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The aim of our present note is to show the strength of the existence of an

equivalent analytic renorming of a Banach space, even compared to C∞-Fréchet smooth

renormings.

It was Haydon who first showed in [8] that C(K) spaces for K countable admit

an equivalent C∞-Fréchet smooth norm. Later, in [7] and [9] he introduced a large

clams of tree-like (uncountable) compacts K for which C(K) admits an equivalent

C∞-Fréchet smooth norm.

Recently, it was shown in [3] that C(K) spaces for K countable admit an equi-

valent analytic norm. Our Theorem 1 shows that in the class of C(K) spaces this result

is the best possible.

Theorem 1. Let C(K) be a real Banach space. Then the following are

equivalent:

(i) K is countable.

(ii) C(K) has an equivalent analytic norm.

P r o o f.

(i) ⇒ (ii) can be found in [3].
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(ii) ⇒ (i).

Since C(K) has an equivalent analytic (hence C1) norm, the space C(K) is an

Asplund space, so K is scattered and the dual of C(K) is isometric to ℓ1(K). Let P (·)

be an arbitrary polynomial on C(K) with values in ℓ1(K). It is shown in [5], p.146

that P (·) is weakly-sequentially continuous (although they use the term “completely

continuous” in their note). Since our C(K) is an Asplund space, we have according

to Proposition 2.12 of [1] (via an easy complexification argument) that P (·) is weakly

uniformly continuous on bounded sets.

Let φ(·) be an arbitrary real valued analytic function defined on the neighbour-

hood of f0 ∈ C(K). Then on some bounded neighbourhood U of f0, φ is a uniform

limit of polynomials:

φ(·) =
∞∑

i=1

Pi(·), and

dφ(·) =
∞∑

i=1

dPi(·)

where dP and dφ stand for the derivatives of the functions, mapping C(K) into ℓ1(K) =

C(K)∗. The function dφ is analytic in its domain. Thus dφ is weakly uniformly

continuous when restricted to U . Lemma 2.2 of [2] shows that dφ(U) is norm-relatively

compact set in ℓ1(K) (again, a standard argument of passing to the complexified space

is needed).

Let us suppose by contradiction that ‖·‖ is an equivalent analytic norm on C(K)

where K is an uncountable compact. Let 0 6= f ∈ C(K). By the above considerations

there exists some bounded open neighbourhood U of f in C(K) such that d‖ · ‖(U) is

norm relatively compact in ℓ1(K). In particular, there exists a countable set S ⊂ K

such that supp(d‖g‖) ⊂ S for every g ∈ U . Choose x0 ∈ K \ S, denote by φx0
(·) the

x0-coordinate of an element in ℓ1(K). We have:

φx0
(d‖g‖) = 0 for every g ∈ U.

From the analyticity of d‖ · ‖ away from the origin we obtain:

(1) φx0
(d‖g‖) = 0 for every 0 6= g ∈ C(K).

Denote ex0
∈ ℓ1(K) the evaluation map at x0. By the Bishop-Phelps theorem,

the set {d‖g‖, 0 6= g ∈ C(K)} is dense in the dual unit sphere of ‖ · ‖ and ‖ex0
‖−1ex0

belongs to this unit sphere. However (1) implies:

‖d‖g‖ − ‖ex0
‖−1ex0

‖1 ≥ ‖ex0
‖−1‖ex0

‖1
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for every 0 6= g ∈ C(K), contradiction. The proof is finished. �

It is clear that an analytic norm on a Banach space is always rotund. However,

it was proved in [6] that the existence of an equivalent C2-Fréchet smooth and rotund

norm on c0(Γ) implies that Γ is countable. It is therefore natural to ask whether one

can get similar results is the class of C(K) spaces. Since c0(K \ K ′) is a closed linear

subspace of C(K), it follows that for a space C(K) the existence of an equivalent C2-

Fréchet smooth and rotund norm implies that K \K ′ is countable. This is equivalent to

K being separable. However, there are examples of uncountable and separable compacts

for which K(ω0) = Ø (e.g. [4], p. 260). The following simple proposition shows that on

the corresponding C(K) spaces there exist C∞-smooth and rotund norms.

Proposition 2. Let K be a separable and scattered compact such that K(ω0) =

Ø. Then C(K) admits an equivalent C∞-smooth and rotund norm.

P r o o f. By Theorem 4.1.8 of [4], these spaces admit an equivalent C∞-smooth

norm ‖ · ‖. Denote for every xi ∈ K \ K ′, i ∈ N by δxi
, the corresponding Dirac

functional from ℓ1(K). Put:

‖| · ‖|2 = ‖ · ‖2 +
∞∑

i=1

1

2i
δ2
xi

(·).

It is easy to cheek that ‖| · ‖| has the required properties.
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