < f[C,u,H}(”T(x))<u?w*> = (a:,w*>

Thus w* supports C' at . Now assume that fic.,m) is well posed and let (z5,) be a
sequence in C such that ((z,,w*)) converges to (x,w*). Setting a, = m(x,) we get

(T, w*)
(u, w*)
fiowm(@n) = An = fiou(zn) <0,

we get fiow,m)(T(2)) < flowm(an) < Ap and thus (ficw,my(an)) = fiowm(m(2)). By
well posedness of fic,, m, then (an) converges to m(z), thus (z,) converges to x. We

Ty = ap + Apu where )\, = converges to ficy,m)(7(x)). As

have shown that H strongly exposes x. O
We now show how the e-subdifferential of the function f|c ,, ;] characterizes the
set of e-support points and support functionals of C 2.

Proposition 3.4.  Let C' be a convexr subset of a normed vector space X,
assume (A) and let ¢ > 0. Then, for all a € H Ndomfic,, m), the translation t,~ is
a one to one mapping from O fic,u,m)(a) onto (e-Supp,C)(z) = {u* € X* : (z,u") €
e-Supp, C} with x = a + fio,u,m(a)u. In other words,

(6) (a¢ a*) € 8f:‘f[C,u,H} — (a + f[C,u,H}(a)u? u* + a*) € €—Suppu0.

2Remembering Remark 3.1, we are here identifying a* € H* with the element (still denoted by a*)
of X* acting as a* on H and such that (u,a™) = 0.
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Moreover
(7) (z,w*) € Supp,C == (7(x),w* —u") € dfic,un-

Proof. Let a* € O: ficu,m(a), v* = ty(a*) = u* +a* and x = a + fic,u,m(a).
We have:

f[*C,u,H](a*) + f[C,u,H}(a) < <a’7 CL*> +e,

and (r,v*) = (a,a”) — fio,u,m(a). Relying on Proposition 3.2, we derive
oo(v*) —e < (x,v"),

and, as (u,v*) = —1, v* € (e-Supp,C)(x). Conversely let v* € (e-Supp,C)(x) and let
a* = v* —u* 3. One has:

oc(a*+u*) —e < (z,a* +u"),
and H 3 a = x + (x,u")u which give

fiewm(@) = fiowm@ + (@, u")u) = fiow (@) = (2,u") = —(2,u7).

Thus we get
fiew,m(@) + fiewm(a) < (a,a”) +e,

hence a* € Ok fic,u,m)(a).

Now observing that (z,w*) € Supp,C implies fic () = 0 and thus z =
7(z) + ficum(7(x))u, we immediately derive (7) from (6). O

With the help of the Ekeland variational principle, Proposition 3.4 provides a
simple proof of the Bishop-Phelps Theorem (see [16]) on density of support points and
support functionals. Let us recall that given a Banach space X and f € I'g(X), it is an

immediate consequence of the Ekeland variational principle applied to f — (., w*) that
given € > 0, z € X and w* € 0. f(z) there exists x € X and v* € df(x) with

[l — 2] < Ve,
(8) [0 —w*[| < Ve,
£ (z) = f(@)] < Ve([w]l« + Ve).
Theorem 3.5. Let C # X be a closed nonempty convex subset of a Banach

space X. Then the set of support points is dense in OC and the set of support functionals
is demse in domog.

3As {u,a*) = 0, we can consider a* as an element of H*.
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Proof. Let z € 9C. One has R, (z — C) # X so that there exists u € Sx with
u g Ry(z —C) thus —u ¢ 07C. Let H be the linear hyperplane associated to some
u* € domoc with (u,u*) = —1. Set b = 7(z). As u € Ry (2 — C), we get fic,(2) =0
thus z = b+ ficu,m(b)u. Let ¢ > 0 and let w* € O: ficu,m(b). Returning to (8), we
get the existence of a € H, a* € 0ficy m(a) with [la — b < /&, ||a* —w*|| < /&, and
| fiou,m(@) = ficu,m®)] < e(ve + [[w*|[\/€). From Proposition 3.4 we obtain

(x,v*) € Supp,C,

with = a + fiou,m(@)u, v* = a* +u* and ||z — z|| < /2(2V/€ + [[w*[[Ve).

Now let w* € domoc. We can choose u € Sy such that (u,w*) < 0 and
kE > 0 such that (u,kw*) = —1. Let H = [(u,w*) = 0] and let z € C be such that
oc(w*) —e < (2,w*). Setting b = 7(z), we have w* — kw* € 0. fc,,, (), thus there
exist a € H and v* € Of|c .y, m(a) with ||w* — kw* —v*|| < e. From Proposition 3.4 we
derive that v* + kw* is a support functional for the set C. O

4. Stability of supported and exposed points. This section is dedicated
to stability of the supported and exposed elements of a closed convex set C', under per-
turbations in the sense of the slice and Attouch-Wets topologies. As we want to study
this with the help of the separating functions, and we learned that their subdifferen-
tials provide information on supporting points, we start with some auxiliary results on
the approximation of the points of single valuedness of the subdifferential of a convex
function. Then we connect convergence of the sets to convergence of the associated
separating functions and finally we provide the main stability results. Our first result
is a technical lemma, the convex version of Proposition 7.1.3 in [11].

Lemma 4.1. Let {f, fn:n € N} C I'o(X) be such that f = TAW-nh—{Iolo fn and
let xo € int(dom f). Then for all € > 0 there exist § > 0 and N € N such that

sup [ fu(z) — flzo)| <€
r€x0+0Bx

forallm > N.

Proof. Let y € 0f(xzo) be arbitrary. There exists §; > 0 such that for all
T € 2o+ 01U we have

(x —zo,y) + f(z0) — % > f(xg) —e.

Since the graph of x — (x — z¢,y) + f(z0) — % lies below epi f, by slice convergence
the set

{(x,a) € X xR:x € xy+ By, a:<x—x0,y>+f(g;0)_%}
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lies below epi f,, for all n € N sufficiently large. This means that

sup  f(zg) — fu(z) < e.
r€xp+IBx

By upper semicontinuity of f at xg there exists 0 < do < Z such that f(z) <
f(xo) + € whenever x € xy + JBx. It follows that

(zo + 62Bx) % [f(xo) + %, flxo) + E} C epi f.

This means that the ball with center <x0, flxo) + ZE) and radius ds lies in epi f. Take

)
p so large that uBx x [—pu, p] contains this ball. Then if h,(f,, f) < 52 it easily follows

o4 . . . 3
from the Radstrom cancellation law that the ball with center (a:o, fzo) + Zs) and

radius 09 lies in epi f,,. Thus, for each = € xg + EQB x, we have
3 1
fn(l‘) < f(l‘o) + ZE + 552 < f(xo) +e
for n large. O

Corollary 4.2. Let {f, fn : n € N} CI'o(X) be such that f = TAw—nliHolo fn

and let xog € int (dom f). Then there exist § > 0, p > 0 and N € N such that for all
n> N,z €xg+IdBx, y € 0fp(x), we have ||y|| < p.

Proof. Choose by Lemma 4.1 §' > 0 and N € N such that |f,(z) — f(zo)| <e
for all z € zg + 8 Bx, n > N. In particular, each f, is uniformly bounded above
and below on zg + ¢’ Bx. As a result, {f, : n > N} is an equi-Lipschitzian family

3
on rg + Z(S’B x. Taking a uniform Lipschitz constant p for the family restricted to

3 1
xo + Zé/BX and setting ¢ = 5(5/, we claim that

sup{|ly|| : y € Ofn(x), n > N,z € 29 + 0Bx} < p.

Otherwise there would exist € xg + 0Bx, n > N and y € df,(x) such that ||y|| > p.
Choose a unit vector w with (w,y) > p. Since ||z — x| < 55', x + Zé’w €xo+ Zé/BX

and

f(a:—kié’w) — f(2) >p(:1:+i<5’w—:1:),

3
contradicting Lipschitz continuity of f, on the ball x + 15’ Bx. O
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Lemma 4.1 and Corollary 4.2 fail to be true when replacing the 74y topology
by the slice topology. Indeed let X be a separable Hilbert space endowed with an

orthonormal basis (e,)nen and let f =0, f, = ix, with X,, = span{eqg,---,e,}. We
have f = 7¢- lim f,, 0 € int (dom f), but setting =, = bl e get (x,) — 0 and
n— oo n

fn(zy) = 400.
Given f € I'o(X), we set

Ouf ={(z,y) € 0f : 0f(x) = {y}},
Af ={(z, f(x),y) : (z,y) € Of},

n

and
Auf = {(xvf(x)7y) : (1373/) € a*f}

Observe that given 2 € C' with a = w(x) we derive from Proposition 3.4 that
v" € (Exp,C) () if and only if 0, (v — u”) = {a}.

A normed space X is said to be an Asplund space if every continuous convex function
defined on a nonempty open convex subset of X is Fréchet differentiable on a dense Gy
subset of its domain. A result due to P. Kenderov (see for example [25, Theorem 3.20])
asserts that given a maximal monotone operator " C X x X* defined on an Asplund
space and satisfying int (domT') # ), there exists a dense G5 subset of int (dom 7") on
which T is single valued and norm-norm upper semicontinuous.

Theorem 4.3.  Let X be Asplund, let {f, fn,: n € N} C T'o(X) be such
that f = TAV[/-nlLHOIO fn and let int (dom f) be nonempty. Then there exists a subset
E of int (dom 0, f) that is dense and Ggs subset of dom f such that for all x € E,
(z, f(x),y) € nEiOOA*fn, where y is the unique subgradient of f at x.

Proof. By Kenderov’s Theorem on maximal monotone operators, the points x
of int (dom f) where 9f is single-valued and norm-norm upper semicontinuous contain
a dense G subset E of int(dom f). Fix z¢p € F and let yo be the unique subgradient of

f at xg. Let € > 0 be such that zo +eBx C dom f. There exists 0 < Jp < % such that
lly — yoll < % for all x € xg + 0gBx, y € df(z). Choose, by Lemma 4.1 and Corollary
42, 0< 0 < E, p > 0 and Ny € N such that both

2
9) sup | fu(z) — f(z0)| <€
r€x0+d1Bx
and
(10) sup sup |[lyl| <p

x€x0+61Bx y€O fn(x)
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hold. By (9), for all n > N1 we have 29+ d; Bx C dom f,, and since X is Asplund there
exists &, € xo+01Bx such that 0f,(zy) is a singleton. Fix p > max(||zo||+d1,p). From
a known result on convergence of functions and related convergence of subdifferentials
(see for example [24], Proposition 1.5), there exists an index N > N such that for all
n > N, h,(0f,0fn) < 61. Now let n > N be fixed and let y, be the unique element
of Ofp(xy). Since (z,,yn) € uBxxx+ N Jfy, there exists (w,y) € df such that both

|xn —wl|| < 81 and ||y, —y|| < 01 hold. Since w € zo+ dpBx, we have ||y —yol| < % and

s0 |lyn — yol| < % + 61 <e. By (9), |fn(zn) — f(z0)| < € and since 6; < €, we also have
||xr, — zo|| < . Thus for all n > N, we have found (zy, f(zn), yn) € Ay fy such that

H($07 f(l‘O)ayo) - (xny f(ajn)yyn)n <e.

This proves that (zo, f(z0),y0) € LiOOA*fn as required. [
n—

We now turn to the problem of relating convergence of sets to convergence of
the associated separating functions.

Theorem 4.4. Let X be a normed vector space and let {C, Cy, : n € N} C
C(X). Letu, H be as in assumption (A). If ficu,m = TS-nliHolo f(Cpyu b5 then

Cf = 7s- lim (Cy),.

Conversely, if (A) holds for C and C = 71g-limy, o Cy, then

fiea,m = 7s- I fic, )

Proof. Let us start with the lower part of convergence. Let ¢ € C;. Then
c = m(c) + Au, with (7(c),\) € epi figu,m)- Then there exists a sequence (T, \n) C
epi fic, u,m] such that (z,) — 7(c) and (A,) — A. Then z, + Au € (Cy)F and the
sequence (z, + A,u) converges to c¢. Now suppose D(B,C;f) > 0 for some convex
bounded set B. Call

B={(x,)\):z€H, 4+ ue B}.

It is easy to verify that B is closed bounded in X x R and that D(B, epi ficu,m) > 0.
Then D(E,epi J(Cnou, H]) > 0 eventually. Suppose now, for the sake of contradiction,
(D(B,(C,)F)) — 0. Then there exist b, € B, ¢, € (Cy) such that (|b, — ¢,|) — 0.

Writing b, = 7(b,) + Au, ¢, = 7(en) + rpu, we have (w(by), \) € B, (m(cn), ™) €
epi fic, u,m) and d[(7(bn), An), (7(cn),7n)] — 0, but this is impossible. So (Cn)F €

(B€)** and this shows the first part of the theorem. To prove the second part, let
r € dom fio, g N H. As z = x + fioum(z)u € C, there exists a sequence (zy)
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such that z, € C,, and lim,_, 2, = 2. Let us write 2z, = z, + A\yu with z,, € H;
one has lim, e = o, limy 0o Ay = fiow,m(®) and fio, um)(Tn) < Ay and thus
Hm sup,, o0 ficp u,m)(Tn) < fiow,m (). Now let

v* € dom fi,, g C domoe — u”.

*

There exists a sequence (w}) converging in X™* to u* + v* in such a way that

limsupoc(w)) < oc(u* 4 v*).
n—oo
Setting A, = —((u,w?))~!, we have lim )\, = 1. Setting W} = \,w}, we have ¥}, =
n—oo

u* 4 v} with (u,v:) =0 and (v};) converging to v*. Moreover

limsup fic, . gy(vn) = limsup oc, (Aawy) < fio, mv),
n—oo n—oo

yielding the announced result. O

Corollary 4.5. Let X be a normed vector space and let {C, C,, : n € N} C
C(X). Letu, H be as in assumption (A). If fic.um = Ts—nli_{réo ficpum and fio,—u o =

TS~ nhi& f[Cn,—u,H] , then . .
=715- lim C),.
n—oo

Proof. Observe that C = C;f N CF,. Then, from Theorem 4.4 we have

convergence of (Cy,)} to O and of (Cy,)", to CT,. We must show that this implies

convergence of the sequence (C,,) to C. Let ¢ € C. There are sequences (c;7) C (C)}

and (c;) € (Cn)Y, converging to c. Write ¢, = x,,+tpu, ¢;; = Yn—spu, With x,,, y, € C

—U
S t
and t,, s, > 0. Then C,, > "+ " 4y, — c. This proves lower convergence.
Sy + 1ty Sp+ 1ty

Upper convergence follows from the formula D(A, C) = max (D(4, C;}), D(A,C™,)),
which is easy to prove and is left to the reader. O

Corollary 4.6. Let X be a normed vector space and let {C, C,, : n € N} C
C(X). Suppose moreover Cy, = (Cp)r, C = CF and assume (A) for C. Then C =

7s- lim Cy if and only if fio,u,m = 7s- im_ fic, u,m-

The assumption —u ¢ 0T C plays an essential role in the former results. For, if
—u € 07C we already remarked that it can happen that JiCu,m 1s not lower semicon-
tinuous. This means that, even when C,, = C for all n € N, we do not have in such a
case f(cu,H] = TS~ nh_}rgo J(Cp,u,i]- Moreover, if —u € 0™C, even the implication

C=rg- nh_)nolo Cpn = Cf = 75- lim (Cn):

n—oo
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is no longer true, as the following example shows: X = R?, C,, = {(z,y) : y < nz},
u=(0,1).

If we replace the slice topology by the T4y topology we are able to provide
quantitative estimates. The first result is the following.

Proposition 4.7. Let u, H be as in assumption (A). There exists p > 0 such
that, for all r >0 and for all C,D € C(X) the following estimate holds:

h‘T(C;r7 DzJLr) < 2hTP(f[C,u,H]) f[D,u,H])'

Proof. Take C € C(X) and z € C;f NrBx. Write z = w(x) — (z,u*)u. We
have

Siew,m(m(@)) = fiow (@) = (,u") < =(z,u") <rflu’]],

and [|[7(z)|| < (1 + |lu*|]) =: p. Thus (7(z), —(z,u*)) € epi ficu,z) N PBxxr. Then
for each & > 0 there is (2,a) € epi fip ., m) such that [|(7(z), —(z,u")) — (z,a)||xxr <
erp(f[c,u7H},f[D,u7H}) +¢e. Consider w := z + au € DJ. To conclude, observe that
|w — 2| < 2erp(ficu,m)> fip,u,m)) + € and interchange the roles of C'and D. O

To obtain an inequality in the opposite sense, we need the following lemma.

Lemma 4.8. Let Cy € C(X) be such that (A) holds true. Then there exist a
Taw -neighborhood N of Cy and p > 0 such that for all C € C(X),

fiew(x) = =p(llz|| + 1) for all z € X.

Proof. Let vy € dom f[*co o) in such a way that oc, (vg) = —1 (see Proposition
3.2). Let us define

N ={c ecsdlgo, w).epiae) < 3

The set NV > Cj is open due to the continuity of polarity with respect to the Attouch-

1
Wets topology. For all C' € N, there exists (v*,\) € epio¢ such that ||[v* —v§|| < 3 and

1
A —oc, (vg)] < 3" Let us set t = —({u,v*))~! € (0,2). One has (tv*,t)\) € epl fl )
and, for all z € X,
fiew (@) 2 (@, t0") —tA = —p([lz] + 1),

where p = max(2||v§]| + 1,2|oc, (v§)| + 1). This ends the proof. O
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Proposition 4.9. Let Cy € C(X) be such that (A) holds true. Then there
exist p > 0, ¢ > 0 and a Taw-neighborhood N of Cy, such that for each C, D € N and
for each r >0

ho(fiow,mys fiDu,m) < @hp@ra1)40(C, D).
Proof. From Lemma 4.8, there exist a 74y —neighborhood N of Cy and p > 1

such that for all C € N/,

fiew (@) = =p(|lz] +1) forall € X.
Let C, D € N and let (2,t) € epi ficu i) € "Brxr. One has

—p(1+7) < fiowm@) <t <,
thus = + fio . m(7)u € CN (p(1+7) +7)Bx. For € > 0, there exists y € D with
|z + fieum(@)u =yl < epair)y+(C, D) + .
One has y = 2 + su with 2 = 7(y) € H, thus (z,s) € epi fip u,z)- We get
\ficum(x) = sl = Kz + fioum@)u — 2 — su,u)| < [|u”|[(ey(14r)4-(C, D) + ),

and
|z — 2| = |I7(z + fioum@)u =PI < ||I7l(epasr)+r(C; D) + ).
We derive that

d((z,t),epi fipumy) < l[(@1) = (2,8 +1 = fioum (@)

IN

maX(||7T||7 HU* ||)(ep(1+r)+r(c7 D) + 5)7
hence letting € go to 0

er(ficw,m)s Jipu,m)) < max({|zll; [[u”[)epiry4r (C, D).

Interchanging C and D, the result follows. 0O

From Proposition 4.7 and 4.9, we get immediately the following

Theorem 4.10. Let X be a normed vector space and let
{C, Cp, :m e N} C C(X).

Let u, H be as in assumption (A). If ficum = TAW—nliHOlo fiCu, )5 then

G = Taw- lim (Cn).
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Conversely, if (A) holds for C and C = TAW_nh—{Iolo Cy, then

fiow,my = Taw- i fio, u,m-

Corollary 4.11. Let X be a normed vector space and let {C, C,, : n €
N} € C(X). Let u, H be as in assumption (A). If ficum = Taw- liIrolO JiCpu,m) and
K b n— mnsy k)

JiC—um = TAW_nh—{Iolo J(Cn,—u, i), then

C = taw- lim C,.
n—oo

Proof. Asin Corollary 4.5 we must show that convergence of (C,) to C;f and
of (C,)T, to C*, implies convergence of the sequence (C,) to C. This follows from the
formula e,(D,C) < max (e,(D;,C;\),e,(DF,,CT,)), which is left to the reader. O

—u’

Corollary 4.12. Let X be a normed vector space and let {C, C,, : n €
N} € C(X). Suppose moreover Cy, = (Cy)F, C = C} and assume (A) for C. Then
C = raw- lim G, if and only if fio.u,m = Taw- Im fic, um)-

We finally are able to prove the promised results on stability of the supporting
elements under perturbations. We start with the slice topology, and we shall focus our
attention to lower convergence of the support points, but before let us briefly explain
what happens with upper convergence.

The Bishop-Phelps Theorem shows that convergence of a sequence of sup-
port points, in a fized given closed convex set C', does not guarantee that the limit
point is a support point for C. On the other hand, if we have convergence of pairs
(xn,u)) € Supp Cy, to a limit pair (z,u*), then (z,u*) is a support point for the set C,
if the sequence (C,,) converges to C in the sense of Kuratowski, as a standard direct
computation shows. So, let us focus on lower convergence of support points.

Theorem 4.13. Let X be a Banach space and let {C, Cp, : n € N} C C(X) be
such that C = 7s- lim C,. Then assuming (A) for C, one has

Supp,C C Li (Supp,Ch).
Proof. Let (z,v*) € Supp,C and let H be any closed hyperplane such that
(A) is satisfied. As (u,v*) = —1, we derive that fic ) (2) = 0, thus x = a+ fic,u,m)(a)u,
where a = 7(x). Using Proposition 4.4 one gets

fiew,m) = 7s- i fie, u,m)-
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From Proposition 3.4 we have (a,v* —u*) € 9f(c,u i) Using Theorem 8.3.7 of [11], we
get the existence of a sequence ((an,ay)) C H x H* such that ((an, ficu,m)(an),ay))
converges to (a, ficu,m)(a), v —u*). Setting x, = an + ficu,m)(an)u and v, = u* + aj,
we get (x,,v)) € Supp,Cp and the sequence ((z,,v};)) converges to (x,v*), yielding
the announced result. O

Theorem 4.14. Let X be a Banach space and let {C, Cp, : m € N} C C(X) be
such that C = Taw- lim C,. Then assuming (A) for C, one has for all v > 0

Jim_ex(Supp,C, Supp, Cn) = 0.

Proof. From Proposition 4.9, we derive that
Siowm = Taw- I fio, v m-
Let r > 0 and let (z,w*) € Supp,C NrBxxx+. From Proposition 3.4, we have

(m(@), fiew,m(7(x)), w" —u”)) € Aficu,m)) N PBxxRx X,

with p = max(r||u*|, ||7||r,” + ||u*|]). Using a result of [15] (see for example [11],
Theorem 8.3.10) one has

lim e,(A(ficu,m)) Alficpum) = 0.

n—oo

It follows the existence of sequences (a,) C H and (a)) C H* such that
(7 (), ficum (T (@), w* = u*) = (an, ficn um(an), ap)l| < ep(n) + (n+1)7"
with €,(n) = e, (A(fic,u,m)s Aficn,u,m))) Let us set
(@n, wp) = (an + fic,um (@n)u, u” + ay).

One has (z,,w}) € Supp,Ch,

lwy, = w*|| = llay, — a*|| < egp(n) + (n+1)7"
and
|zn — 2| = |lan + JiCoumu — @ — f[C,u,H]UH <2(gp(n) + (n+ 1)*1),
yielding
(@, wh) — (2%, w*)|| < 2(ep(n) + (n+1)71),
thus

e (Supp, C, Supp,Cr) < 2(gp(n) + (n+1)71),
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which ends the proof of the theorem. O

In order to obtain stability results involving Exp,C' instead of Supp,C, we need
an additional assumption of nonflatness at infinity for the convex set C"

(11) there exists v* € H" such that fi, g is continuous at v*.

Observe that assumption (11) is satisfied whenever C' is bounded and that obvious
examples can be given in which this assumption is not satisfied and the conclusion of
our next theorem is not in force. Given a set D C X x X* and w* € X™* we set

D(X)={w" € X" : there exists x € X : (z,w") € D},

and
DY w*)={zx € X : (z,w*) € D}.

Theorem 4.15. Let X be a reflexive Banach space and let {C, C,, : n € N} C
C(X) be such that C = Taw- lim C,. Assuming (11) and (A), then

(Supp,C)(X) € _Li (Exp,Co)(X).

Proof. Let (z,w*) € Supp,C and let H be any closed hyperplane such that
(A) is satisfied, so that 2 = 7(2) + ficu,m)(7(2))u. Applying Theorem 4.3 to the
function f[*au’ H) there exists £ C int (dom O, f[*au’ H]), which is a Gs dense subset of
dom f[*Cu Hp such that for all v* € E one has

(U*, f[*c,%H} (U*)7 b) € nEIOOA*f[*Cn,u,H}’

where 8f[*c7u’H](v*) = {b}. Let ((v:,f[*c’%m(v:),bn)) be a sequence converging to
(V" f{Cyu,m (v7), 0) and such that (v, fio, g1(07),0n) € Aufic o\ - As

Ofrn (©3) = {bal,
one gets, from Proposition 3.4,
(xn,w)) € Exp,Ch,
where z,, = by, + flo, u 1) (bn)u and w), = vy, +u*. As
Jicnu,m (n) = nsv) — ficn wm(Vn),

we derive that the sequence (fic, u,m](bn)) converges to fic,, m)(b) and (x,) converges
to x = b+ fio.u,m(b)u, yielding

(x,v" +u") e nEiOO(ExpuCn).
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Thus
v+ ut e nEiOO(EXpuCn)(X).

As a* = w* —u* is limit of a sequence (v}) C E, we derive that w* := Jirréo(vfl +u*) be-
longs to n&ioo(ExpuC’n)(X), since v, + u* € nE,iOO(EXPuCn)(X) and nE,iOO(EXpuC")(X)
is closed. O
Example 4.1. Let X = R? C = [-1,1] xRy, u = (0,1), u* = (0,-1),
H =R x {0} identified to R. One has fic,, g)(z) = i[_11)(7) and f[*c,u,H} (y) = |y|. One
easily checks that
(Supp, C)(X) = R x {1},

and
(Exp,C)(X) = R* x {~1}.

We see that (Exp,C)(X) = (Supp,C)(X), as expected by applying Theorem 4.15 to
the sequence C),, = C. Nevertheless observe that

EXpuC = {((170)7 (l‘, _1)) x> 0} U {((_170)7 (y7 _1)) Yy < 0}

and
(Supp,C)~1(0,-1)) = [-1,1] x {0},

so that one cannot expect stability for the exposed points but only for the exposed
functionals.

Aknowlegement. We are indebted to G. Beer for useful discussions, concerning
mainly Theorem 4.3.
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