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1. Introduction. In this work we study the existence of global solution to

the semilinear wave equation

(∂2
t − ∆)u = F (u),(1.1)

where F (u) = O(|u|λ) near |u| = 0 and λ > 1. Here and below ∆ denotes the Laplace

operator on R
n.

The existence of solutions with small initial data, for the case of space dimen-

sions n = 3 was studied by F. John in [13], where he established that for 1 < λ < 1+
√

2

the solution of (1.1) blows-up in finite time, while for λ > 1 +
√

2 the solution exists

globally in time. Therefore, the value λ0 = 1 +
√

2 is critical for the semilinear wave

equation (1.1).

To obtain the existence theorem in his work [13] F. John proved the following

weighted L∞− estimate for the wave equation (∂2
t −∆)u = F in R

3+1 with zero initial

data

‖τα
+τ

β
−u‖L∞ ≤ C‖τγ

+τ
δ
−F‖L∞ ,(1.2)
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where τ± = 1 + |t ± |x|| are the weights associated with the characteristic surfaces of

the wave equation and the non-negative parameters α, β, γ, δ satisfy the conditions

α = 1 , β = γ − 2 < 1 , δ > 1.(1.3)

For general space dimensions it was W. Strauss who proposed in [28] the con-

jecture that the critical value for the nonlinearity is the positive root λ0(n) of the

equation

(n− 1)λ2 − (n+ 1)λ− 2 = 0.(1.4)

We shall make a brief review of the results concerning this conjecture.

For n = 2 a proof of the conjecture was given by R. Glassey ([10], [11]). A

blow-up result for arbitrary space dimensions when 1 < λ < λ0(n) was established by

T. Sideris [27].

The critical values λ = λ0(n) were studied by J. Schaeffer in [26] for n = 2, 3.

A simplified proof was found by H.Takamura [35].

Another interesting effect is the influence of the decay rate of the initial data

on the existence of global solutions. In this case the solution might blow-up in finite

time when the initial data decay very slowly at infinity even in the supercritical case

λ > λ0(n). For the case n = 3 this effect was established by F. Asakura [3] for the

supercritical case. The critical cases for n = 2, 3 were studied by K. Kubota ([22]) ,

K. Tsutaya ([36], [37], [38], R. Agemi and H. Takamura [2]. For the case n ≥ 4 and

supercritical nonlinearity the blow-up result for slowly decaying initial data is due to

H. Takamura [34].

On the other hand, the existence part of the conjecture of W. Strauss for n > 3

is much less elucidated. A conformal transformation was used by Y. Choquet-Bruhat

[5], [6] in order to obtain global existence result for the case when the nonlinearity λ is

sufficiently large.

Recently, Y. Zhou [40] has found a complete answer for n = 4 by using suitable

weighted Sobolev estimates and the method developed by S. Klainerman [15], [16], [17]

for proving the existence of small amplitude solutions.

The existence of a global solution for the case λ = (n+3)/(n−1) was established

by W. Strauss [30] by the aid of the conformal methods and the classical Strichartz

inequality.

Another partial answer was given by R. Agemi, K. Kubota, H. Takamura in [1]

for a special class of integral nonlinearities in (1.1). The approach in this work follows

the approach of F. John based on his estimate (1.2).
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A complete proof of the conjecture of W. Strauss for spherically symmetric

initial data and odd space dimensions was found by H. Kubo [21] (see also [19], [20]).

Different approach to establish the conjecture of Strauss for spherically sym-

metric initial data and arbitrary space dimensions was proposed in a recent work of

H. Lindblad and C. Sogge [23]. They use a suitable generalizations of the classical

Strichartz inequality involving mixed norms (i.e. Lp in time and Lq in space variables).

Their approach enables one to treat even the case of non-spherically symmetric initial

data and space dimensions n ≤ 8.

Let us make a brief conclusions of the above review of results concerning the

missing existence part in the conjecture of W. Strauss.

1. The methods based on the John estimate (1.2) enable one to control the L∞−
norm of the solutions. They work very well when the Riemann function is nonnegative

(i.e. for n ≤ 3). A similar idea enables one to consider the case of spherically symmetric

initial data.

2. The application of weighted Sobolev inequality in combination with the con-

formal energy estimate for the wave equation (as it was done in [40]) leads to a weaker

restriction n ≤ 4 (or may be n ≤ 7 as it was mentioned in [40] ) due to the singularity

of the nonlinear function F (u).

3. The application of the classical Strichartz inequality enables one to overcome

the obstruction caused by the singularity of the nonlinear function, but leads only to

local existence and uniqueness of the solution, when

1 < λ ≤ n+ 3

n− 1

(see [27]) or the global existence for λ = (n + 3)/(n − 1)( see [30]). Even the refined

mixed norm Strichartz inequalities applied in [23] need some upper restriction for the

space dimension for non-spherically symmetric initial data.

The main purpose of this work is twofold.

In order to overcome the above difficulties and to prove the existence of a small

amplitude solution for the general case of arbitrary space dimensions, non-spherically

symmetric initial data and

λ0(n) < λ <
n+ 3

n− 1
,

we shall combine the approaches of F. John and R. Strichartz so that a more refined Lp−
Lq estimate, taking into account the influence of the weights τ±, shall be established.

Therefore, this estimate will enable us to use the advantages of the both previous

estimates due to F. John and R. Strichartz. Actually, we shall have a precise information
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about the decay rate of the solution with respect to τ± weights and we shall be able to

avoid the loss of derivatives typical for the Sobolev estimates.

On the other hand, we shall be able to apply this estimate to the semilinear

wave equation (1.1) and to establish that the existence part in the conjecture of W.

Strauss is true for any space dimensions n ≥ 2 and non-spherically symmetric initial

data.

To state the weighted estimate we consider the Cauchy problem for the linear

wave equation

(∂2
t − ∆)u = F,(1.5)

with zero initial data. For simplicity we shall assume that the supports of u and F lie

in the light cone, that is

suppF (t, x) ⊂ {|x| ≤ t+R}.(1.6)

Our main weighted estimate has the following form

Theorem 1. Suppose 1 < p, q <∞ satisfy

1

q
<

1

p
,

1

q
+

1

p
≤ 1,

n− 3

2
<
n

q
− 1

p
,(1.7)

while the nonnegative parameters α, β, γ, δ satisfy

α <
n− 1

2
− n

q
,

n− 1

2p
− n+ 1

2q
< β = γ − n+ 1

2
+
n

p
− 1

q
<
n− 1

2
− n

q
,

δ > 1 − 1

p
.(1.8)

Then the solution u satisfies the estimate

‖τα
+τ

β
−u‖Lq(Rn+1

+
) ≤ C‖τγ

+τ
δ
−F‖Lp(Rn+1

+
),(1.9)

where τ± = 1 + |t± |x|| and R
n+1
+ = {(t, x) ∈ R

n+1 : t ≥ 0}.
Remark 1. The assumptions (1.7) in the above theorem determine a triangle

△ABC in the plane of 1/q, 1/p−coordinates with vertices

A

(

n− 3

2(n− 1)
,
n− 3

2(n − 1)

)

, B

(

1

2
,
1

2

)

, C

(

n− 1

2(n + 1)
,
n+ 3

2(n + 1)

)

.
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The point A corresponds to the John estimate, while the point C corresponds to the

Strichartz estimate.

Taking into account the estimate τγ
+τ

δ
− ≤ Cτγ+θ

+ τ δ−θ
− for θ ≥ 0,we obtain the

following.

Corollary 1. Suppose 1 < p, q < ∞ satisfy the assumptions (1.7) and the

nonnegative real numbers α, β, γ, δ satisfy the hypotheses

α <
n− 1

2
− n

q
,

n− 1

2p
− n+ 1

2q
< β = γ − n+ 1

2
+
n

p
− 1

q
− θ,

β <
n− 1

2
− n

q
,

δ + θ > 1 − 1

p
.(1.10)

with some θ ≥ 0. Then the solution u satisfies the estimate

‖τα
+τ

β
−u‖Lq(Rn+1

+
) ≤ C‖τγ

+τ
δ
−F‖Lp(Rn+1

+
).(1.11)

The application of this weighted estimate will give us the possibility to establish

the conjecture of W. Strauss for the semilinear wave equation

(∂2
t − ∆)u = F (u),

u(0, x) = εf, ∂tu(0, x) = εg,(1.12)

where f, g are smooth compactly supported functions. and ε is a sufficiently small

positive number. For the nonlinear function F (u) we shall assume that F (u) ∈ C0 near

u = 0 and for some λ > 1 satisfies

|F (u)| ≤ C|u|λ ,

|F (u) − F (v)| ≤ C|u− v|(|u|λ−1 + |v|λ−1)(1.13)

near u, v = 0.

The existence and the uniqueness of the local solution in C([0, T ];Lq(Rn)) for

q = 2(n + 1)/(n − 1) and 1 < λ ≤ (n + 3)/(n − 1) is established in [27] by using the

Strichartz inequality and contraction mapping principle. A small improvement of the

uniqueness result can be done by another variant of the Strichartz inequality (see [33])

‖u‖Lq(Rn+1) ≤ C‖(∂2
t − ∆)u‖Lp(Rn+1).(1.14)
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Then the uniqueness is fulfilled in the weaker space Lq([0, T ] × R
n). For λ = (n +

3)/(n − 1) the existence of a global solution is established in [30] by the aid of a

conformal method. Therefore, it remains to examine the existence of global solution to

(1.12) for

λ0(n) < λ <
n+ 3

n− 1
,(1.15)

where λ0(n) is the positive root of (1.4). For this case we have the following

Theorem 2. Suppose n ≥ 2 and the assumptions (1.13), (1.15) are fulfilled

with λ0(n) being the positive root of the equation

(n− 1)λ2 − (n+ 1)λ− 2 = 0.(1.16)

Then there exists ε0 > 0 so that for 0 < ε < ε0 the Cauchy problem (1.12) admits a

global solution

u ∈ Lq
α,β(Rn+1

+ ).

Here Lq
α,β(Rn+1

+ ) denotes the Banach space of all measurable functions with finite norm

‖τα
+τ

β
−u‖Lq(Rn+1

+
).

We shall explain the main idea to establish the weighted estimate of Theorem 1.

The solution of the Cauchy problem (1.5) can be represented by the aid of a

Fourier transform

u(t, x) = (2π)−n
∫ t

0

∫

Rn
exp(ixξ)

sin ((t− s)|ξ|)
|ξ| F̂ (s, ξ)dξds,(1.17)

where F̂ (s, ξ) =
∫

exp(−iyξ)F (s, y)dy is the partial Fourier transform of F . It is clear

that u(t, x) =
∫ t
0 U(F )(t, s, x)ds, where

U(F )(t, s, x) = (2π)−n
∫

Rn
exp(ixξ)

sin ((t− s)|ξ|)
|ξ| F̂ (s, ξ)dξ.(1.18)

The Fourier integral operator U can be imbedded into analytic family of operators Uz

defined for z ∈ C and F (s, y) ∈ C∞
0 (Rn+1) as follows

Uz(F )(t, s, x) = c(n)

∫

Rn
exp(ixξ)(t− s)

n
2
−z|ξ|z−n

2 Jn
2
−z((t− s)|ξ|)F̂ (s, ξ)dξ,(1.19)
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where Jν(s) is the Bessel function of order ν and c(n) =

√

2

π
(2π)−n. The above family

was introduced by R. Strichartz [31] , [32] in order to obtain Lp − Lq estimate for the

wave equation. Integrating over s, we introduce the operator

Wz(F )(t, x) =

∫ t

0
Uz(F )(t, s, x)ds.(1.20)

Since J 1

2

(s) =

√

2

π

sin (s)√
s

, we see that the solution u can be represented as

u(t, x) = Wn−1

2

(F )(t, x).(1.21)

Applying the formula (see [7] )

∫

Rn
exp(−iyξ)(t− s)

n
2
−z|ξ|z−n

2 Jn
2
−z((t− s)|ξ|)dξ =

=
(2π)n/22z

Γ(1 − z)
((t− s)2 − |y|2)−z

+(1.22)

with s−z
+ = s−z for s > 0 and s−z

+ = 0 for s ≤ 0, we get

Uz(F )(t, s, x) =
(2π)n/22z

Γ(1 − z)

∫

((t− s)2 − |x− y|2)−z
+ F (s, y)dy.(1.23)

For Re z < 1 the integral in (1.23) is a classical one, while for Re z ≥ 1 it is necessary

to consider (1.23) as the action of the distribution

Kz(t, s, x, y) =
(2π)n/22z

Γ(1 − z)
((t− s)2 − |x− y|2)−z

+(1.24)

on the test function F (s, y).

The possibility to apply a complex interpolation for the strip 0 ≤ Re z ≤
(n + 1)/2 relies on a combined use of (1.19) and (1.23). More precisely, the proof of

the well-known Strichartz estimate is based on the following L∞ estimate on the line

Re z = 0

‖Uz(F )(t, s, .)‖L∞ ≤ C‖F (s, .)‖L1(1.25)

and this is a direct consequence of (1.23). Making the observation that the representa-

tion formula (1.23) keeps its classical sense for Re z < 1, we plan to use this classical

representation for the larger semiplane Re z < 1 and to prove a weighted L∞ estimate

for this semiplane. To be more precise, we shall follow the approach of F. John and we

shall obtain L∞− estimate with weights τ± for Re z < 1.
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Our next step is to derive L2− weighted estimate on the line Re z = (n+1)/2−ε.
For the purpose we shall use the representation (1.19). Then the kernel Kz can be

represented by the oscillatory integral

Kz(t, s, x, y) = c(n)

∫

Rn
exp(i(x− y)ξ)(t− s)

n
2
−z|ξ|z−n

2 Jn
2
−z((t− s)|ξ|)dξ.(1.26)

We shall split the space of variables (t, s, x, y) into few complementary domains.

The first domain is characterized by

|x| ≤ t− 2, |y| ≤ s− 2, s ≤ t− |x|
4

.

For this domain we have

t− s− |x− y| ≥ C(t− |x|)

so the distribution function in (1.24) is a classical function and we shall use this repre-

sentation (1.24) to estimate Wz. For the second domain, defined by

|x| ≤ t− 2, |y| ≤ s− 2, s ≥ t− |x|
4

, s− |y| ≥ δ(t− |x|), δ > 0,

we can follow the classical approach of Strichartz and using the inequality s − |y| ≥
δ(t− |x|) we can derive a weighted variant of the corresponding L2− estimate.

The most difficult part is the estimate of the kernel of Wz restricted to the

domain

|x| ≤ t− 2, |y| ≤ s− 2, s ≥ t− |x|
4

,

s− |y| ≤ δ(t− |x|), t− s ≥ δ(t − |x|)

for δ > 0 sufficiently small. For this domain we make the change of variable

s→ σ = s− |y|(1.27)

and use the Fourier representation (1.26) of the kernel Kz. In this case a more refine

analysis based on the application of Fourier integral operators is needed.

The plan of the work is the following. In Section 2 we make a localization

in (t, s, x, y)-coordinates. The next two subsections are devoted to the proof of L∞−
weighted estimates of the operator Wz for the semiplane Re z < 1. In these two subsec-

tions we consider separately the corresponding interior and exterior regions for (t, x).

In section 3 we reduce the L2−weighted estimate of Wz on the line Re z = (n+1)/2−ε
to the L2−boundedness of a local Fourier integral operator. In section 4 we show that
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this is a Fourier integral operator whose canonical relation is local canonical graph. Us-

ing a complex interpolation we complete the proof of Theorem 1 in section 5. Suitable

weighted estimates for the homogeneous wave equation are also obtained in section

5. The application to the semilinear wave equation and the proof of the conjecture

of W. Strauss are given in section 6. Finally, in the appendix we recall some useful

consequences of the Sobolev inequality.

The author is grateful to C. Sogge and H. Lindblad for their suggestions and

critical remarks, to G. Lebeau for the remark concerning the neccessity to correct one

of the previous attempts to simplify the proof of the L2 estimate, to S. Klainerman for

the support during the preparation of the work, to K. Kubota for the proposition to

correct the previous wrong proof of the Lemma in Section 6, to R. Agemi, Y. Shibata,

H. Takamura, K. Tsutaya and H. Kubo for the important remarks and discussions.

2. Analytic family of operators associated with the wave operator.

Using the Fourier transform representation (1.19) and the following estimate for the

Bessel functions (see [39])

|s−νJν(s)| ≤ C(z)

(1 + s)ε
, s ≥ 0,(2.1)

for Re ν = −1/2 + ε, ε > 0, C(z) = C exp(b|Im z|2), one obtains

‖Uz(F )(t, s, .)‖L2(Rn) ≤
C(z)

(t− s)1−ε
‖|.|−εF̂ (s, .)‖L2(Rn)(2.2)

for Re z = (n+ 1)/2 − ε, ε > 0.

So the operator Wz in (1.20) satisfies on the line Re z = (n + 1)/2 − ε the

estimate

‖Wz(F )(t, .)‖L2(Rn) ≤ C(z)

∫ t

0
(t− s)−1+ε‖|.|−εF̂ (s, .)‖L2(Rn)ds,(2.3)

where C(z) = C exp(b|Im z|2). The estimate (2.3) suggests us to consider the following.

Example. Consider the operator

g ∈ C∞
0 (R+) → I(g)(t) =

∫ t

0
(t− s)−1+εg(s)ds,(2.4)

where 0 < ε < 1. In order to derive weighted L2-estimate our first step is to make a

translation and reduce the situation to the case

supp g ⊂ [2,∞).(2.5)
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Further, we consider the truncated operator

IT = H([T, 2T ])I,

where here and below H(A) will denote the characteristic function of the set A. Note

that the assumption (2.5) assures that IT = 0 for T ≤ 1. Our goal is to derive for

a ∈ [0, 1/2) and T > 1 the following estimate

‖ |.|a−εI(g)‖L2([T,2T ]) ≤ C‖|.|ag‖L2([0,2T ])(2.6)

with some constant C, independent of T.

Once this estimate is established, we make the decomposition

I =
∞
∑

k=1

Ik =
∞
∑

k=1

H([2k, 2k+1])I(2.7)

and taking any δ > 0, we get from (2.6)

‖(1 + |.|)a−ε−δI(g)‖L2(R+) ≤ C
∞
∑

k=1

2−kδ‖(1 + |.|)a−εI(g)‖L2([2k,2k+1])

≤ C1

∞
∑

k=1

2−kδ‖(1 + |.|)ag‖L2(R+) ≤ C2‖(1 + |.|)ag‖L2(R+).

Thus, the localized estimate (2.6) implies

‖(1 + |.|)a−ε1I(g)‖L2(R+) ≤ C‖(1 + |.|)ag‖L2(R+)

for ε1 > ε, a ∈ [0, 1/2].

Let T > 1. In this case the left side of (2.6) can be replaced by

T a−ε‖I(g)‖L2([T,2T ]).(2.8)

Further, we decompose I(g) as I1(g) + I2(g), where

I1(g)(t) =

∫ t

t/2
(t− s)−1+εg(s)ds

and

|I2(g)(t)| =

∣

∣

∣

∣

∣

∫ t/2

0
(t− s)−1+εg(s)ds

∣

∣

∣

∣

∣

≤

≤ CT−1+ε
∫ t/2

0
|g(s)|ds
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for t ∈ [T, 2T ]. Applying the Cauchy inequality we find

‖I2(g)‖L2([T,2T ]) ≤ CT−1/2+εT 1/2−a‖|.|ag‖L2([0,T ])

for any a ∈ [0, 1/2) so

T a−ε‖I2(g)‖L2(A(T )) ≤ C‖|.|ag‖L2([0,T ]).(2.9)

For I1(g) we apply the Young inequality and obtain

‖I1(g)‖L2([T,2T ]) ≤ CT ε‖g‖L2([T/2,2T ]).

It is obvious now that

T a−ε‖I1(g)‖L2([T,2T ]) ≤ C‖|.|ag‖L2([T/2,2T ]).(2.10)

From (2.9) and (2.10) we see that the quantity in (2.8) is dominated by the right side

of (2.6) and this completes the proof of (2.6).

The example considered above suggests us to make a translation in time and

to consider the case

suppF
⋃

suppWz(F ) ⊆ {|x| ≤ t− 2}.(2.11)

Further, we follow the construction from the above Example and consider the

truncated operator

H(τ ≤ t− |x| ≤ 2τ)Wz.(2.12)

First, we make the decomposition

H(τ ≤ t− |x| ≤ 2τ)Wz = H(τ ≤ t− |x| ≤ 2τ)WzH(s ≤ τ/4) +

+H(τ ≤ t− |x| ≤ 2τ)WzH(s > τ/4).(2.13)

The operator H(τ ≤ t− |x| ≤ 2τ)WzH(s ≤ τ/4) has kernel

H(τ ≤ t− |x| ≤ 2τ)Kz(t, s, x, y)H(s ≤ τ/4).(2.14)

From (1.24) we see that this kernel is a classical function with absolute value dominated

by

Ct−Re z(t− |x|)−Re z ≤ Ct−Re zτ−Re z.

In fact, if (t, s, x, y) is in the support of the kernel (2.14), then we have t > t− |x| ≥ τ

and

t− s− |x− y| ≥ t− s− |x| − |y| ≥ t− |x| − 2s ≥ τ − 2τ/4 = τ/2.
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This argument leads to the inequality

|H(τ ≤ t− |x| ≤ 2τ)Wz (H(s ≤ τ/4)F ) (t, x)| ≤

≤ Ct−Re zτ−Re z
∫ τ/4

0

∫

|y|≤s−2
|F (s, y)|dyds.

The application of the Hölder inequality leads to

‖H(τ ≤ t− |x| ≤ 2τ)Wz (H(s ≤ τ/4)F ) ‖L∞ ≤
≤ Ct−Re zτ−Re z−γ+n−n/p‖τγ

+τ
δ
−F‖Lp(2.15)

provided γ < n − n/p and δ > 1 − 1/p. Note that (2.15) holds even for any z with

Re z ≥ 0. Moreover, for δ < 1−1/p, γ < n−n/p we have the following variant of (2.15)

‖tRezH(τ ≤ t− |x| ≤ 2τ)Wz (H(s ≤ τ/4)F ) ‖L∞ ≤
≤ Cτ−Rez−γ−δ+n+1−(n+1)/p‖τγ

+τ
δ
−F‖Lp .(2.16)

Using the estimate

‖f‖Lq(Rn+1) ≤ C‖τa
+τ

b
−f‖L∞(Rn+1)

with a > n/q, b = 1/q, we derive from (2.15) the following.

Proposition 2.1. For Re z ≥ 0 we have

‖τα
+τ

β
−χ(τ ≤ t− |x| ≤ 2τ)Wz(χ(s ≤ τ/4)F )‖Lq ≤ C‖τγ

+τ
δ
−F‖Lp(2.17)

provided the nonnegative parameters α, β, γ, δ satisfy

α < Re z − n

q
,(2.18)

γ = β − Re z + n− n

p
+

1

q
< n(1 − 1

p
),(2.19)

δ > 1 − 1

p
.(2.20)

In a similar way, from (2.16) we get

Proposition 2.2. For Re z ≥ 0 the estimate (2.17) is valid also when the

nonnegative parameters α, β, γ, δ satisfy

α < Re z − n

q
,(2.21)



Existence of global solutions to supercritical semilinear wave equations 137

γ = β − Re z − δ + n+ 1 − n+ 1

p
+

1

q
< n(1 − 1

p
),(2.22)

δ < 1 − 1

p
.(2.23)

The remaining part of this section consists of few preliminary steps needed in

the next two subsections to estimate the kernel of H(τ ≤ t− |x| ≤ 2τ)Wzχ(s ≥ τ/4).

It is clear that it is sufficient to estimate H(τ ≤ t− |x| ≤ 2τ)Wz(F ) assuming

suppF (s, y) ⊂ {s ≥ τ/4, |y| ≤ s− 2}.(2.24)

The application of the Hölder inequality when

Re z <
1

p′
= 1 − 1

p
(2.25)

enables one to estimate the kernel (1.24) of the operator Wz. More precisely, we have

|χ(τ ≤ t− |x| ≤ 2τ)WzF (t, x)| ≤ Cχ(τ ≤ t− |x| ≤ 2τ)I(t, x)‖τγ
+τ

δ
−F‖Lp ,(2.26)

where

Ip′(t, x) =
∫ ∫

suppF (s,y)
((t− s)2 − |x− y|2)−Rezp′

+ (s+ |y|)−γp′ |s− |y||−δp′dyds.(2.27)

Making the change of variables

ρ = |x− y| , ω = (y − x)/ρ,

we see that

Ip′(t, x) ≤ C

∫ t

0

∫ t−s

0

∫

Sn−1

((t− s)2 − ρ2)−Rezp′ ×

× (s+ |x+ ρω|)−γp′ |s− |x+ ρω||−δp′ ×
× χ(|x+ ρω| < s− 2)dωρn−1dρds.(2.28)

Now we are in situation to apply the following.

Lemma 2.1. (see [1])

We have

∫

S
n−1

f(|x+ ρω|)dω =
c

(ρ|x|)n−2

∫ ρ+|x|

|ρ−|x||
λf(λ)h(λ, ρ, |x|)dλ,
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where

h(λ, ρ, |x|) = (Q(λ, ρ, |x|))n−3

2 ,

Q(λ, ρ, |x|) = (λ2 − (ρ− |x|)2)((ρ+ |x|)2 − λ2).(2.29)

This Lemma enables one to get the following estimate for I(t, x) in (2.28)

Ip′(t, x) ≤ C

|x|(n−2)
(

∫ t

0

∫ t−s

0

∫ min(s−2,ρ+|x|)

|ρ−|x||
((t− s)2 − ρ2)−Rezp′ ×

× ρ(s+ λ)−γp′ |s− λ|−δp′λh(λ, ρ, |x|)dλdρds).(2.30)

In the sequel we shall need the following estimate for Q (respectively h = Q(n−3)/2).

Lemma 2.2. Suppose the positive numbers λ, ρ, r satisfy |ρ− r| ≤ λ ≤ ρ+ r.

Then we have

|λ− r| ≤ ρ ≤ λ+ r , |λ− ρ| ≤ r ≤ λ+ ρ(2.31)

and the quantity Q(λ, ρ, r) = (λ2 − (ρ− r)2)((ρ+ r)2 − λ2) satisfy the estimates

Q ≤ 4λρr2,(2.32)

Q ≤ 4λrρ2,(2.33)

Q ≤ 4ρrλ2,(2.34)

Q ≤ 4λ2ρ2,(2.35)

Q ≤ 4λ2r2,(2.36)

Q ≤ 4r2ρ2.(2.37)

P r o o f. The above estimates are essentially established in [1], but we shall

prove them again for completeness. Our proof is based on the observation that

Q =
S2

16
,(2.38)

where S is the surface of the triangle with sides

a = λ , b = ρ , c = r.

This geometrical observation shows that (2.31) follow from the existence of this triangle

guaranteed by |ρ − r| ≤ λ ≤ ρ + r. Then the well-known inequality S ≤ ab/2 implies



Existence of global solutions to supercritical semilinear wave equations 139

(2.35). In a similar way we get (2.36) and (2.37). The inequality S2 ≤ abc2/4 implies

(2.32). In the same way we get (2.33) and (2.35).

This completes the proof of the lemma. �

2.1. Interior estimate. In this subsection we consider the interior domain

{|x| ≤ (1 − ε)t , t ≥ 2}(2.1.1)

where ε > 0 is a sufficiently small number.

Combining (2.1.1) and (2.24) we see that

s >
εt

8
on suppF.(2.1.2)

To estimate the density h in (2.30) we use Lemma and find

h(λ, ρ, |x|) ≤ Cλn−3|x|n−3.(2.1.3)

Setting

ϕ(v, |x|) =
1

|x|

∫ |x|

−|x|
(1 + |v − λ|)−δp′dλ,(2.1.4)

we see that
1

|x|

∫ ρ+|x|

|ρ−|x||
(1 + |s− λ|)−δp′dλ ≤ ϕ(s − ρ, |x|).

For δp′ > 1 it is easy to see that

‖ϕ(., |x|)‖L1 ≤ C|x|−1
∫ |x|

−|x|
1dλ = 2C.(2.1.5)

Now we can estimate the integral in (2.30) as follows

|I(t, x)| ≤ C

(1 + t)γ

(∫ t

0

∫ t−s

0
ϕ(s − ρ, |x|)ρsn−2((t− s)2 − ρ2)−Rez p′dρds

)1/p′

.

Since

((t− s)2 − ρ2)−Rez p′ρ ≤ Cρ1−Rez p′(t− s− ρ)−Rez p′ ≤ Ct1−Rez p′(t− s− ρ)−Rez p′ ,

we get

|I(t, x)| ≤ C

tγ+Rez−(n−1)/p′
(

∫ t

0

∫ t−s

0
ϕ(s − ρ, |x|)(t− s− ρ)−Rez p′dρds)1/p′ .
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Making the change of variables

v = s− ρ , u = s+ ρ,

from (2.1.5) and (2.25) we separate the variables in the above double integral and get

|I(t, x)| ≤ Ct−γ−2Rez+n/p′ = Ct−γ−2Rez+n−n/p(2.1.6)

provided

δ > 1 − 1

p
> Re z.(2.1.7)

2.2. Exterior estimate. In this subsection we continue the analysis of the

quantity I(t, x) represented in (2.30) for the exterior domain

{t− 2 ≥ |x| ≥ (1 − ε)t}.(2.2.1)

In addition to this assumption, we shall assume that (2.24) is fulfilled.

First, we shall consider the case

s ≥ t− δ(t− |x|) on suppsF,(2.2.2)

where δ > 0 is a sufficiently small number. Then Lemma implies that the density

h = Q(n−3)/2 satisfies the estimate h ≤ Cρn−3λn−3 so from (2.30) we have

Ip′(t, x) ≤ C

t(n−2)
×

× (

∫ t

t−δ(t−|x|)

∫ t−s

0
(t− s)−Rez p′(t− s− ρ)−Rez p′ρn−2λn−2 ×

×
∫ min(s−2,ρ+|x|)

|ρ−|x||
(s+ λ)−γ p′ |s− λ|−δ p′dλdρds).

From (2.2.1) and (2.2.2) we see that

s ≥ t(1 − εδ) ≥ t

2

for εδ < 1/2 and we have

(1 + s+ λ)−γ p′λn−2 ≤ Ct−γ p′+n−2.

So we arrive at

|I(t, x)| ≤ C(t− |x|)(n−2)/p′

tγ

(

∫ t

t−δ(t−|x|)

∫ t−s

0
(t− s)−Rez p′(t− s− ρ)−Rez p′dρds

)1/p′
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in view of ρ ≤ t− s ≤ δ(t− |x|). A direct computation for Re z p′ < 1 shows that
∫ t

t−δ(t−|x|)

∫ t−s

0
(t− s)−Rez p′(t− s− ρ)−Rez p′dρds ≤ C(t− |x|)2−2Rez p′ .

Hence, we get

I(t, x) ≤ C

tγ
(t− |x|)−2Rez+n−n/p.(2.2.3)

Assuming that

γ ≥ Re z(2.2.4)

from (2.2.3) we find

I(t, x) ≤ Ct−Rez(t− |x|)−Rez−γ+n−n/p(2.2.5)

and this completes the study of the case (2.2.2).

It remains to consider the case

(t− |x|)/4 ≤ s ≤ t− 2(t− |x|) on suppF.(2.2.6)

A more precise evaluation of the quantity

Q(λ, ρ, |x|) = (λ− ρ+ |x|)(λ+ ρ− |x|)(λ + ρ+ |x|)(ρ+ |x| − λ),

appearing in (2.30), is based on (2.2.6) and the estimates

λ ≤ s , t− s ≥ ρ ≥ |x| − λ ≥ t− s− (t− |x|)

valid on the integration domain in (2.30). Thus, we obtain

λ− ρ+ |x| ≤ s− (t− s) + (t− |x|) + |x| = 2s,

λ+ ρ− |x| ≤ s+ (t− s) − |x| = t− |x|,
λ+ ρ+ |x| ≤ Ct,

ρ+ |x| − λ ≤ (t− s) + |x| − s ≤ Ct.

Hence, we get

h(λ, ρ, |x|) ≤ Ctn−3s(n−3)/2(t− |x|)(n−3)/2.

This estimate and (2.30) lead to

|I(t, x)| ≤ C(t− |x|)(n−3)/2p′

t1/p′
×

× (

∫ t−2(t−|x|)

(t−|x|)/4

∫ t−s

t−s−(t−|x|)
(t− s)−Rez p′(t− s− ρ)−Rez p′ρs(n−1)/2 ×

×
∫ min(s−2,ρ+|x|)

|ρ−|x||
(s+ λ)−γ p′ |s− λ|−δ p′dλdρds)1/p′ .
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From δp′ > 1 and γp′ > n+1
2 we get

|I(t, x)| ≤ C(t− |x|)(n−3)/2p′

t1/p′
×

× (

∫ t−2(t−|x|)

(t−|x|)/4
(t− s)1−Rez p′(t− |x|)1−Rez p′s−γp′+(n−1)/2ds)1/p′

in view of

∫ t−s

t−s−(t−|x|)
(t− s− ρ)−Rez p′ρdρ ≤ C(t− s)(t− |x|)1−Rez p′ .

Having in mind that for γp′ > n+1
2 we have

∫ t−2(t−|x|)

(t−|x|)/4
(t− s)1−Rez p′s−γp′+(n−1)/2ds ≤ C(t− |x|)−γ p′+(n+1)/2t1−Rez p′ ,

we obtain

|I(t, x)| ≤ Ct−Rez(t− |x|)−γ+n/p′−Rez

so we get

|I(t, x)| ≤ Ct−Rez(t− |x|)−Rez−γ+n−n/p.

Thus, summarizing the estimates of the two subsections we arrive at the following.

Proposition 2.3. Suppose Re z < 1 − 1/p. Then the operator Wz satisfies

the estimate

‖τα
+τ

β
−Wz(F )‖L∞ ≤ C‖τγ

+τ
δ
−F‖Lp(2.2.7)

provided

α = Re z,(2.2.8)

n+ 1

2
(1 − 1

p
) < γ = β − Re z + n− n

p
< n(1 − 1

p
),(2.2.9)

δ > 1 − 1

p
.(2.2.10)

3. Reduction of the global L2 - estimate to a local one. Our goal is to derive

the following estimate on the line Re z = (n+ 1)/2 − ε

‖τ1/2−ε1

+ τ
1/2
− Wz(F )‖L2 ≤ C(z)‖τ1/2

+ τ
1/2
− F‖L2(3.1)

for ε1 > 2ε.
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Here and below C(z) = C exp (b|Imz|2) is the constant appearing in a natural

way from the estimate (2.1) of the Bessel function.

Having in mind that on the support of the kernel Kz of the operator Wz we

have (see (1.24))

t− s ≥ |x− y|,
we see that t−|x| ≥ s−|y| so making the change of variables s→ σ = s−|y|, we arrive

at the representation formula

Wz(F )(t, x) =

∫ t−|x|

0
Az,t,σ(F (σ + |.|, .))dσ,(3.2)

where Az,t,σ is the Fourier integral operator defined by

Az,t,σ(h)(x)=

∫∫

ei(x−y)ξ(t− σ − |y|)n
2
−z|ξ|z−n

2 Jn
2
−z((t− σ − |y|)|ξ|)h(y)dydξ.(3.3)

Further, we follow the construction from the Example considered in the section

2 and consider the truncated operator

H(τ ≤ t− |x| ≤ 2τ)Wz.(3.4)

Recall that H(B) denotes the characteristic function of the set B.

Then we have the decomposition

H(τ ≤ t− |x| ≤ 2τ)Wz = H(τ ≤ t− |x| ≤ 2τ)WzH(s− |y| ≤ δτ) +

H(τ ≤ t− |x| ≤ 2τ)WzH(s− |y| ≥ δτ),(3.5)

where δ > 0 is a sufficiently small number.

First, we shall estimate the second term in the right side of (3.5).

Lemma 3.1. We have the estimate

‖H(τ ≤ t− |x| ≤ 2τ)Wz(H(s− |y| ≥ δτ)F )‖L2(Rn) ≤

≤ C(z)

∫ t

0
(t− s)−1+εtε‖H(s− |y| ≥ δτ)F )‖L2(Rn)ds.

P r o o f. The inequality follows directly from (2.3) and the estimate (A.3) from

the Appendix (applied with γ = 0.)

Now we can apply the argument given in the Example of section 2. In this way

we get

‖τ1/2−ε1

+ H(τ ≤ t− |x| ≤ 2τ)Wz(H(s − |y| ≥ δτ)F )‖L2(Rn+1) ≤
≤ C(z)‖τ1/2

+ H(s − |y| ≥ δτ)F‖L2(Rn+1)
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for ε1 > 2ε. This estimate implies

‖τ1/2−ε1

+ τ
1/2
− H(τ ≤ t− |x| ≤ 2τ)Wz(H(s− |y| ≥ δτ)F )‖L2(Rn+1) ≤

≤ C(z)‖τ1/2
+ τ

1/2
− H(s− |y| ≥ δτ)F‖L2(Rn+1).

Therefore, the decomposition (3.5) shows that it remains to estimate

Wz,τ = H(τ ≤ t− |x| ≤ 2τ)WzH(s− |y| ≤ δτ).(3.6)

The key to estimate this operator is the representation formula (3.2) and the following

scale-invariant L2 estimate

‖H(τ ≤ t− |x| ≤ 2τ)Az,t,σ(H(L ≤ t− σ − |.| ≤ 2L)H(M ≤ |.| ≤ 2M)f)‖2
L2(Rn) ≤

≤ C(z)2
t−1+2εM

τ
L−1+2ε‖f‖2

L2(Rn).(3.7)

It is important to underline that the constant C(z) in (3.7) is independent of the

parameters t, τ, σ, L,M. We shall see how the estimate (3.7) leads to the desired L2−
weighted estimate for the operator Wz.

The starting point is the representation of the kernel Kz,τ of the operator Wz,τ

in (3.6) as a sum over integers j, k of the kernels of the form

Kz,τ,j,k = H(2jτδ ≤ t− s < 2j+1τδ)Kz,τH(2kτδ ≤ s < 2k+1τδ).(3.8)

for k + 2 ≤ j and of the form

Kz,τ,j,k,l = Kz,τ,j,kH(2j lτδ ≤ s < 2j(l + 1)τδ)(3.9)

for k + 2 > j, l = 0, ..., 2k .

Denote by Wz,τ,j,k the operator having kernel Kz,τ,j,k. Respectively Wz,τ,j,k,l

denotes the operator with kernel Kz,τ,j,k,l We can represent the above sum as

I + II + III + IV,(3.10)

where

I =
∞
∑

j=2

−1
∑

k=−∞

Wz,τ,j,k,

II =
∞
∑

j=2

j−2
∑

k=0

Wz,τ,j,k,
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III =
∞
∑

j=2

∞
∑

k=j−1

∑

l

Wz,τ,j,k,l,

IV =
1
∑

j=−∞

∑

k

Wz,τ,j,k.(3.11)

The form of the operator Wz,τ in (3.6) and the definition (3.8) guarantee that for the

first term I in (3.11) we can apply the estimate (2.15) with p = 2. In this way we get

‖τ1/2−ε1

+ τ
1/2
− I(F )‖L2 ≤ C(z)‖τ1/2

+ τ
1/2
− F‖L2

for ε1 > 2ε. To estimate the terms II and III we use the estimate (3.7) and get

‖Wz,τ,j,k(F )(t, .)‖L2(Rn) ≤
C(z)

τ1−2ε
H(C−12jτδ ≤ t < C2j+1τδ) ×

×
∫ δτ

0
2−j+2jε2k/2‖H(2kτδ ≤ σ + |.| < 2k+1τδ)F (σ + |.|, .)‖L2dσ.

where k + 2 ≤ j and C is a sufficiently large constant. Taking the L2−norm with

respect to t and setting Fk = H(2kτδ ≤ s < 2k+1τδ)F , we find

τ1−2ε2j/2−2jε‖Wz,τ,j,k(F )‖L2 ≤ C(z)2k/2‖τ1/2+ε0

− Fk‖L2 ,(3.12)

where ε > 0. Since 2jτ is equivalent to τ+(t, x) and 2kτ is equivalent to τ+(s, y), we get

‖τ1/2−ε1

+ τ
1/2
− II(F )‖L2 ≤ C(z)

∞
∑

j=2

j−2
∑

k=0

2k/2τ1/22−jε1+2jε‖τ1/2
− Fk‖L2 ≤

≤ C(z)‖τ1/2
+ τ

1/2
− Fk‖L2

for ε1 > 2ε and ε0 < ε1 − 2ε.

For the third term III we apply the inequality (3.7) and obtain.

‖τ−ε1

+ III(Fk)‖2
L2 ≤ C(z)2

2−2kε1

τ2ε1

∑

l





∫ 2j(l+2)τδ

2j(l−1)τδ
‖
∑

j≤k+1

Wz,τ,j,k,l(Fk)(t, .)‖2
L2(Rn)dt





≤ C(z)2

τ

∑

j≤k+1

2kε0

∑

l

2−2kε1+4kε‖H(2j lτδ ≤ s < 2j(l + 1)τδ)τ
1/2
− F‖2

L2 ≤

≤ C(z)2

τ

∑

k

2−kε1+2kε‖τ1/2+ε0

− F‖2
L2 .
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Note that τ+(t, x) is equivalent to τ+(s, y) in the kernel of the operator III. Taking the

sum over k for ε1 > 2ε and ε0 < ε1 − 2ε, we get

‖τ−ε1

+ τ
1/2
− III(F )‖L2 ≤ C(z)‖τ1/2

− F‖L2 .

Finally, the term IV in (3.11) is identically 0. Indeed, on the kernel of this

operator we have

t− s ≥ |x− y|,(3.13)

s− |y| ≤ δτ,(3.14)

τ ≤ t− |x| ≤ 2τ,(3.15)

t− s ≤ δτ.(3.16)

The inequalities (3.13), (3.15) and (3.16) imply

s− |y| = s− t+ t− |x| + |x| − |y| ≥ t− |x| − (t− s) − |x− y| ≥ τ − 2δτ.

Choosing δ > 0 sufficiently small, we see that this contradicts (3.14), so the term IV

is identically zero. Therefore, we arrive at the following weighted estimate for the

operator Wz,τ

‖τ1/2−ε1

+ τ
1/2
− Wz,τ (F )‖L2 ≤ C(z)‖τ1/2

+ τ
1/2
− F‖L2

for ε1 > 2ε. The argument given in the Example considered in section 2 yields the

desired estimate (3.1).

4. Local scale-invariant estimate. The main purpose of this section will be

the proof of the estimate (3.7). For the sake of simplicity we shall omit the indices

z, t, σ. Thus we have to verify the inequality

‖H(τ ≤ t− |x| ≤ 2τ)A(H(L ≤ t− σ − |.| ≤ 2L)H(M ≤ |.| ≤ 2M)f)‖2
L2(Rn) ≤

≤ C(z)2
t−1+2εML−1+2ε

τ
‖f‖2

L2(Rn).(4.1)

After a rescaling we reduce the proof to the case 1 ≤ t ≤ 2, 0 < τ < t. In this case the

definition of the weights τ± is t± |x|. To this end we can use the following asymptotic

expansion of the Bessel function ([39])

s−νJν(s) = a0(s) if 0 ≤ s ≤ 1,

s−νJν(s) = eisa+(s)/sν−1/2 + e−isa−(s)/sν−1/2 if s ≥ 1,
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where a0(s) is a smooth compactly supported function, while a±(s) are smooth symbols

of order 0. Given any smooth compactly supported function χ which is 1 near the origin,

we make the following decomposition

(t− σ − |y|)−ν |ξ|−νJν((t− σ − |y|)|ξ|) = a0((t− σ − |y|)|ξ|)χ(|ξ|L)

+ei(t−σ−|y|)|ξ|a+((t− σ − |y|)|ξ|)/((t − σ − |y|)|ξ|)ν−1/2(1 − χ(|ξ|L))

+e−i(t−σ−|y|)|ξ|a−((t− σ − |y|)|ξ|)/((t − σ − |y|)|ξ|)ν−1/2(1 − χ(|ξ|L).

It is clear that the operator A can be decomposed correspondingly as a sumA0+A++A−

of three Fourier integral operators. For the first one the support in ξ is in the ball of

radius proportional to L−1. Therefore, the kernel of this operator is a classical function

satisfying the estimate

|K0
t,σ(x, y)| ≤ C

(t− σ − |y|)(n+1)−2ε
(4.2)

We shall need the following.

Lemma 4.1. On the intersection of the support of the kernel of the operator

A and the function H(L ≤ t− σ − |.| ≤ 2L)H(M ≤ |.| ≤ 2M)f we have
∣

∣

∣

∣

x

|x| −
y

|y|

∣

∣

∣

∣

≤ Cd(t, τ, L,M)(4.3)

where

d(t, τ, L,M)2 =
Lτ

M
.(4.4)

P r o o f. For |x| ≤ t/2 the quantity τ is equivalent to a constant. Then the

quantity d(t, τ, L,M) is also equivalent to a constant and the desired estimate (4.3) is

trivial. For |x| ≥ t/2 we have

σ ≤ δτ,

δτ ≤ t− |x| ≤ t− σ − |y|
τ < t− |x| < 2τ

t− σ − |y| ≥ |x− y|

on the intersection of the supports of the kernel of A and H(L ≤ t−σ−|.| ≤ 2L)H(M ≤
|.| ≤ 2M)f. A continuity argument shows it is sufficient to establish (4.3) for δ = σ = 0.

But then (4.3) follows from

(t− σ − |y|)2 = (t− |y|)2 ≥ |x− y|2
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and the relation

|x− y|2 = (|x| − |y|)2 +
|x||y|

2

(

x

|x| −
y

|y|

)2

Now the fact that |x| > t/2 is equivalent to constant completes the proof of the

lemma. �

From (4.2) and (4.3) and the Cauchy inequality we get the estimate

‖H(τ ≤ t− |x| ≤ 2τ)A0(H(L ≤ t− σ − |.| ≤ 2L)H(M ≤ |.| ≤ 2M)f)‖L2(Rn) ≤
≤ Cd(t, τ, L,M)n−1L−n−1+2ε

√
τL×

×‖H(L ≤ t− σ − |.| ≤ 2L)H(M ≤ |.| ≤ 2M)f‖L2(Rn).

Note that √
τLd(t, τ, L,M)n−1L−n−1+2ε ≤ CL− 1

2
+2ετ−

1

2 .

This estimate yields

‖H(τ ≤ t− |x| ≤ 2τ)A0(f)‖2
L2(Rn) ≤

≤ C(z)2

τ
‖(t− σ − |.|)−1/2+εf‖2

L2(Rn).

Each of the operators A± has symbol of type

a±((t− σ − |y|)|ξ|)(t − σ − |y|)−ε|ξ|−ε(1 − χ(L|ξ|)).(4.5)

Note that in the above symbol we use cut-off function only in ξ coordinates. The cut-off

function χ(s) is 1 near the origin and 0 for s ≥ 1. Since t− σ − |y| is equivalent to L,

we see that we can replace t− σ − |y| by L in the symbol and in this way to freeze in

y the symbol. In fact for |ξ| ≥ 1/L the symbol a±((t− σ − |y|)|ξ|) can be replaced by

n
∑

j=0

cj
(t− σ − |y|)j |ξ|j +O

(

1

(t− σ − |y|)n+1|ξ|n+1

)

.

Then we can attach the bounded factors (t−σ− |y|)jL−j to the function f and in this

way we see that without loss of generality we can assume that the symbol in (4.5) is

replaced by

b(ξ) = bt,σ,τ,L,M (ξ) = a±(L|ξ|)(t − σ − kδτ))−ε|ξ|−ε(1 − χ(L|ξ|)).(4.6)

Therefore, we have to estimate the operator

A(f)(x) =

∫ ∫

eiφt,σ(x,y,ξ)b(ξ)f(y)dydξ
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with a phase function of type

φt,σ(x, y, ξ) = (x− y)ξ − (t− σ − |y|)|ξ|.

Our main observation is that on the set of critical values

{(x, y, ξ) : ∇ξφ(x, y, ξ) = 0}(4.7)

the second Hessian satisfies the estimate

∣

∣

∣∂2
y,ξφ(x, y, ξ)

∣

∣

∣ ≥ C
τ

|y|(t− σ − |y|) .(4.8)

In fact, the set (4.7) is determined by

x− y = (t− σ − |y|)ξ/|ξ|.(4.9)

Since σ ≤ δτ with δ > 0 sufficiently small, we see it is sufficient to establish (4.8) for

δ = σ = 0. But then (4.9) implies that

∣

∣

∣∂2
y,ξφ(x, y, ξ)

∣

∣

∣ =
1

2

∣

∣

∣

∣

y

|y| −
ξ

|ξ|

∣

∣

∣

∣

2

=
1

2

∣

∣

∣

∣

y

|y| −
x− y

|x− y|

∣

∣

∣

∣

2

.(4.10)

Then the estimate (4.3) and the sin-theorem for the triangle with sides |x|, |y|, |x − y|
implies that (4.8) is valid.Having in mind that |y| can be replaced by M, we see that

the right side of (4.8) is equivalent to

D(t, τ, L,M)2 =
τ

ML
(4.11)

It is not difficult to see that the quantity in (4.11) is equivalent to positive constant in

any of the following three cases

Case A: τ is equivalent to constant,

Case B: L is equivalent to τ and τ is sufficiently small,

Case C: M/τ is bounded.

In case the quantity in (4.11) is equivalent to positive constant the operator

A is a local canonical graph so one can apply the well known result about the L2−
boundedness of the Fourier integral operators which are local canonical graph.

This observation shows that we lose no generality assuming

τ ≤ δ, L ≥ Nτ, M ≥ Nτ,(4.12)

where δ > 0 is sufficiently small, while N is sufficiently large.
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Further, we make a partition of unity on the sphere Sn−1

1 =
∑

m

ψm

(

x

|x|

)

where ψm are smooth functions on the unit sphere with diameter of the support pro-

portional to d, where d = d(t, τ, L,M) is the quantity defined in (4.4). The partition

of the unity is locally finite. Moreover, there exists a number N such that at most N

supports of functions of the partition overlap and this number is independent of the

diameter of the supports of the functions ψm. Then we represent the operator A as

∑

m,l

ψm

(

x

|x|

)

Aψl

(

y

|y|

)

.(4.13)

Lemma 4.1 implies that

∣

∣

∣

∣

x

|x| −
y

|y|

∣

∣

∣

∣

≤ Cd(t, τ, L,M),(4.14)

when (x, y) is in the intersection of the supports of the kernel of A and f . This estimate

shows that A(f) can be represented as a sum of terms

ψm

(

x

|x|

)

A

(

ψl

(

y

|y|

)

f

)

with sum taken over m, l with |m− l| ≤ N0 and N0 is independent of t, τ, σ, L,M. This

observation and the fact that the norm ‖f‖2
L2 is equivalent to

∑

m

‖ψmf‖2
L2

shows that it is sufficient to estimate the localized operator

Am,l = ψm

(

x

|x|

)

Aψl

(

y

|y|

)

(4.15)

for fixed m, l with |m− l| ≤ N0.

Assuming that the support of ψm is at distance δd from the fixed point (1, 0, . . . ,

0) on the unit sphere, we introduce local coordinates x′ = (x2, . . . , xn) on this support.

Then for δ > 0 sufficiently small we can use the same coordinates for the support of

ψl. For example, we can take δN0 = 1. Then we have

|x′| ≤ δdx1, |y′| ≤ dy1(4.16)
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on the support of the operator in (4.15). Then we make the following rescaling in

x′, y′, ξ′ coordinates

y′ → y′ = d−1y′(4.17)

x′ → x′ = λ−1x′,(4.18)

ξ′ → ξ′ = µ−1ξ′,(4.19)

where λ, µ shall be chosen so that the second Hessians ∂2
y,ξφ and ∂2

x,ξφ are uniformly

nondegenerate in the new coordinates. In fact, the phase function takes the form

φ(x, y, ξ) = (λx′ − dy′)µξ
′
+ (x1 − y1)ξ1 −

(

t− σ −
√

y2
1 + |dy′|2

)√

ξ
2
1 + |µξ′|2.

The second Hessian |∂2
xξ
φ| is proportional to (λµ)n−1. So we can take

λµ = 1(4.20)

in order to assure uniform nondegeneracy of this Hessian. The other Hessian |∂2
yξ
φ| on

the set

{(x, y, ξ) : ∂ξφ = 0}
is equivalent to (µd)n−1D2, where D = D(t, τ, L,M) is defined according to (4.11).

Now we make the choice

(µd)n−1D2 = 1(4.21)

so from this requirement and (4.21) we determine λµ as follows

λ = dD2/(n−1), µ = 1/λ = d−1D−2/(n−1).(4.22)

The operator Am,l in the new coordinates will have the form

Am,l(h)(x) = L−1+ε
∫ ∫

eiφ(x,y,ξ)ψmb(ξ(ξ))ψlh(y)dydξ.

This operator is a local canonical graph. Note that the x coordinates are not localized,

but the independence of the symbol of the operator of |x| assures the L2 boundedness

of thei operator, i.e.
∫

∣

∣

∣Am,l(h)(x
∣

∣

∣

2
dx ≤ CL−2+2ε

∫

|ψlh(y)|2 dy.

Making the inverse change of variables in (4.19) we get
∫

|Am,l(h)(x)|2 dx ≤ CL−2+2εµ2n−2(λd)n−1
∫

|ψlh(y)|2 dy.



152 V. Georgiev

From (4.20) and (4.21) we get

µ2n−2(λd)n−1 = 1/D2

so

‖Am,l(f)‖L2 ≤ C(t− σ − kδτ)−1+εD−1‖ψlf‖L2

From this estimate and (4.11) we arrive at

‖Am,l(f)‖L2 ≤ CM1/2(t− σ − kδτ)−1/2+ετ−1/2‖ψlf‖L2

and this completes the proof of the estimate (4.1).

5. Interpolation. For Re z = a < 1, the estimates of Section 2 guarantee that

‖τα0

+ τβ0

− Wz(F )‖Lq0 ≤ C‖τγ0

+ τ δ0
− F‖Lp0 ,(5.1)

provided

q0 = ∞,(5.2)

Re z = a < 1 − 1

p0
,(5.3)

α0 = Re z,(5.4)

β0 = Re z + γ0 − n+
n

p0
,(5.5)

n+ 1

2

(

1 − 1

p0

)

< γ0 < n

(

1 − 1

p0

)

,(5.6)

δ0 > 1 − 1

p0
(5.7)

and the supports of u, F are contained in the cone {|x| ≤ t + R}. On the other hand,

the estimates of section 3 assure that for Re z = (n+ 1)/2 − ε we have

‖τα1

+ τβ1

− Wz(F )‖Lq1 ≤ C(z)‖τγ1

+ τ δ1
− F‖Lp1 ,(5.8)
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provided C(z) = C exp(b|Im z|2) and the conditions

α1 + 2ε < β1 = γ1 = δ1 =
1

2
(5.9)

are fulfilled. Our next goal is the application of the Stein interpolation theorem (see

[25]). Recall that this interpolation theorem concerns an analytic family of operators

T (z) acting from Lp0 + Lp1 into Lq0 + Lq1. We shall denote by L(X;Y ) the Banach

space of linear operators acting from a Banach space X into a Banach space Y .

Theorem 5.1. (Stein interpolation theorem, see [25]) Suppose 1 ≤ p0, p1, q0, q1
≤ ∞, T (t) is a continuous function from the strip 0 ≤ Re z ≤ 1 into L(Lp0 +Lp1;Lq0 +

Lq1), analytic for 0 < Re z < 1 and satisfying the properties

‖T (z)‖L(Lp0 ;Lq0 ) ≤ C exp(b|Im z|2) for Re z = 0,(5.10)

‖T (z)‖L(Lp1 ;Lq1 ) ≤ C exp(b|Im z|2) for Re z = 1.(5.11)

Then for any θ ∈ (0, 1) we have

‖T (θ)‖L(Lp;Lq) ≤ C,

where
1

p
= (1 − θ)

1

p0
+ θ

1

p1
,

1

q
= (1 − θ)

1

q0
+ θ

1

q1
.(5.12)

A minor modification of this result is valid for the case of weighted Lp− spaces.

Theorem 5.2. (weighted Stein interpolation theorem) Suppose the assump-

tions of Theorem 5.1 are fulfilled and ϕ0, ψ0, ϕ1, ψ1 > 1 are positive weights , such

that

‖ϕ0T (z)f‖Lq0 ≤ C exp(b|Im z|2)‖ψ0f‖Lp0 for Re z = 0,(5.13)

‖ϕ1T (z)f‖Lq1 ≤ C exp(b|Im z|2)‖ψ1f‖Lp1 for Re z = 1,(5.14)

Then for any θ ∈ (0, 1) we have

‖ϕT (θ)f‖Lq ≤ C‖ψf‖Lp ,

where q, p are defined by (5.12) and

ϕ = ϕ1−θ
0 ϕθ

1,

ψ = ψ1−θ
0 ψθ

1 .
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P r o o f. If we consider the family of operators

ϕ1−z
0 ϕz

1T (z)ψ−1+z
0 ψ−z

1 ,

then we can apply the classical Stein interpolation theorem from Theorem 5.1 and in

this way we obtain the conclusion of the Theorem.

The application of the weighted Stein interpolation theorem gives for z = (n−
1)/2

‖τα
+τ

β
−Wz(F )‖Lq ≤ C‖τγ

+τ
δ
−F‖Lp ,(5.15)

where
n− 1

2
= (1 − θ)α0 + θ(

n+ 1

2
− ε)(5.16)

for some real number θ ∈ (0, 1). The numbers p, q are determined by

1

p
= (1 − θ)

1

p0
+ θ

1

p1
, ,

1

q
= (1 − θ)

1

q0
+ θ

1

q1
(5.17)

and the parameters α, β, γ, δ are defined by

α = α0(1 − θ) + α1θ,

β = β0(1 − θ) + β1θ,

γ = γ0(1 − θ) + γ1θ,

δ = δ0(1 − θ) + δ1θ.(5.18)

Since q0 = ∞, p1 = 1/2, q1 = 1/2, from (5.16) (5.17) we can express p0, a, θ as functions

of p, q.. More precisely, the needed expressions have the form

θ =
2

q
,

1

p0
=

1
p − 1

q

1 − 2
q

,

α0 =

n−1
2 − n+1

q + 2ε
q

1 − 2
q

.(5.19)

The requirements 1 < p0 < ∞, a = α0 < 1 − 1/p0 lead to the following restrictions on

1 < p, q <∞
1

q
<

1

p
,

1

q
+

1

p
≤ 1,

n− 3

2
<
n

q
− 1

p
(5.20)



Existence of global solutions to supercritical semilinear wave equations 155

for ε > 0 sufficiently small. These conditions coincide with the assumption (1.8) of

Theorem 1.

From (5.18), (5.4)–(5.5) and (5.9) for ε > 0 sufficiently small we obtain

α <
n− 1

2
− n

q
,

β = γ − n+ 1

2
+
n

p
− 1

q
.(5.21)

Further, the condition (5.6) can be rewritten as follows

n+ 1

2

(

1 − 1

p
− 1

q

)

+
1

q
< γ,

γ < n

(

1 − 1

p
− 1

q

)

+
1

q
(5.22)

or equivalently as
n− 1

2p
− n+ 1

2q
< β <

n− 1

2
− n

q
.(5.23)

Finally, (5.7) takes the form

δ > 1 − 1

p
.(5.24)

Thus, we conclude that the assumptions of Theorem 1 mean that the estimate (5.15)

is fulfilled.

This completes the proof of Theorem 1.

We shall need also an estimate of the solution of the Cauchy problem for the

homogeneous wave equation

(∂2
t − ∆)u = 0,

u(0, x) = εf(x) , ∂tu(0, x) = εg(x).(5.25)

We shall assume that f, g ∈ C∞
0 (Rn) .

For the purpose we shall use the following weighted Sobolev inequality due to

S. Klainerman [17]

|u(t, x)| ≤ C(1 + t+ |x|)−(n−1)/2(1 + |t− |x||)−1/2
∑

|α|≤m

‖Γαu(t, .)‖L2 .(5.26)

Here Γα = Γα0

0 Γα1

1 , · · · ,ΓαN

N , where Γ0,Γ1, · · · ,ΓN are the generators of a conformal

group in R
n+1. To be more precise, Γ1, · · · ,ΓN are the vector fields

∂t, ∂x1
, · · · , ∂xn ,

t∂xj
+ xj∂t, xj∂xk

− xk∂xj
(5.27)
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and Γ0 is the scaling, i.e. Γ0 = t∂t +
∑n

j=1 xj∂xj
. The vector fields Γ0,Γ1, · · · ,ΓN

generate a Lie algebra. Each of the generators in (5.27) commutes with (∂2
t − ∆).

Moreover, we have [(∂2
t − ∆),Γ0] = 2(∂2

t − ∆).

Applying the conformal energy estimate (see [18] ) for the wave equation, we

dominate the right side of (5.26) from above by

Cε(1 + t+ |x|)−(n−1)/2(1 + |t− |x||)−1/2.

Therefore, we have the estimate

|u(t, x)| ≤ Cε(1 + t+ |x|)−(n−1)/2(1 + |t− |x||)−1/2.

From this estimate and the Hölder inequality we obtain the following.

Proposition 5.1. The solution of (5.25) satisfies the estimate

‖τα
+τ

β
−u‖Lq(Rn+1

+
) ≤ Cε(5.28)

provided q ≥ 2n/(n − 1) and the nonnegative parameters α, β satisfy

α <
n− 1

2
− n

q
, β ≤ 1

2
− 1

q
.(5.29)

6. Application to the semilinear wave equation. In this section we shall

prove Theorem 2.

It is evident that for λ > 1 the requirements (1.15) mean that

(n− 1)λ2 − (n+ 1)λ− 2 > 0(6.1)

and λ < (n+ 3)/(n − 1).

We shall look for the solution of (1.12) in the form

u = v + u0,(6.2)

where u0 is the solution of the linear Cauchy problem

(∂2
t − ∆)u0 = 0,

u0(0, x) = εf, ∂tu0(0, x) = εg.(6.3)

Then (1.12) is reduced to the following nonlinear problem for v

(∂2
t − ∆)v = F (v + u0),

v(0, x) = ∂tv(0, x) = 0.(6.4)
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To prove the existence of a solution v, we construct the recurrent sequence {vj}∞j=1 as

follows: v0 = 0

(∂2
t − ∆)vj+1 = F (vj + u0),

vj+1(0, x) = ∂tvj+1(0, x) = 0.(6.5)

Our goal is to show that vj is a Cauchy sequence in Lq
α,β.

The plan to prove the existence of a global solution consists then of two steps,

namely we have to show that

‖vj‖Lq

α,β
≤ Cε(6.6)

for suitable q, α, β. Further , we shall prove the estimate

‖vj+1 − vj‖Lq

α,β
≤ Cελ−1‖vj − vj−1‖Lq

α,β
.(6.7)

Taking ε > 0 sufficiently small, we obtain via the contraction mapping theorem the

existence and uniqueness of the solution in the Banach space Lq
α,β. To establish (6.6)

we apply Theorem 1 and Proposition 5.1 and obtain

‖τα
+τ

β
−vj+1‖Lq ≤ Cε+ ‖τγ

+τ
δ
−|vj + u0|λ‖Lp ,(6.8)

where α, β, γ, δ, p, q satisfy the assumptions of Theorem 1.

Taking
1

p
=
λ

q
,(6.9)

and

γ = αλ,

δ = βλ,(6.10)

we get

‖τα
+τ

β
−vj+1‖Lq ≤ Cε+ C‖τα

+τ
β
−(vj + u0)‖λ

Lq(6.11)

Proposition 5.1 yields

‖τα
+τ

β
−u0‖Lq ≤ Cε.(6.12)

Now the estimate

‖τα
+τ

β
−vj+1‖Lq ≤ Cε+ C‖τα

+τ
β
−vj‖λ

Lq
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leads to the desired estimate (6.6). The other estimate (6.7) can be derived in a similar

manner if we take into account the fact that the difference wj+1 = vj+1 − vj satisfies

the equation

(∂2
t − ∆)wj+1 = F (vj + u0) − F (vj−1 + u0).

wj+1(0, x) = ∂twj+1(0, x) = 0.

Then we can apply the second assumption in (1.13) and we arrive at (6.7).

Therefore, it remains to find the parameters α, β, γ, δ, p, q so that the assump-

tions of Theorem 1 as well as the conditions (6.9) and (6.10) are fulfilled.

To simplify the computations we take (as in the Strichartz inequality)

1

q
=

n− 1

2(n + 1)
.(6.13)

Then the couple 1/q, 1/p = λ/q satisfies the assumptions (1.7) of Theorem 1 for 1 <

λ < (n+ 3)/(n − 1).

From (6.10) and the assumption (1.10) we see that β, γ, δ can be expressed as

functions of α, λ, q namely we have

γ = λα,

β = λ

(

α+
n

q

)

− n+ 1

2
− 1

q
− θ,

δ = λ2
(

α+
n

q

)

− λ
n+ 1

2
− λ

q
− λθ.(6.14)

The assumptions (1.10) serve for determination of the admissible domain for

the parameters α, θ and they can be written in the form

α <
n− 1

2
− n

q
,(6.15)

λ

(

α+
n

q

)

− n+ 1

2
− 1

q
− θ <

n− 1

2
− n

q
,(6.16)

λ
n− 1

2q
− n+ 1

2q
< λ

(

α+
n

q

)

− n+ 1

2
− 1

q
− θ,(6.17)

λ2
(

α+
n

q

)

− λ
n+ 1

2
− λ

q
+ θ − λθ > 1 − λ

q
.(6.18)
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The first requirement (6.15) suggests us to take

α =
n− 1

2
− n

q
− σ(6.19)

for suitable small σ > 0.

The verification of (6.16) , (6.17) and (6.18) is done in the following.

Lemma 6.1. Suppose n ≥ 2, the parameters α = α(λ, σ) and q are given by

(6.13), (6.19) and

λ0(n) < λ <
n+ 3

n− 1
.(6.20)

Here λ0(n) is the positive root of the equation φ0(λ) = 0 and

φ0(λ) ≡ (n− 1)λ2 − (n+ 1)λ− 2.(6.21)

Then there exist θ = θ(n, λ) and a sufficiently small σ0 = σ0(n, λ), such that for

0 < σ ≤ σ0 the inequalities (6.16), (6.17) and (6.18) are fulfilled.

P r o o f. It is sufficient to prove the assertion of the Lemma for σ = 0.

The estimate (6.16) is equivalent in this case to

θ > λ
n− 1

2
− n

(

1 − 1

q

)

− 1

q
≡ θ1(λ),(6.22)

while (6.17) is equivalent to

θ < λ
n− 1

2

(

1 − 1

q

)

− n+ 1

2

(

1 − 1

q

)

− 1

q
≡ θ2(λ).(6.23)

Finally, (6.18) means that

θ <
φ0(λ)

2(λ− 1)
≡ θ3(λ).(6.24)

The assertion of the Lemma follows from

θ1(λ) < min(θ2(λ), θ3(λ))(6.25)

and the fact that the right side in the above estimate is positive. In fact, θ1(λ) < θ2(λ)

means that λ < (n+ 3)/(n − 1). The inequality θ1(λ) < θ3(λ) is equivalent to

λ > 1 +
4(n + 1)

(n− 1)(n + 3)
.(6.26)
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The number θ3(λ) is positive in view of (6.20). The number θ2(λ) is positive if and

only if (6.26) holds. It is clear that (6.26) is equivalent to

φ0

(

1 +
4(n + 1)

(n− 1)(n + 3)

)

< 0.(6.27)

A direct computation shows that this estimate is equivalent to n > 1. Therefore, (6.27)

is true and this completes the proof of the Lemma. �

A. Appendix. Here we shall recall for completeness the sollowing Sobolev

estimate

Proposition A.1. Suppose 0 ≤ a < n. Then we have

‖|.|−af̂‖L2(Rn) ≤ C‖f‖Lp(Rn),(A.1)

where 1/p − 1/2 = a/n. If γ > a, then we have

‖|.|−af̂‖L2(Rn) ≤ C‖(1 + |.|)γf‖L2(Rn).(A.2)

If supp f ⊂ {|x| ≤ T} and 0 ≤ γ < a, then

‖|.|−af̂‖L2(Rn) ≤ CT a−γ‖(1 + |.|)γf‖L2(Rn).(A.3)

P r o o f. Consider the operator

Ia(f)(x) =

∫

eixξ|ξ|−af̂(ξ)dξ.

Since

Ia(f)(x) = c

∫

|x− y|a−ndy,

we see that the classical Sobolev inequality (see [25])

‖Ia(f)‖L2 ≤ C‖f‖Lp , 1/p − 1/2 = a/n,

implies (A.1).

The inequality (A.2) follows from

‖f‖Lp ≤ C‖(1 + |.|)γf‖L2

for γ > n/p− n/2 = a. Finally, the inequality (A.3) follow from

‖f‖Lp ≤ C‖(1 + |.|)−γχ(suppF )‖Lr‖(1 + |.|)γf‖L2(A.4)
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for 1/p = 1/r + 1/2. Combining (A.4) with the assumption suppf ⊂ {|x| ≤ T}, we

arrive at (A.3).

This completes the proof. �
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