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LIMIT CYCLES OF PERTURBATIONS OF A CLASS OF

QUADRATIC HAMILTONIAN VECTOR FIELDS

Yavor Markov

Communicated by S. L. Troyanski

Abstract. We prove that in quadratic perturbations of generic Hamiltonian
vector fields with two saddle points and one center there can appear at most two
limit cycles. This bound is exact.

1. Preliminaries and statement of the results. The problem we solve

in this paper belongs to a circle of problems arising from attempts to find an answer

to the Hilbert’s 16th problem (or, more precisely, to its second part). It asks about

the maximum number and the positions of the limit cycles of Poincaré for polynomial

vector fields

ẋ = X(x, y), ẏ = Y (x, y).(1)

We consider a weaker (infinitesimal) version of this problem. Let H(x, y) be

a polynomial in R
2 of degree n + 1 and f, g be polynomials in R

2 of degree less than

or equal to n. Denote by ∆ the set of values h of H(x, y) for which the real algebraic

curve {H(x, y) = h} has a compact component γ(h). Define the function

I(h) =

∫

γ(h)

−fdy + gdx, h ∈ ∆.(2)
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Then the weak Hilbert problem is as follows: find an upper bound Z(n) for the

number of zeros of I(h) in ∆. It is closely related to the question about the number of

limit cycles of the perturbed Hamiltonian system

ẋ = Hy + εf, ẏ = −Hx + εg,(3)

Consider the system (3) where H(x, y) is a cubic Hamiltonian and f, g are

quadratic perturbations:

f(x, y) =
∑

i+j≤2

aijx
iyj , g(x, y) =

∑

i+j≤2

bijx
iyj.

Definition. We say that H is generic if there exists no coordinate system in

which H(x, y) has an axis of symmetry.

Remark. It is readily seen that H is generic if and only if no level set

{H(x, y) = h : h ∈ R} contains a straight line. The unique (modulo a linear change

of variables) and well-known exception to this rule is the Hamiltonian with normal form

y2 − x3 + x, which has an axis of symmetry and no straight line contained in any level

set. (The straight line has escaped to infinity in this case.)

The main result in this paper is the following:

Theorem 1.1. Let H be a generic cubic Hamiltonian with two saddles and

one center, let XH be the corresponding Hamiltonian vector fields, and let K ⊂ R
2 be a

compact. Then there exists a neighborhood U of XH in the space of all quadratic vector

fields such that each V ∈ U has at most two limit cycles in K.

This result is exact as without difficulty, one can construct a perturbation for

which (3) has two limit cycles.

We want to mention that the same problem was considered earliar (1993) by

Zhi–fen Zhang and Chengzhi Li in [8]. The technique used there is different and in our

opinion their proof contains some gaps.

According to [4] the generic Hamiltonian H, for which the corresponding vector

field (Hy,−Hx) has at least one center as a critical point has the following normal form:

H(x, y) =
1

2
(x2 + y2) − 1

3
x3 + axy2 +

b

3
y3.(4)

The Hamiltonians with two saddles and one center correspond to the curve

Γ∞ = {b2 − 4a3 = 0}, for a > 0. Such a Hamiltonian is generic iff its critical values

are all different (or (a, b) 6=
(

1

2
,

1√
2

)

). It is enough to consider Hamiltonians H for
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a ∈
(

0,
1

2

)

(One can obtain the rest of them by linear change of coordinates). So we

can reformulate Theorem 1.1 as follows:

Theorem 1.2. In (3) let the Hamiltonian H be given by (4) where (a, b) ∈ Γ∞,

for a ∈
(

0,
1

2

)

and let K ⊂ R
2 be a compact. Then there exists ε0 such that for all

|ε| ≤ ε0 and for any quadratic perturbations f, g with
∑ |aij | + |bij | ≤ 1 the system (3)

has at most two limit cycles in K.

Following [4] we recall the definition of Centroid curve. Denote by γ(h) the oval

of the curve H(x, y) = h whenever it exists. In what follows, hs denotes the value of

H for which a saddle–connection exists, and hc denotes the value of H corresponding

to the center inside this saddle-connection. Let hS < hC for definiteness. We have the

equality

I(h) =

∫

γ(h)

−fdy + gdx = −
∫ ∫

Int γ(h)

(fx + gy)dxdy =

∫ ∫

Int γ(h)

(αx + βy + γ)dxdy,(5)

where α = −(2a20 + b11), β = −(a11 +2b02), γ = −(a10 + b01). Define the functions

(mechanical momenta)

X(h) =

∫ ∫

Int γ(h)

xdxdy, Y (h) =

∫ ∫

Int γ(h)

ydxdy, M(h) =

∫ ∫

Int γ(h)

dxdy.

In this notation I(h) = αX(h) + βY (h) + γM(h). Note that M(h) gives the

area of Int γ(h), and also M ′(hC) < 0. We can write the coordinates of the centroid

point of Int γ(h) as ξ(h) = X(h)/M(h), η(h) = Y (h)/M(h). We denote by L the

curve formed by the centroid points and we shall refer to L as the centroid curve.

L = {(ξ(h), η(h)) : h ∈ [hS , hC ]}. From the mean–value theorem, it follows that

(ξ(hC), η(hC )) = (xC , yC), so the endpoints of the centroid curve L are the centroid of

the loop area Z = (ξ(hS), η(hS)) and the center C lying inside. Clearly L is analytic

in (hS , hC ] and affine invariant. Let us assume that:

(a) the centroid curve L is regular, that is, (ξ′(h))2 + (η′(h))2 > 0 for h ∈
(hS , hC ];

(b) each line l intersects L in at most three points (counted with multiplicities).

Now we will prove our main theorem modulo these two assumptions. Let us fix

a generic Hamiltonian H0 with two saddles and one center. Since L is regular one can

consider its curvature K at (ξ(h0), η(h0)) for h0 ∈ (hS , hC). Applying Corollary 2.1

from [4] subject to the second assumption we conclude that K can have only simple
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zeros in (hS , hC). In other words, K changes the sign in a neighbourhood of any of its

zeros.

Generic Hamiltonians with three saddles and one center correspond to the set

Ω = {(a, b) : 0 < a < 1, 0 < b < (1 − a)
√

(1 + 2a), b2 < 4a3}.

Let us choose continuous family of centroid curves L(a(s),b(s)) for s ∈ [0, 1] such that

(a(s), b(s)) ∈ Ω for s ∈ (0, 1] and (a(0), b(0)) ∈ Γ∞ represents the Hamiltonian H0.

By [4] L(a(s),b(s)) is strictly convex for s ∈ (0, 1]. Thus we can conclude that L =

L(a(0),b(0)) is (non–strictly) convex. This means that the curvature K does not change

its sign in the interval (hS , hC). As we state in the previous paragraph this implies

that K has no zeros in that interval, i.e. L is strictly convex in the internal points.

Theorems 3.1 and 3.2 from [4] prove that L is strictly convex near the endpoints (these

theorems consider an arbitrary generic Hamiltonian1). Hence, we prove that L is

strictly convex. In other words each line l intersects L in at most two points (counted

with multiplicities). It follows from [4] (see the proof of Theorem 1) that if:

a) H is generic, b) L is regular, c) l intersects L in n points (n=0,1,2),

then at most n cycles are produced. Theorem 1.2 is proved.

Now we consider two main assumptions. In our case we have ∆ = (hS , hC).

Following [3] we introduce IndGI where G ⊂ [hS , hC ]. If in the neighborhood of h0 ∈
(hS , hC) holds

I(h) = ck(h − h0)
k + · · · , ck 6= 0, k ∈ Z,(6)

then we define Indh0
I = k. If h0 ∈ {hS , hC} then either

I(h) = c1(h − hC) + c2(h − hC)2 + · · · , or(7)

I(h) = c1 + c2(h − hS) log(h − hS) + c3(h − hS) + c4(h − hS)2 log(h − hS) + · · ·(8)

(see Section 2). In both cases we define Indh0
I = k, where c1 = · · · = ck = 0,

ck+1 6= 0. At last if G is a subset of ∆ we define IndGI =
∑

h∈G
IndhI.

According to [4] Ind∆I is equal to the number of intersections (with multiplic-

ities) of the line l : αx + βy + γ = 0 and the centroid curve L. First of all we evaluate

the number of zeros of
d

dh
I in the interval (hS , hC ].

Theorem 1.3. Suppose that I(h) does not vanish identically in ∆. Then
d

dh
I

has at most three zeros in (hS , hC ].

1In fact Theorem 3.2 (ii) was stated for generic Hamiltonians with three saddles and one center
but the autors use only the fact that an arbitrary line intersects centroid curve in at most three poins
(which has been established earliar in [3]).
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As an application of the method we use we prove the regularity of the curve L

in Section 4, i.e. we prove our first assumption.

In Section 5 we explain (following [3]) how one can prove Theorem 1.4, or in

other words our second assumption.

Theorem 1.4. Suppose that I(h) does not vanish identically in ∆. Then

Ind∆I ≤ 3.

2. Normal forms. After suitable rotation of (4) and linear change of h we get

the following

Lemma 2.1. Let the Hamiltonian system (ẋ, ẏ) = XH has two saddles and

one center, and the corresponding critical values of H are all different. Then there

exists R–linear change of the coordinate system such that

H(x, y) =
x2 + y2

2
+ x(x + µy)2,(9)

for some µ > 0. Three critical values of such Hamiltonian satisfy inequalities 0 = h̃1 <

h̃2 < h̃3.

Let Ω be R–linear space of all quadratic perturbations ω of the Hamiltonian

system modulo exact forms. Then dim Ω = 3 and Ω = R{ydx, xydx, y2dx}.
Consider now the Riemann surface Γh = {(x, y) ∈ C

2:H(x, y) = h}. Each oval

of Γh (i.e. a compact smooth real curve contained in Re Γh) is a closed orbit of the

Hamiltonian system. For a later use we shall put the curve into an elliptic normal form.

Let z = (1 + 2µ2x)y + 2µx2. In (x, z) coordinates Γh takes the form

Γh = {z2 = −2(1 + µ2)x3 − x2 + 4hµ2x + 2h};(10)

and, modulo the forms R

{

dx

1 + 2µ2x
,

dx

(1 + 2µ2x)2
,

hdx

1 + 2µ2x

}

Ω = R

{

zdx

1 + 2µ2x
, zdx,

zdx

(1 + 2µ2x)2

}

.

Let us notice that ydx =
zdx

1 + 2µ2x
− 2µx2dx

1 + 2µ2x
. Each closed orbit of the Hamiltonian

system which is contained in the level set {H(x, y) = h} is an oval of the algebraic

curve (10). Note that the opposite is not true – an oval of the algebraic curve (10) does

not come necessary from a closed orbit of the Hamiltonian system.
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The R–linear change of the variable x 7→ mx + n, where m = − 1
3
√

2(1 + µ2)
,

n =
m3

3
brings the curve Γh in the form

Γh =

{

z2 = x3 +
(−2(1 + 2m3)h

m2
− m4

3

)

x +
(4

3
(1 − m3)h − 2m6

27

)

}

.

At last changing the variable z 7→ z√
2

and h 7→ −2(1 + m3)h

m2
we obtain the following

normal form

Γh =

{

z2

2
= x3 + p(h)x + q(h)

}

,(11)

where

p(h) = h+p2, p2 = −m4

3
, q(h) = q1h+q2, q2 = −2m6

27
, q1 = −2m2(1 − m3)

3(1 + 2m3)
.

We point out that singular curves occure when h ∈ {h1, h2, h3}, hi = −2(1 + 2m3)

m2
h̃i.

Since −2(1 + 2m3)

m2
= − 4µ2

3
√

2(1 + µ2)
< 0 then 0 = h1 > h2 > h3. In this notation we

get

Ω = R

{

zdx

x + q1
, zdx,

zdx

(x + q1)2

}

(12)

modulo the forms R

{

dx

x + q1
,

hdx

x + q1
,

dx

(x + q1)2

}

.

Consider the bifurcation diagram B of the family of curves (11), i.e. the set of

values (p, q) ∈ R
2, for which the corresponding curve is singular. Explicitly we have

B =

{

(p, q) ∈ R
2 : δ(p, q) =

q2

4
+

p3

27
= 0

}

.

To each Hamiltonian function (9) there correspond a straight line

lH = {p(h), q(h) : h ∈ R} ⊂ R
2
p,q.(13)

To each level set {H = h} ⊂ R
2 there corresponds a point (p, q) ∈ R

2. The

condition that H has three distinct critical values is equivalent to the condition that lH
intersects the set B in three distinct points. The set R

2\B consists of two unbounded

components. Denote the component where δ(p, q) < 0 by D. If the curve {H(x, y) = h}
contains an oval then the corresponding curve (11) contains also an oval, which is
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equivalent to (p, q) ∈ D. Since q1, q2, p2 < 0 then the line lH passess through second,

third and fourth quarter of R
2
q,p. Three points of intersection between the line lH ant

the set B are the critical values of the hamiltonian (9). Obviously 0 = h1 > h2 > h3,

where hC = h1 and hS = h2. The oval γ(h) of (11) vanishes iff (p, q) lies on the segment

of B for which q < 0. We point out that for h ∈ (−∞, h3) the curve (11) has an oval

but the same curve in (x, y) coordinates has not one.

At last let us recall the classical Picard-Lefschetz formula [1]. Denote

DR = {|z| < R}\{h1, h2, h3} ⊂ C,(14)

where R is a sufficiently big fixed real number. Let z0 be a point on the boundary

{|z| = R} of DR. Any loop l ∈ π(DR, z0) induces an isomorphism l∗ (monodromy) in

the first homology group

l∗ : H1(Γh, Z) → H1(Γh, Z)(15)

of the affine algebraic curve Γh = {H = h} ⊂ C
2. Let li be a loop around hi, and

γj(h) ∈ H1(Γh, Z) a cycle vanishing at hj , j = 1, 2, 3. The Picard–Lefschetz formula

reads

lj∗(δ) = δ + (γj ◦ δ)γj ,(16)

where (γj ◦ γ) is the intersection index of γj and γ. We have the equality γ(h) = γ1(h)

in H1(Γh, Z). We can choose γ2, γ3 such that

(γ2 ◦ γ1) = (γ3 ◦ γ1) = 1, (γ2 ◦ γ3) = 0.

(see [2]).

The Picard-Lefschetz formula implies a formula for branching of abelian in-

tegrals around the critical values hj . Namely, if ω is a meromorphic one form in a

neighborhood of hj in the complex domain it holds (see [1]).

I(h) =

∫

γ(h)

ω = (γj ◦ γ)
log(h − hj)

2πi

∫

γj(h)

ω + M(h),(17)

where M(h) is a meromorphic function. Let ω be the holomorphic one–form with

real coefficients. Since the vanishing cycles γj(h) remain bounded when h belongs to

some bounded domain D and ω is holomorphic then the function M(h) is holomorphic.

The function
∫

γ1(h)

ω has an expansion with real coefficients near the point h = h1 and

the functions
∫

γj(h)

ω has expansions with pure imaginary coefficients near the points

h = hk j, k = 2, 3. Note that the birational change of variables bringing the curve

{H(x, y) = h} in the form (11) does not involve h. Hence the formulae (16) and (17)
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remain valid for the corresponding cycles and Abelian integrals defined on the curve

(11). This will be used without explicit mentioning in the following sections. To the

end of the paper an important role will also be played by the Wronskians

Wτ1,τ2(ω
′, ω′′) =

∫

τ1

ω′
∫

τ2

ω′′ −
∫

τ1

ω′′
∫

τ2

ω′,

defined for arbitrary one forms ω′, ω′′ ∈ H1(Γh, Z), and τ1, τ2 ∈ H1(Γh, Z).

3. Zeros of the Abelian integral I(h). In this section we prove Theorem 1.3

under the restriction that the Hamiltonian H is generic and the corresponding Hamil-

tonian system possesses two saddle points and one center. Let us define the following

one-forms on the algebraic curve (11)

ω̃0 =
zdx

x + q1
, ω̃1 = zdx, ω̃2 =

zdx

(x + q1)2
,

ω0 =
dx

z
, ω1 =

(x + q1)dx

z
, ω0 =

dx

(x + q1)z
,

The Abelian integral I(h) defined in Section 1 takes the form I(h) =
∫

γ(h)

−fdy +gdx =

∫

γ(h)

d0ω̃0 +d1ω̃1 +d2ω̃2, where d0, d1, d2 are real constants depending on the coefficients

of f and g. Denote also J(h) =
d

dh
I(h), ω = d0ω0 + d1ω1 + d2ω2, Jj(h) =

∫

γ(h)

ωj.

Obviously J(h) =
2
∑

k=0
dkJk =

∫

γ(h)

ω (we differentiate (11) by h and we get z
dz

dh
(h, x) =

x + q1).

Let 0 = h1 > h2 > h3 be the critical values of the Hamiltonian function H.

They correspond to the three points of intersection of the line lH and the bifurcation

set B. As the cycle γ1(h) vanishes at h = h1, then I(h1) = 0, and hence the number

of zeros of I(h) in the interval (h2, h1) is less than or equal to the number of zeros of

J(h) in the same interval.

Define the function F (h) =
J(h)

J0(h)
. The zeros of J(h) are obviously zeros of

F (h). In order to find them we exploit the idea of Petrov [6] to continue analytically

the function F in the complex domain C
2\{h ≤ h2} (Lemma 3.1 and Lemma 3.2) and

then to use the argument principle. On its hand to apply the latter we need to find the

increment of the argument of F along the boundary of suitable complex domain.

Lemma 3.1. J0(h) 6= 0 for h ∈ C
2\{h2, h3}.
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P r o o f. Indeed, for h ∈ C
2\{h1, h2, h3} we use the fact that the periods of

the unique holomorphic one-form ω0 on the elliptic curve Γh, never vanish (see [3]).

For h = h1 this is obtained by simple computation. We use the fact that ω0 is equal to

Cydx in (x, y) coordinates and 0 6= C ∈ R. �

Lemma 3.2. F (h) is a holomorphic function in the region D = C\{h ≤ h2}.

P r o o f. I(h) is a holomorphic function at h = h1 as by definition it is an integral

along a cycle γ(h) vanishing at the critical point (x, y) = (0, 0) which corresponds to

the critical value h1 (see [1]). Then J(h) is also holomorphic. The result follows from

Lemma 3.1. �

We recall that the cycles γj ∈ H1(Γh, Z), j = 1, 2, 3 are the vanishing cycles

which correspond to the critical values hj . We describe their properties in Section 2.

The function F has an analytical continuation for any point h 6= h2, h3, but

the continuation depends on the path it is performed along. For point on the set M =

{h < h2, h 6= h3} denote by F+, G+ (respectively F−, G−) the analytic continuation

of F,G along a path on which Imh > 0 (Im h < 0). The increment of the argument of

F along the intervals (−∞, h3)∪ (h3, h2) can be evaluated by the zeros of its imaginary

part on this interval. Sometimes it is convenient to write F along (−∞, h2)
± instead

of F±.

Lemma 3.3.

ImJ± =



























∓ i

2

∫

γ2

ω, h ∈ (h3, h2)

∓ i

2

∫

γ2+γ3

ω, h ∈ (−∞, h2)
(18)

P r o o f. Since J(h) is a real–valued function along the interval (h2, h1) then we

get the equality J(h) = J(h) for h ∈ D and J−(h) = J+(h) for h ∈ (−∞, h2) In the

case h ∈ (h3, h2) the Picard-Lefschetz formula (17) implies

J+(h) = J−(h) + (γ2 ◦ γ1)

∫

γ2

ω, J+(h) − J−(h) = J+(h) − J+(h) =

∫

γ2

ω,

or

2iIm J+(h) =

∫

γ2

ω, Im J+(h) = − i

2

∫

γ2

ω.

The case h ∈ (−∞, h3) is treated in the same manner. �
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Corollary 3.4.

Im F± =



















± i

2|J0|2
Wγ1,γ2

(ω, ω0) for h ∈ (h3, h2)

± i

2|J0|2
Wγ1,γ2+γ3

(ω, ω0) for h ∈ (−∞, h3)

(19)

The proof is straightforward computation.

Denote G1 = 2|J0|2Im F+ for h ∈ (h3, h2) and G2 = 2|J0|2Im F+ for h ∈
(−∞, h3). In order to find the zeros of ImF on each of the intervals (h3, h2), (−∞, h3)

we apply the scheme we described above for F to the functions Gj . Namely we continue

them in the complex domain and use the argument principle.

Define the complex domains D1 = C\(−∞, h3], D2 = C\[h3, h2].

Lemma 3.5. The functions G1 and G2 are holomorphic and single-valued in

the complex domains D1 and D2 respectively.

P r o o f. According to Corollary 3.4 G1 = iWγ1,γ2
(ω, ω0) and G2 =

iWγ1,γ2+γ3
(ω, ω0). Since the function

∫

γ1

ω is holomorphic and single valued in the

domain D and the functions
∫

γj

ω, j = 2, 3 are holomorphic and single–valued in the

domain D′ = C\[h1,+∞), then G1 is holomorphic and single–valued in the domain

C\(−∞, h3] ∪ [h2,+∞), and G2 in the domain C\[h3,+∞).

First we prove that Gj are single–valued in the interval (h2, h1). The Picard-

Lefschetz formula gives that after an counter–clockwise turn around the point h2 the

integrals change in the following way:

∫

γ−

1

ω =

∫

γ+

1

ω +

∫

γ2

ω,

∫

γk

ω =

∫

γk

ω for k = 2, 3.

This shows that the Wronskian Wγ1,γ2
(ω, ω0) 7→ Wγ1,γ2

(ω, ω0) + Wγ2,γ2
(ω, ω0). Since

Wγ2,γ2
(ω, ω0) = 0, then G1 = iWγ1,γ2

(ω, ω0) does not change and G1 is single–valued

in the domain C\(−∞, h3] ∪ [h1,+∞). We prove that G2 = iWγ1,γ2+γ3
(ω, ω0) does

not change after one turn around the interval [h3, h2] in the same maner. Then G2 is

single-valued in the domain C\(−∞, h3] ∪ [h1,+∞). In the same way we prove that

when h makes one loop around the point h1 the functions G1 and G2 do not change. In

the case we consider the functions Mγj ,ω(h) from the Picard-Lefschetz formula (17) are

holomorphic because γ2(h) and γ3(h) are families of bounded cycles in the neighborhood

of h1 (see [1]). Thus we obtain that in neighborhood of h1 |
∫

γk

| ≤ c| log(h − h1)|,
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k = 2, 3, which gives |Wγ1,δ(ω, ω0)| ≤ c̃| log(h − h1)|, and hence the functions G1 and

G2 are holomorphic in the neighborhood of h = h1. �

Lemma 3.6.

Im G±
1 = ±iWγ3,γ2

(ω, ω0) for h ∈ (−∞, h3);

Im G±
2 = ±iWγ2,γ3

(ω, ω0) for h ∈ (h3, h2).

We practically repeat the arguments of Lemma 3.3 and Lemma 3.5.

As we have remarked above, the cycles γ2 and γ3 are homologous on the curve

Γh. As the residues of third kind one-form ω are constants then the quantity
∫

γ2−γ3

ω =

2πi
∑

Res pi
ω, is also constant. Straightforward computation shows that the constant

is pure imaginary. Thus we conclude that each of the Wronskians defined in Lemma 3.6

either vanish identically or is equal to C
∫

γ2

ω0 for some (imaginary) constant C.

(Remark.
∫

γ2

ω0 =
∫

γ3

ω0, because ω0 has no residues on the curve Γh).

Corollary 3.7. The Wronskians defined in Lemma 3.6 either vanish identi-

cally or they have no zeros in the corresponding intervals.

In order to find the increment of the argument along a big circle of the functions

we consider one have to describe their behaviors near ∞. Let γ(h) be an arbitrary non-

zero element from H1(Γh, Z).

Lemma 3.8. There exists positive real constants K ′
0, K ′′

0 , K1, K2; K ′
0 6= 0

such that for all sufficiently big |h| the functions Jj , j = 0, 1, 2 satisfy the inequalities:

(i) K ′
0 ≤ | ∫

γ(h)

ω0||h|
1

4 ≤ K ′′
0 ,

(ii) | ∫

γ(h)

ω1||h|−
1

4 ≤ K1,

(iii) | ∫

γ(h)

ω2||h|
3

4 ≤ K2.

P r o o f. In the equation (11) we make the rescaling:

Z = |h|− 3

4 z, X = |h|− 1

2 x, h = |h| expiθ .

In (X,Z) coordinates the equation (11) takes the form:

{

Z2

2
= X3 + (expiθ +p2|h|−1)X + (q1|h|−

1

2 expiθ +q2|h|−
3

2 )

}

.(20)
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The integrals we consider can be represented as:

∫

γ(h)

dx

z
= |h|− 1

4

∫

γ(h)

dX

Z
;

∫

γ(h)

(x + q1)dx

z
= |h| 14

∫

γ(h)

(X + q1|h|−1/2)dX

Z
;

∫

γ(h)

dx

(x + q1)z
= |h|− 3

4

∫

γ(h)

dX

(X + q1|h|−1/2)Z
.

This together with inequality
∫

γ(θ,∞)

dX
Z 6= 0 proves the lemma. �

Corollary 3.9. ∀ε > 0 the increase of the argument of the following functions

along the sufficiently big circle C = {|h| = R} satisfy the inequalities:

(i) |∆CJ0 +
1

4
2π| ≤ ε, ∆CJ1 ≤ 1

4
2π + ε, ∆CJ2 ≤ −3

4
2π + ε,

(ii) ∆CJ = ∆C(d0J0 + d1J1 + d2J2) ≤
1

4
2π + ε,

(iii) ∆CF = ∆C
J

J0
= ∆CJ − ∆CJ0 ≤ 1

2
2π + ε,

(iv) ∆CG1 = ∆CWγ1,γ2
(ω, ω0) ≤ ε, ∆CG2 ≤ ε.

Denote by gj the number of zeros of the function Gj in the region Dj , j = 1, 2.

We shall say that the argument of F (G1, G2) has number k iff arg F ∈ [kπ, (k + 1)π).

We use the notation Numb arg F . If Numb arg F increases by k, then arg F increases

by at most (k + 1)π.

Lemma 3.10. g1 ≤ 1, g2 ≤ 1. In the case
∫

γ2

ω =
∫

γ3

ω we have g1 = g2 = 0.

P r o o f. Denote by D̃1 the set (D1 ∩{|h| = R})\{|h−h3| ≤ r3}, and by D̃2 the

set = (D2 ∩ {|h| = R})\{(|h − h3| ≤ r3) ∪ (|h − h2| ≤ r2)}. According to Corollary 3.9

we choose R such that ∆|h|=RG1 ≤ π (ε = π).

As we have remarked above
∫

γ2

ω =
∫

γ3

ω+C, where C is pure imaginary constant.

In the case C = 0, Corollary 3.7 and Lemma 3.6 give that G1 is a holomoorphic

function in C and according to the argument principle the number of the zeros of G1
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in D̃1 is less than or equal to

[

∆|h|=RG1

2π

]

≤
[

π

2π

]

= 0. When R tends to ∞ we obtain

g1 = 0.

Let us assume that C 6= 0. Then near the point h3 the function G1 has an

expansion of a type

G1 = log(h − h3)(a0 + a1(h − h3) + · · ·) + H(h),(21)

where H is a holomorphic function in a neighborhood of h3 and a0 6= 0. Hence the

increase of the argument of G1 along the circle |h − h3| = r3 can be made arbitrary

small together with r3 and Numb arg G1 increases at most by one. Lemma 3.6 and

Corollary 3.7 give that along the intervals (−∞, h3)
± ImG1 has no zeros. Thus

Numb arg G1 does not change along these intervals.

Then the increase of Numb arg G1 along the contour B1 = ∂D̃1\{|h| = R} is

at most one. In other words ∆B1
G1 < 2π. Finally we get ∆∂D̃1

G1 < 3π. According

to the argument principle the number of the zeros of G1 in D̃1 is less than or equal to
[

3π

2π

]

= 1. When R → ∞ and r3 → 0 we obtain g1 ≤ 1.

The function G2 is treated in the same manner. �

The previous lemma gives an estimate from above for the number of zeros of

the functions Im F± in the intervals (−∞, h3) ∪ (h3, h2) and this estimate is two. In

the case
∫

γ2

ω =
∫

γ3

ω, the estimate is zero.

Theorem 3.11. If the Abelian integral I(h) does not vanish identically,

then the function F can have no more than three zeros in the domain D. In the case
∫

γ2

ω =
∫

γ3

ω the number of zeros of F in the same region is at most one.

P r o o f. Let R be a sufficiently big number and r2, r3 be sufficiently small

numbers (we shall choose them below). Consider the domain D̃, which is obtained

from D ∩ {|h| = R} by removing the circles {|h − h3| ≤ r3} and {|h − h2| ≤ r2}. We

choose a continuous parametrization of arg F along the border of D̃. We again apply

the argument principle to the domain D̃.

According to Corollary 3.9 we choose R such that ∆|h|=RF ≤ 3π

2
(ε =

π

2
). De-

note ∂D̃\{|h| = R} by B. The orientation of B is such that the circle S2 = {|h−h2| =

r2} and the semi-circles S±
3 = {|h − h2| = r2}± have been passed at the negative

(clockwise) direction (according to h2 and h3 respectively). The Picard-Lefschetz for-

mula implies the following expansions (around the points hj , j = 2, 3 respectively):

F (h) =
J(h)

J0(h)
,(22)



104 Yavor Markov

J0(h) = log(h − h2)(a
j
0 + aj

1(h − h2) + · · ·) + (bj
0 + bj

1(h − h2) + · · ·),

J(h) = (h − h2)
k log(h − h2)(c

j
k + cj

k+1(h − h2) + · · ·) +

+ (h − h2)
l(dj

l + dj
l+1(h − h2) + · · ·),

Im F+(h3 − r3) =
(ln r3(f0 + f1(−r3) + · · ·) + ReH1(h3 − r3))

2|J0(h3 − r3)|2
,

Im F+(h3 + r3) =
(ln r3(f0 + f1r3 + · · ·) + Re H1(h3 + r3))

2|J0(h3 + r3)|2
,

Im F+(h3 − r3)Im F+(h3 + r3) =
f2
0 ln2 r3

4|J0(h3 − r3)||J0(h3 + r3)|
+ o(ln2 r3),(23)

where cj
k, dj

l , aj
0, f0 6= 0 for j = 2, 3 and f0 ∈ R.

Now we shall compute the increment of Numb arg F along the contour B.

1. If ImF has no zeros in an interval then Numb arg F does not change in the same

one.

2. There are two possible cases when h passes through a zero of Im F :

(i) If F 6= 0 at the same point Numb arg F changes by 0 or ±1. In other words

it increases by at most one;

(ii) If F (h0) = 0 for the point h0 ∈ (−∞, h3) ∪ (h3, h2) we have to deform the

contour B in such a way that F has no zeros along the new contour. Near the

point h0 arg F decreases by approximately kπ, where k is the multiplicity of the

zero h0. Thus Numb arg F does not increase near the point h0 if the deformation

is sufficiently small.

3. According to expansions (22) for all ε > 0 if r2 is small enough arg F increases

by at most ε along the circle {|h − h2| = r2} (after a clockwise turn). We choose

r2 such that ∆|h−h2|=r2
F <

π

2
. Thus Numb arg F increases by at most one along

the same circle.

4. We prove in the same manner that the increment of Numb arg F is less than or

equal to one along the semi-circles {|h − h3| = r3}± defined by the restriction

Im h ≥ 0 (Im h ≤ 0 respectively). But the formula (23) implies that the sign of

Im F does not change after passing through this semi-circles and it follows that

Numb arg F does not increase along them.
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Since Im F has at most four (none in the case
∫

γ2

ω =
∫

γ3

ω) zeros on the intervals

(−∞, h3)
± ∪ (h3, h2)

±, then Numb arg F increases by at most five (one in the other

case) along the contour B. In other words ∆BF < 6π. Finally we get ∆∂D̃F < 6π+
3π

2

(∆∂D̃F <
7π

2
correspondingly). According to the argument principle the number of

zeros of F in the domain D̃ is less than or equal to

[

15π

4π

]

= 3 (

[

7π

4π

]

= 1 in the other

case). When R → ∞ and r3, r2 → 0 we obtain the statement of the theorem. �

Thus we prove

Theorem 1.3. In the case we consider either the Abelian integral I(h) van-

ishes identically or
d

dh
I has at most three zeros in (h2, h1].

4. Regularity of the centroid curve L. In this section we prove the reg-

ularity of L in the case of a generic Hamiltonian H with two saddle points and one

center (see Section 1 for definitions). We point out that h1 = hC and h2 = hS . Our

final goal is the following theorem

Theorem 4.1. Suppose that H satisfies our restriction. Then the curve L is

regular, that is

(ξ′(h))2 + (η′(h))2 > 0, for h ∈ (h2, h1].

In fact we are going to prove more than we have formulated in previous theorem.

Theorem 4.2. There exists a R–linear combination rX + sY of the integrals

X,Y such that the function rX ′ + sY ′− kM ′ has no more than one zero in the interval

(h2, h1] for any real k.

P r o o f. According to Section 2 we can change the coordinate system. In (x, z)

coordinates the functions take the forms

M(h) = −
∫

γ(h)

ydx =

∫

γ(h)

c0ω̃0 =

∫

γ(h)

ω̃M ,

X(h) = −
∫

γ(h)

xydx =

∫

γ(h)

ω̃X , Y (h) = −
∫

γ(h)

y2

2
dx =

∫

γ(h)

ω̃Y ,

where c0 is a non-zero constant and ω̃X , ω̃Y are suitable R-linear combinations of ω̃j,
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for j = 0, 1, 2. Obviously

M ′(h) =

∫

γ(h)

ωM , X ′(h) =

∫

γ(h)

ωX , Y ′(h) =

∫

γ(h)

ωY .

According to Corollary 3.7 we have the equalities:
∫

γ3−γ2

= CX ,
∫

γ3−γ2

ωY = CY where CX and CY are real constants depending

on ωX and ωY . It follows that there exists non-zero linear combination of ωX and ωY

such that
∫

γ3−γ2

rωX + sωY = 0. Then the one-form ωk = rωX + sωY − kωM have the

property
∫

γ3(h)−γ2(h)

ωk = 0, for any real k.

Theorem 3.11 implies that
∫

γ(h)

ωk = rX ′(h)+sY ′(h)−kM ′(h) has at most one

zero in the interval (h2, h1] for any real k. �

Corollary 4.3.

(i) – rX + sY − kM has at most two zeros (counted with their multiplicities)

in the interval (h2, h1]. One of them is h1. Then rX + sY − kM has at most one zero

in the interval (h2, h1), or in other words
rX + sY

M
is a monotone function;

(ii) – rξ′(h) + sη′(h) =

(

rX + sY

M

)′

has no zeros in the interval (h2, h1);

(iii) – rξ′(h1) + sη′(h1) 6= 0.

P r o o f. (ii) Let us assume that there exists h0 ∈ (h2, h1) such that
(

rX + sY

M

)′

(h0) = 0. Denote

(

rX + sY

M

)

(h0) by k. Then we have

(

rX + sY

M

)′

(h0) =
rX ′ + sY ′

M
(h0) −

(rX + sY )M ′

M2
(h0)

=
rX ′ + sY ′

M
(h0) −

kMM ′

M2
(h0) =

rX ′ + sY ′ − kM ′

M
(h0) = 0.

It follows that (rX ′ + sY ′ − kM ′)(h0) = 0. Then rX + sY − kM has double zero at h0

which contradict (i). We conclude that our assumption is false.

(iii) M ′(h1) 6= 0. The choice of coordinate system implies the following equal-

ities: (rX + sY )(h1) = (rX ′ + sY ′)(h1) = 0. According to (i) (rX ′′ + sY ′′)(h1) 6= 0.

Now staightforward computation gives

(rξ′ + sη′)(h1) =
(rX ′′ + sY ′′)

2M ′
(h1) 6= 0. �
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Combining (ii) and (iii) we obtain that rξ′ + sη′ has no zeros in the interval

(h2, h1]. It follows that (ξ′(h))2 + (η′(h))2 has no zeros in the same interval. Thus we

have proved our theorem.

5. An upper bound for the number of zeros of I(h) in ∆ = [h2, h1]. The

ultimate goal of this section is to explain how one can get the statement of Theorem 1.4.

In order to do that we must determine the index of the point h2 (the value of H at

separatrix loop level). The problem has been solved in the article of Horozov, Iliev [5].

In a neighborhood of h2 in a complex domain the Abelian integral I(h) =
∫

γ(h)

has the

following asymptotic expansion

I(h) = c1 + c2(h − h2) log(h − h2) + c3(h − h2) + c4(h − h2)
2 log(h − h2) + · · ·(24)

The auxiliary result from [5] is the following

Theorem 5.1 (Horozov, Iliev [5]). Let H be generic hamiltonian and c1 =

c2 = c3 = 0. Then ω is a Hamiltonian perturbation.

For the proof of Theorem 1.4 we need the following lemma2 . It allows us to

push the “zeros” of I(h) at h2 in the interior of the interval (h2, h1) by perturbing the

one–form ω.

Lemma 5.2 (Gavrilov, Horozov [3]). Let c2 = 0, c3 6= 0 in the expansion (24).

For each sufficiently small ε there exists a sufficiently small perturbation ωε ∈ Ω of the

polynomial one-form ω ∈ Ω, such that the resulting Abelian integral Iε(h) =
∫

γ(h)

ωε has

at least one zero in the interval (h2, h2 + ε).

In their article [3] Gavrilov and Horozov proved (using Theorem 5.1 and

Lemma 5.2), that if “the number of zeros of
d

dh
I in (h2, h1]” ≤ 3 then Ind[h2,h1]I ≤ 3.

We have proved the assumption from Section 3 (Theorem 1.3), so we get the statement

of Theorem 1.4.

Since we have proved the two assumptions stated in the Preliminary section we

obtain the statement of our main theorem.
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2The paper of Guckenheimer, Rand, Schlomiuk [7] essentially contains the statement of the lemma.
For our puposes we use the formulation from [3].
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