Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
Serdica Mathematical Journal

 Сердика
Математическо списание

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

EQUISUMMABILITY THEOREMS FOR LAGUERRE SERIES

El-Sayed El-Sayed Abd El-Aal El-Adad

Communicated by V. Petkov

Abstract. Here we prove results about Riesz summability of classical Laguerre series, locally uniformly or on the Lebesgue set of the function f such that $\left(\int_{0}^{\infty}(1+x)^{m p}|f(x)|^{p} d x\right)^{1 / p}<\infty$, for some p and m satisfying $1 \leq p \leq \infty$, $-\infty<m<\infty$.

1. Introduction and statement of the main results. Consider the Laguerre series in the form

$$
f(y) \sim \sum_{k=0}^{\infty} f_{k} \Phi_{k}^{\delta}(y), \quad f_{k}=\int_{0}^{\infty} f(y) \Phi_{k}^{\delta}(y) d y, \quad \delta \geq-\frac{1}{2}
$$

and the corresponding partial sum

$$
E_{\lambda} f(y)=\int_{0}^{\infty} e(\lambda, x, y) f(x) d x
$$

where

$$
e(\lambda, x, y)=\sum_{\mu_{k}<\lambda} \Phi_{k}^{\delta}(x) \Phi_{k}^{\delta}(y)
$$

and

$$
\mu_{k}=4 k+4, \quad \Phi_{k}^{\delta}(x)=\left[\frac{\Gamma(k+1)}{\Gamma(k+\delta+1)}\right]^{1 / 2} e^{-x^{2} / 2} \sqrt{2} x^{\delta+1 / 2} L_{k}^{\delta}\left(x^{2}\right)
$$

are the eigenvalues and orthonormalized eigenfuctions of the operator

$$
A=-\frac{d^{2}}{d x^{2}}+x^{2}+\left(\delta^{2}-\frac{1}{4}\right) x^{-2}+2-2 \delta \text { in } L^{2}(0, \infty)
$$

Here $L_{k}^{\delta}(x)=(k!)^{-1} e^{x} x^{-\delta}\left(\frac{d}{d x}\right)^{k}\left(e^{-x} x^{k+\delta}\right)$ are the Laguerre polynomials and $e(\lambda, x, y)$ is called the spectral function of A.

The Laguerre series are investigated in the classical Szegö book [7], where sufficient conditions are given on the behaviour of the function f at infinity so that the following equiconvergence result holds:

$$
E_{\lambda} f(y)-\int_{y-\varepsilon}^{y+\varepsilon} e^{0}(\lambda, x, y) f(x) d x \rightarrow 0, \quad 0<\varepsilon<y
$$

locally uniformly on $(0, \infty)$. Here $e^{0}(\lambda, x, y)$ is the spectral function of the main part $-\frac{d^{2}}{d x^{2}}$.

These conditions are significantly improved in [3], where the method of the spectral function is applied. To enlarge further the classes of functions we can consider the Riesz summability method. For other results see, for example [4], [5], [9] and the bibliography in [8].

Let

$$
E_{\lambda}^{\alpha} f(y)=\sum\left(1-\frac{\mu_{k}}{\lambda}\right)^{\alpha} f_{k} \Phi_{k}^{\delta}(y), \quad \mu_{k}<\lambda
$$

be the Riesz means of order α. Then

$$
\begin{equation*}
E_{\lambda}^{\alpha} f(y)=\int_{0}^{\infty} I^{\alpha} e(\lambda, x, y) f(x) d x \tag{1.1}
\end{equation*}
$$

where

$$
I^{\alpha} e(\lambda, x, y)=\int_{0}^{\lambda}\left(1-\frac{\mu}{\lambda}\right)^{\alpha} d e(\mu, x, y)
$$

is the Riesz kernel of order α.
The main results proved in this paper are concerned with:
a) Equisummability locally uniformly for the functions f from the space L_{m}^{p} with a norm

$$
\|f\|_{m \cdot p}=\left(\int_{0}^{\infty}(1+x)^{m p}|f(x)|^{p} d x\right)^{\frac{1}{p}}, \quad 1 \leq p \leq \infty
$$

b) Summability on the Lebesgue set of the functions from the space L_{m}^{p} for $1 \leq p<\infty, m \geq-m_{0}(\alpha, p)$ if $p \neq 4 / 3$ and $m>-m_{0}(\alpha, 4 / 3)$ if $p=4 / 3$.

Here

$$
\begin{equation*}
m_{0}(\alpha, p)=2 \alpha+\min \left(\frac{1}{p}, 1-\frac{1}{3 p}\right), \quad \alpha>0 \tag{1.2}
\end{equation*}
$$

Note that in [9] a related result is proved for $\alpha>\frac{1}{6}$ and for the case $m=0$.
c) Summability locally uniformly for the functions f with the properties: $f(x)$ and $f^{\prime}(x)$ are $O\left(x^{\beta}\right)$ as $x \rightarrow \infty$ for $\beta<2 \alpha+1$. The case $\alpha=0$ is considered in [3].

The author expresses his gratefulness to Prof. G. E. Karadzhov, who initiated this work and served as a supervisor during its completion.

We start with theorems about equisummability locally uniformly, which means that as $\lambda \rightarrow \infty$

$$
\begin{equation*}
R_{\lambda}^{\alpha} f(y) \stackrel{\text { def }}{=} E_{\lambda}^{\alpha} f(y)-\int_{y-\varepsilon}^{y+\varepsilon} f(x) I^{\alpha} e(\lambda, x, y) d x \rightarrow 0 \tag{1.3}
\end{equation*}
$$

uniformly with respect to $y \in[c, d]$ for any compact interval $[c, d] \subset(0, \infty)$, where $\varepsilon \in(0, c)$.

Theorem 1 (equisummability locally uniformly). If $\alpha>0$ then the convergence (1.3) is fulfilled in the following cases:
(a) $f \in L_{m}^{p}, 1 \leq p<\infty, p \neq \frac{4}{3}$ if $m \geq-m_{0}(\alpha, p)$
(b) $f \in L_{m}^{4 / 3}$ if $m>-m_{0}\left(\alpha, \frac{4}{3}\right)$
(c) $f \in L_{m}^{\infty}$ if $m>-m_{0}(\alpha, \infty)$
(d) $f \in C_{m}$ if $m \geq-m_{0}(\alpha, \infty)$.

Here C_{m} is the subspace of L_{m}^{∞} consisting of all continuous functions f such that $x^{m} f(x) \rightarrow 0$ as $x \rightarrow \infty$ and $f(x) \rightarrow 0$ as $x \rightarrow 0$.

Theorem 2. Let $f \in L_{l o c}^{1}[0, \infty)$ and the derivative $f^{\prime}(x)$ exists for $x>A_{f}$. If $f(x)$ and $f^{\prime}(x)$ are $O\left(x^{\beta}\right), x \rightarrow \infty$ for $\beta<2 \alpha+1, \alpha>0$, then the convergence (1.3) is true.

Corollary 1 (equisummability on the Lebesgue set). Under the conditions of Theorems 1 or 2 we have

$$
\begin{equation*}
E_{\lambda}^{\alpha} f(y)-\int_{y-\varepsilon}^{y+\varepsilon} f(x) I^{\alpha} e^{0}(\lambda, x, y) d x \rightarrow 0 \tag{1.4}
\end{equation*}
$$

where $y \in(0, \infty)$ is on the Lebesgue set of the function f and $0<\varepsilon<y$. Here

$$
e^{0}(\lambda, x, y)=\frac{1}{\pi} \cdot \frac{\sin \sqrt{\lambda}(x-y)}{x-y}
$$

and

$$
\begin{equation*}
I^{\alpha} e^{0}(\lambda, x, y)=\lambda^{1 / 2} F_{\alpha}(\sqrt{\lambda}|x-y|) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\alpha}(s)=d_{\alpha} s^{-\frac{1}{2}-\alpha} J_{1 / 2+\alpha}(s), \quad d_{\alpha}=2^{\alpha}(2 \pi)^{-\frac{1}{2}} \Gamma(\alpha+1) \tag{1.6}
\end{equation*}
$$

Corollary 2 (summability on the Lebesgue set). Under the conditions of Theorem 1 or $2, E_{\lambda}^{\alpha} f(y) \rightarrow f(y)$ on the Lebesgue set of the function f.

Corollary 3 (summability in $L_{l o c}^{q}$). Under the conditions of Theorem 1 or 2, $E_{\lambda}^{\alpha} f \rightarrow f$ in $L_{l o c}^{q} 1 \leq q<\infty$ if in addition $f \in L_{\text {loc }}^{q}(0, \infty)$.

Corollary 4 (summability locally uniformly). Under the conditions of Theorem 1 or $2, E_{\lambda}^{\alpha} f(y) \rightarrow f(y)$ locally uniformly if in addition f is continuous.

Corollary 5 (localization principle). Let $y>0, \varepsilon>0$ be fixed. Then under the conditions of Theorem 1 or $2, E_{\lambda}^{\alpha} f \rightarrow 0$ if $f(x)=0$ for $|x-y|<\varepsilon$.
2. Asymptotics of Riesz kernels. In proving the main results, stated in § 1 , we shall apply the method of the spectral function as in [3] and especially [4], where this method was used to find the uniform asymptotics of the Riesz kernels of order α in the case of Hermite series.

First we state the uniform asymptotics of the Riesz kernels (1.1) which we need. It is convenient to consider also the functions

$$
\begin{equation*}
e_{\alpha}(\lambda, x, y)=\lambda^{\alpha} I^{\alpha} e(\lambda, x, y), \quad E_{\alpha}(\lambda, x, y)=e_{\alpha}(\lambda, \sqrt{\lambda} x, \sqrt{\lambda} y) \tag{2.1}
\end{equation*}
$$

For our purposes it is sufficient to consider only the cases: $0<a \leq x<\infty, 0<$ $c \leq y \leq d<\infty$. It is convenient to split the interval $[a, \infty)$ into the intervals $[a, b]$, $[A,(1-\varepsilon) \sqrt{\lambda}],[(1-\varepsilon) \sqrt{\lambda},(1+\varepsilon) \sqrt{\lambda}],[(1+\varepsilon) \sqrt{\lambda}, \infty)$.

Theorem 3. Let $0<a \leq x \leq b$ and $0<c \leq y \leq d$. Then,

$$
\begin{equation*}
\left|I^{\alpha} e(\lambda, x, y)-\left(I^{\alpha} e^{0}(\lambda, x, y)+C_{\delta} I^{\alpha} e^{0}(\lambda, x,-y)\right)\right| \leq C(1+\sqrt{\lambda}|x-y|)^{-\alpha-1} \tag{2.2}
\end{equation*}
$$

where $\alpha>0, I^{\alpha} e^{0}(\lambda, x, y)$ is given by (1.5) and C_{δ} is a constant.
Here and later on, C is a positive constant, not depending on λ, x, y.
Theorem 4. Let $\frac{A}{\sqrt{\lambda}} \leq x \leq 1-\varepsilon, \frac{c}{\sqrt{\lambda}} \leq y \leq \frac{d}{\sqrt{\lambda}}$. Then for $A>d, \varepsilon>0$ we have the uniform asymptotics

$$
\begin{equation*}
E_{\alpha}(\lambda, x, y)=F_{\alpha}(\lambda, x, y)+C_{\delta} F_{\alpha}(\lambda, x,-y) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\alpha}(\lambda, x, y)=\lambda^{-1 / 2} \sum_{k=1}^{4} b_{k}(\lambda, x, y) e^{i \lambda \psi_{k}}+x^{-1-\alpha} O\left(\lambda^{-1}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|b_{k}\right| \leq C x^{-1-\alpha}, \quad\left|\partial_{x} b_{k}\right| \leq C x^{-2-\alpha} \tag{2.5}\\
\left|\partial_{x} \psi_{k}\right|^{2}=1-x^{2}, \quad\left|\partial_{x}^{2} \psi_{k}\right|^{2} \leq C\left(1-x^{2}\right)^{-1} \tag{2.6}
\end{gather*}
$$

Theorem 5. If $1-\varepsilon \leq x \leq 1+\varepsilon, \frac{c}{\sqrt{\lambda}} \leq y \leq \frac{d}{\sqrt{\lambda}}$, then there exists a positive number $\varepsilon>0$ such that the uniform asymptotics (2.3) is satisfied, where

$$
\begin{equation*}
F_{\alpha}(\lambda, x, y)=\sum_{k=0}^{\infty}\left(a_{1 k}(\lambda, x, y) \lambda^{-k-1 / 3}+b_{1 k}(\lambda, x, y) \lambda^{-k-2 / 3}\right) \tag{2.7}
\end{equation*}
$$

and

$$
a_{1 k}=\left(a_{k} e^{\lambda A}+b_{k} e^{\lambda \bar{A}}\right) A i\left(\lambda^{2 / 3} B\right), \quad b_{1 k}=\left(c_{k} e^{\lambda A}+d_{k} e^{\lambda \bar{A}}\right) A i^{\prime}\left(\lambda^{2 / 3} B\right)
$$

The functions $\lambda \rightarrow a_{k}, b_{k}, d_{k}, c_{k}$ or their derivatives with respect to x are bounded. Here $A i(s)=\frac{1}{2 \pi} \int e^{i\left(s t+t^{3} / 3\right)}$ is the Airy function, $A=A(x, y), B=B(x, y)$ are smooth, Re $A=0$ and $B(x, y) \sim C(y)\left(x^{2}-1\right)$ as $x^{2} \rightarrow 1, c(y)>0$.

Analogously to Theorem 6 [3] we have
Theorem 6. Let $x>1+\varepsilon$ for some $\varepsilon>0$. Then

$$
\left|E_{\alpha}(\lambda, x, y)\right| \leq C\left(x^{2}-1\right)^{-1 / 4} \lambda^{-1 / 2} \exp \left(-C \varepsilon\left(x^{2}-1\right)^{1 / 2} \lambda\right), \quad C>0
$$

As a consequence of Theorems 5 and 6 it follows
Corollary 6. If $x^{2}>\lambda+\lambda^{1 / 3+\varepsilon}, \varepsilon>0$ then

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq C \lambda^{-\alpha-1 / 3} \exp \left(-C \lambda^{1 / 3}\left(\frac{x^{2}}{\lambda}-1\right)^{1 / 2}\right)
$$

From Theorem 5 and the asymptotics of the Airy function it follows
Corollary 7. If $1-\varepsilon_{1}<x^{2}<1-\lambda^{-2 / 3+\varepsilon}, \varepsilon>0$ and $\frac{c}{\sqrt{\lambda}} \leq y \leq \frac{d}{\sqrt{\lambda}}$, then we have the uniform asymptotics (2.3), where

$$
F_{\alpha}(\lambda, x, y)=\lambda^{-1 / 2} \sum_{k=1}^{4}\left(a_{k}\left(1-x^{2}\right)^{-1 / 4}+b_{k}\left(1-x^{2}\right)^{1 / 4}\right) e^{i \lambda \psi_{k}}+\left(1-x^{2}\right)^{-1} O\left(\lambda^{-1}\right)
$$

the functions $\lambda \rightarrow a_{k}(\lambda, x, y), b_{k}(\lambda, x, y)$ or their derivatives over x are bounded, and ψ_{k} satisfy (2.6).
3. Proof of Theorem 1. First, according to [7], we have $|e(\lambda, x, y)| \leq c$ if $0<x, y<c,|x-y| \geq \varepsilon>0$, and consequently

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq c \quad \text { if } \quad 0<x, y<c, \quad|x-y|>\varepsilon>0
$$

Since

$$
R_{\lambda}^{\alpha} f(y)=\left(\int_{0}^{y-\varepsilon}+\int_{y+\varepsilon}^{\infty}\right) f(x) I^{\alpha} e(\lambda, x, y) d x
$$

we can write

$$
\begin{equation*}
\left|R_{\lambda}^{\alpha} f(y)\right| \leq c\left[\int_{0}^{A}|f(x)| d x+|K(\lambda, y)|\right] \tag{3.1}
\end{equation*}
$$

where $c \leq y \leq d$ and for some large $A>0$,

$$
\begin{equation*}
K(\lambda, y)=\int_{A}^{\infty} f(x) I^{\alpha} e(\lambda, x, y) d x \tag{3.2}
\end{equation*}
$$

Now let $K_{i}(\lambda, y)=\int a_{i}(\lambda, x) f(x) I^{\alpha} e(\lambda, x, y) d x$, where $a_{i}(\lambda, x)$ is the characteristic function of the set A_{i} and

$$
\begin{array}{ll}
A_{1}=\left\{x \in R_{+}, A^{2}<x^{2}<(1-\varepsilon) \lambda\right\}, & A_{2}=\left\{x \in R_{+},(1-\varepsilon) \lambda<x^{2}<\lambda-\lambda^{1 / 3}\right\}, \\
A_{3}=\left\{x \in R_{+},\left|x^{2}-\lambda\right|<\lambda^{1 / 3}\right\}, & A_{4}=\left\{x \in R_{+}, \lambda+\lambda^{1 / 3}<x^{2}<\lambda+\lambda^{1 / 3+\varepsilon}\right\}, \\
A_{5}=\left\{x \in R_{+}, x^{2}>\lambda+\lambda^{1 / 3+\varepsilon}\right\} &
\end{array}
$$

The estimates below are uniform with respect to $y \in[c, d]$ and the number A is large enough, say $A>d+1$.
a) Estimate of $K_{1}(\lambda, y)$. Using Theorem 4 we have

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq C \lambda^{-\alpha / 2} x^{-1-\alpha}, \quad x \in A_{1}
$$

Hence by the Hölder inequality,

$$
\begin{aligned}
\left|K_{1}(\lambda, y)\right| & \leq c \lambda^{-\alpha / 2} \int a_{1}(\lambda, x)|f(x)| x^{-1-\alpha} d x \\
& \leq c \lambda^{-\alpha / 2}\|f\|_{m, p} J(\lambda)
\end{aligned}
$$

where

$$
J(\lambda)=\left(\int_{1}^{\sqrt{\lambda}} \sigma^{-(1+\alpha+m) p^{\prime}} d \sigma\right)^{\frac{1}{p^{\prime}}}, \frac{1}{p^{\prime}}+\frac{1}{p}=1
$$

Therefore

$$
\begin{gather*}
\left|K_{1}(\lambda, y)\right| \leq c\|f\|_{m, p} \quad \text { if } \quad m \geq-2 \alpha-1 / p, 1 \leq p<\infty \tag{3.3}\\
\left|K_{1}(\lambda, y)\right| \leq \lambda^{-\gamma}\|f\|_{m, \infty} \quad \text { if } \quad m \geq-2 \alpha, \alpha>0 \quad \text { for some } \gamma>0 . \tag{3.4}
\end{gather*}
$$

b) Estimate of $K_{2}(\lambda, y)$. Using Theorem 5 and the estimates $|A i(s)| \leq c|s|^{-1 / 4}$, $\left|A i^{\prime}(s)\right| \leq c(1+|s|)^{1 / 4}$, we have

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq c \lambda^{-\alpha-1 / 2}\left(1-\frac{x^{2}}{\lambda}\right)^{-1 / 4}, \quad x \in A_{2}
$$

Therefore

$$
\left|K_{2}(\lambda, y)\right| \leq c \lambda^{-\alpha-1 / 2-m / 2}\|f\|_{m, p} J(\lambda)
$$

where

$$
J(\lambda)=\mathrm{J}^{\frac{1}{2 p^{\prime}}}\left(\int_{\lambda^{-2 / 3}}^{1} \sigma^{-p^{\prime} / 4} d \sigma\right)^{\frac{1}{p^{\prime}}}
$$

hence

$$
\begin{equation*}
\left|K_{2}(\lambda, y)\right| \leq c \lambda^{-\left(m+m_{0}\right) / 2}(\log \lambda)^{1 / 4}\|f\|_{m, p}, \quad p=4 / 3 \tag{3.6}
\end{equation*}
$$

Here m_{0} is given by (1.2).
c) Estimate of $K_{3}(\lambda, y)$. According to Theorem 5 we have

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq \lambda^{-\alpha-1 / 3}, \quad x \in A_{3}
$$

Hence

$$
\left|K_{3}(\lambda, y)\right| \leq c \lambda^{-\alpha-1 / 3}\|f\|_{m, p} J(\lambda)
$$

where

$$
J(\lambda)=\left(\int a_{3}(\lambda, x) x^{-m p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}} \leq c \lambda^{-\frac{m}{2}-\frac{1}{6 p^{\prime}}}
$$

Therefore

$$
\begin{equation*}
\left|K_{3}(\lambda, y)\right| \leq c \lambda^{-\left(m+m_{0}\right) / 2}\|f\|_{m, p} \tag{3.7}
\end{equation*}
$$

d) Estimate of $K_{4}(\lambda, y)$. Theorem 6 implies

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq c \lambda^{-\alpha-1 / 2}\left(\frac{x^{2}}{\lambda}-1\right)^{-\frac{1}{4}}, \quad x \in A_{4}
$$

Hence

$$
\left|K_{4}(\lambda, y)\right| \leq c \lambda^{-\alpha-\frac{1}{2 p}-\frac{m}{2}}\|f\|_{m, p} J(\lambda)
$$

where

$$
J(\lambda)=\left(\int_{\lambda^{-2 / 3}}^{\lambda^{-2 / 3+\varepsilon}} \sigma^{-p^{\prime} / 4} d \sigma\right)^{\frac{1}{p^{\prime}}}
$$

Therefore

$$
\begin{equation*}
\left|K_{4}(\lambda, y)\right| \leq c \lambda^{-\left(m+m_{0}\right) / 2}\|f\|_{m, p}, \quad 1 \leq p<\frac{4}{3} \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\left|K_{4}(\lambda, y)\right| \leq c \lambda^{-\left(m+m_{0}\right) / 2}(\log \lambda)^{1 / 4}\|f\|_{m, p}, \quad p=\frac{4}{3} \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\left|K_{4}(\lambda, y)\right| \leq c \lambda^{-\left(m+m_{0}\right) / 2-\gamma}\|f\|_{m, p}, \quad \text { if } p>\frac{4}{3} \text { for some } \gamma>0 \tag{3.10}
\end{equation*}
$$

f) Estimate of $K_{5}(\lambda, y)$. Corollary 6 gives

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq c \lambda^{-\alpha-1 / 3} \exp \left(-c \lambda^{\varepsilon / 2}\right), \quad \text { if } \quad x \in A_{5}, \quad x<\lambda
$$

$$
\left|I^{\alpha} e(\lambda, x, y)\right| \leq c \lambda^{-\alpha-1 / 3} \exp (-c \sqrt{x}), \quad \text { if } x>\lambda, \quad c>0
$$

Hence we obtain

$$
\begin{equation*}
\left|K_{5}(\lambda, y)\right| \leq c \lambda^{-\gamma}\|f\|_{m, p} \quad \text { for some } \quad \gamma>0 \tag{3.11}
\end{equation*}
$$

Thus the estimates (3.3)-(3.11) give

$$
\begin{align*}
& \left|R_{\lambda}^{\alpha} f(y)\right| \leq c\|f\|_{m, p}, \quad \text { if } m \geq-m_{0}, 1 \leq p<\infty, p \neq 4 / 3 \tag{3.12}\\
& R_{\lambda}^{\alpha} f(y) \rightarrow 0 \text { if } m>-m_{0}(\alpha, p) \text { and } p=4 / 3 \text { or } p=\infty
\end{align*}
$$

On the other hand it is not hard to see that

$$
\begin{equation*}
R_{\lambda}^{\alpha} f \rightarrow 0 \quad \text { uniformly on }[c, d] \quad \text { if } f \in C_{0}^{\infty}(0, \infty) . \tag{3.13}
\end{equation*}
$$

Finally, if $f \in L_{m}^{p}, 1 \leq p<\infty$ or $f \in C_{m}$, then we can find $g \in C_{0}^{\infty}$ such that $\|f-g\|_{m, p}<\varepsilon$. Then (3.12) implies $\left|R_{\lambda}^{\alpha} f\right| \leq c \varepsilon+\left|R_{\lambda}^{\alpha} g\right|$, whence (3.13) gives $R_{\lambda}^{\alpha} f \rightarrow 0$ locally uniformly.
4. Proof of Theorem 2. We start with (3.1) and (3.2), where $1 \leq i \leq 4$, $a_{i}(\lambda, x)$ is the characteristic function of the set B_{i} and $B_{1}=A_{1}$,

$$
B_{2}=\left\{x:(1-\varepsilon) \lambda<x^{2}<\lambda-\lambda^{\frac{1}{3}+\varepsilon}\right\}, \quad B_{3}=\left\{x:\left|x^{2}-\lambda\right|<\lambda^{\frac{1}{3}+\varepsilon}\right\}, \quad B_{4}=A_{5}
$$

Now, let $B_{i}(\lambda, y)=K_{i}(\lambda, \sqrt{\lambda} y), i=1,2$. Then

$$
B_{i}(\lambda, y)=\lambda^{1 / 2-\alpha} \int_{0}^{\infty} a_{i}(\lambda, \sqrt{\lambda} x) f(\sqrt{\lambda} x) E_{\alpha}(\lambda, x, y) d x
$$

a) Estimate of $K_{1}(\lambda, y)$. Using Theorem 4 we can write

$$
B_{1}(\lambda, y)=I(\lambda, y)+C_{\delta} I(\lambda,-y),
$$

where

$$
\begin{equation*}
I(\lambda, y)=\lambda^{1 / 2-\alpha} \int a_{1}(\lambda, \sqrt{\lambda} x) f(\sqrt{\lambda} x) F_{\alpha}(\lambda, x, y) d x \tag{4.1}
\end{equation*}
$$

and $F_{\alpha}(\lambda, x, y)$ is given by (2.4). It is enough to find the asymptotics of $I(\lambda, y)$. We have by (2.4),

$$
\begin{equation*}
I(\lambda, y)=\lambda^{-\alpha} \sum_{k=1}^{4} \int_{0}^{\infty} a_{1}(\lambda, \sqrt{\lambda} x) b_{k}(\lambda, x, y) e^{i \lambda \psi_{k}} f(\sqrt{\lambda} x) d x+R_{1} O\left(\lambda^{-\alpha-1 / 2}\right) \tag{4.2}
\end{equation*}
$$

where, using $f(x)=O\left(x^{\beta}\right), x \rightarrow \infty$,

$$
\begin{align*}
R_{1} & =\int a_{1}(\lambda, \sqrt{\lambda} x)|f(\sqrt{\lambda} x)| x^{-1-\alpha} d x \leq C \lambda^{\beta / 2} J(\lambda), \tag{4.3}\\
J(\lambda) & =\int_{\lambda^{-1 / 2}}^{1} x^{-1-\alpha+\beta} d x \leq c \begin{cases}\lambda^{-\beta / 2+\alpha / 2}, & \beta<\alpha \\
\log \lambda, & \beta=\alpha \\
1, & \beta>\alpha\end{cases}
\end{align*} .
$$

Then integrating by parts and using (2.5), (2.6), we get for $\beta \leq 2 \alpha+1$,

$$
|I(\lambda, y)| \leq C \lambda^{-\alpha-1 / 2+\beta / 2} J(\lambda)+C \lambda^{-1 / 2}
$$

If $\beta<2 \alpha+1$, we see that $|I(\lambda, y)| \leq \lambda^{-\gamma}$ for some $\gamma>0$, hence

$$
I(\lambda, y) \rightarrow 0 \text { locally uniformly }
$$

or

$$
\begin{equation*}
K_{1}(\lambda, y) \rightarrow 0 \text { locally uniformly. } \tag{4.4}
\end{equation*}
$$

b) Estimate of $K_{2}(\lambda, y)$. We shall use Corollary 7. Then analogously to (4.1), (4.2) and (4.3) we see that it suffices to estimate
(4.5) $B(\lambda, y)=\lambda^{-\alpha} \int a_{2}(\lambda, \sqrt{\lambda} x) a(\lambda, x, y)\left(1-x^{2}\right)^{-1 / 4} f(\sqrt{\lambda} x) e^{i \lambda \psi} d x+O\left(\lambda^{-1 / 2-\alpha}\right) R_{2}$ where $a(\lambda, x, y)=a_{k}(\lambda, x, y)$ and

$$
\begin{equation*}
R_{2}=\int a_{2}(\lambda, \sqrt{\lambda})|f(\sqrt{\lambda} x)|\left(1-x^{2}\right)^{-1} d x \leq c \lambda^{\beta / 2} \log \lambda \tag{4.6}
\end{equation*}
$$

Let

$$
I(\lambda)=\int a_{2}(\lambda, \sqrt{\lambda}) a(\lambda, x, y)\left(1-x^{2}\right)^{-1 / 4} f(\sqrt{\lambda} x) e^{i \lambda \psi} d x
$$

Integrating by parts and using (2.6) we get

$$
\begin{aligned}
|I(\lambda)| \leq & C \lambda^{-1} \int a_{2}(\lambda, \sqrt{\lambda} x)\left[\lambda^{1 / 2}\left|f^{\prime}(\sqrt{\lambda} x)\right|\left(1-x^{2}\right)^{-3 / 4}+\right. \\
& \left.|f(\sqrt{\lambda} x)|\left(1-x^{2}\right)^{-7 / 4}\right] d x+C \lambda^{-1 / 2}
\end{aligned}
$$

Since $1-x^{2}>\lambda^{-2 / 3+\delta}$ we obtain for $\beta>0, \varepsilon>0$,

$$
\begin{equation*}
|I(\lambda)| \leq C \lambda^{-1 / 2+\beta / 2} \tag{4.7}
\end{equation*}
$$

Thus (4.5), (4.6) and (4.7) imply

$$
|B(\lambda, y)| \leq C \lambda^{-\alpha-1 / 2+\beta / 2}+C \lambda^{-\alpha-1 / 2+\beta / 2} \log \lambda \leq C \lambda^{-\gamma} \quad \text { for some } \gamma>0
$$

since $\beta<2 \alpha+1$. In other words,

$$
\begin{equation*}
\left|K_{2}(\lambda, y)\right| \leq C \lambda^{-\gamma} \rightarrow 0 \text { locally uniformly. } \tag{4.8}
\end{equation*}
$$

c) Estimate of $K_{3}(\lambda, y)$. Theorem 5 gives

$$
\left|K_{3}(\lambda, y) \leq C \lambda^{-\alpha-1 / 3} \int_{0}^{\infty} a_{3}(\lambda, x)\right| f(x) \mid d x
$$

Hence

$$
\begin{equation*}
\left|K_{3}(\lambda, y)\right| \leq C \lambda^{-\alpha+\beta / 2-1 / 2+\varepsilon} \rightarrow 0 \quad \text { if } 0<\varepsilon<\alpha-\frac{\beta}{2}+\frac{1}{2} \tag{4.9}
\end{equation*}
$$

Finally it is easy to prove (see 3.11) that

$$
\begin{equation*}
K_{4}(\lambda, y) \rightarrow 0 \quad \text { locally uniformly. } \tag{4.10}
\end{equation*}
$$

Thus (3.1) and the estimates (4.4), (4.8), (4.9), (4.10) give

$$
\left|R_{\lambda}^{\alpha} f(y)\right| \leq C \int_{0}^{A}|f(x)| d x+o(1), \quad \text { locally uniformly }
$$

Now the proof finishes analogously to the proof of Theorem 1.

5. Proof of Corollaries 1-4.

Proof of Corollary 1. Let $y \in(0, \infty)$ is on the Lebesgue set of the function f and $0<\varepsilon<y$. Comparing (1.3), (1.4) we have only to prove

$$
\begin{equation*}
I(\lambda, y)=\int_{y-\varepsilon}^{y+\varepsilon} f(x)\left[I^{\alpha} e(\lambda, x, y)-I^{\alpha} e^{0}(\lambda, x, y)\right] d x \rightarrow 0 \tag{5.1}
\end{equation*}
$$

Let $\tilde{f}(x)=f(x) \chi(x)$ and let $\chi(x)$ be the characteristic function of the set $(y-\varepsilon, y+\varepsilon)$. According to theorem 3,

$$
\begin{equation*}
\left|I^{\alpha} e(\lambda, x, y)-I^{\alpha} e^{0}(\lambda, x, y)\right| \leq C\left[\lambda^{-\alpha / 2}+H_{\alpha}(\sqrt{\lambda}|x-y|)\right], \quad \alpha>0 \tag{5.2}
\end{equation*}
$$

$0<y-\varepsilon \leq x \leq y+\varepsilon$, where $H_{\alpha}(s)=(1+s)^{-\alpha-1}, s>0$. Since $\alpha>0$, then $H_{\alpha}(s) \in L^{1}(R)$, hence Theorem $1.25[6]$ gives

$$
\int \tilde{f}(x) \sqrt{\lambda} H_{\alpha}(\sqrt{\lambda}|x-y|) d x \rightarrow \tilde{f}(y)
$$

or

$$
\begin{equation*}
\int_{y-\varepsilon}^{y+\varepsilon} f(x) H_{\alpha}(\sqrt{\lambda}|x-y|) d x \rightarrow 0 \tag{5.3}
\end{equation*}
$$

Evidently (5.1) follows from (5.2), (5.3).
Proof of Corollary 2. According to Corollary 1 we have to prove

$$
I(\lambda, y)=\int_{y-\varepsilon}^{y+\varepsilon} f(x) I^{\alpha} e^{0}(\lambda, x, y) \rightarrow f(y)
$$

where y is on the Lebesgue set of the function f and $0<\varepsilon<y$. Using (1.5) and \tilde{f}, $F_{\alpha}(s) \in L^{1}(R)$ for $\alpha>0$, we see that Theorem $1.25[6]$ implies

$$
I(\lambda, y)=\int_{-\infty}^{+\infty} \tilde{f}(x) \lambda^{1 / 2} F_{\alpha}(\sqrt{\lambda}|x-y|) d x \rightarrow \tilde{f}(y)=f(y)
$$

Proof of Corollary 3. First we have according to Theorem 1 or $2 R_{\lambda}^{\alpha} f \rightarrow 0$ in $L_{l o c}^{q}(0, \infty)$. Thus according to (1.3) it is sufficient to prove

$$
\begin{equation*}
I(\lambda, y)=\int_{y-\varepsilon}^{y+\varepsilon} f(x) I^{\alpha} e(\lambda, x, y) d x \rightarrow f(y) \text { if } L^{q}[c, d] \tag{5.4}
\end{equation*}
$$

$0<c<d, 0<\varepsilon<c$. Let $\tilde{f}(x)=f(x) \chi(x)$, where χ is the characteristic function of $(c-\varepsilon, c+\varepsilon)$. Hence we can write

$$
\begin{equation*}
I(\lambda, y)=J_{1}(\lambda, y)-J_{2}(\lambda, y) \quad \text { for } \quad c \leq y \leq d \tag{5.5}
\end{equation*}
$$

where

$$
\begin{gathered}
J_{1}(\lambda, y)=\int_{0}^{\infty} \tilde{f}(x) I^{\alpha} e(\lambda, x, y) d x \\
J_{2}(\lambda, y)=\int_{M} \tilde{f}(x) I^{\alpha} e(\lambda, x, y) d x, \quad M=\{x:|x-y|>\varepsilon\} \cap(c-\varepsilon, d+\varepsilon)
\end{gathered}
$$

According to Theorem 3 we have $\left|I^{\alpha} e(\lambda, x, y)\right| \leq C \lambda^{-\alpha / 2}$ if $c \leq y \leq d, x \in M$. Since $\alpha>0$ it follows

$$
\begin{equation*}
J_{2}(\lambda, y) \rightarrow 0 \quad \text { uniformly in } \quad c \leq y \leq d \tag{5.6}
\end{equation*}
$$

On the other hand, Theorem 1.25 [6] gives

$$
\int \tilde{f}(x) \sqrt{\lambda} H_{\alpha}(\sqrt{\lambda}|x-y|) d x \rightarrow \tilde{f}(y) \quad \text { in } \quad L^{q} \quad \text { if } \quad 1 \leq q<\infty, H_{\alpha} \in L^{1}(R)
$$

Therefore using (5.2) and $\alpha>0$, we get

$$
\int_{0}^{\infty} \tilde{f}(x) I^{\alpha} e(\lambda, x, y) d x-\int_{-\infty}^{\infty} I^{\alpha} e^{0}(\lambda, x, y) \tilde{f}(x) d x \rightarrow 0
$$

in $L^{q}(c, d), 1 \leq q<\infty$.
The same Theorem 1.25 [6] and (1.5), (1.6) imply

$$
\int \tilde{f}(x) I^{\alpha} e^{0}(\lambda, x, y) d x \rightarrow \tilde{f}(y) \text { in } L^{q} \text { if } 1 \leq q<\infty
$$

Therefore,

$$
\begin{equation*}
J_{1}(\lambda, y) \rightarrow \tilde{f}(y) \text { in } L^{q}(c, d) \tag{5.7}
\end{equation*}
$$

Thus (5.4) follows from (5.5)-(5.7).
Proof of Corollary 4. Let $f \in C(0, \infty)$ and $0<c \leq y \leq d$. Find a function $g \in C_{0}(R)$ such that $g(y)=f(y)$ for $c \leq y \leq d$. Further we can proceed as in the proof of Corollary 3. Thus we have again (5.4)-(5.7) but now the convergence is uniform for $y \in[c, d]$.
6. Proof of Theorem 3. We shall use the formula

$$
\begin{equation*}
e_{\alpha}(\lambda, x, y)=\Gamma(\alpha+1)(2 \pi i)^{-1} \int_{S} e^{\lambda p} V(p, x, y) H_{\alpha}(\lambda, p) \chi(p) d p \tag{6.1}
\end{equation*}
$$

where $S=\left(\varepsilon-i \frac{\pi}{2}, \varepsilon+i \frac{\pi}{2}\right), \varepsilon>0, \alpha>0, \chi(p) \in C_{0}^{\infty}(S)$ and $s \rightarrow H_{\alpha}(s, p)$ is defined by

$$
\begin{equation*}
H_{\alpha}(s, p)=\sum_{k=-\infty}^{+\infty} e^{i s k \pi / 2}(p+i k \pi / 2)^{-\alpha-1}, \quad p \in S, \quad \alpha>0 \tag{6.2}
\end{equation*}
$$

For proving (6.1) we notice that

$$
e_{\alpha}(\lambda, x, y)=\lambda^{\alpha} I^{\alpha} e(\lambda, x, y)=\lambda_{+}^{\alpha} * d e(\lambda, x, y)
$$

and that the Laplace transform of λ_{+}^{α} is $\Gamma(\alpha+1) p^{-\alpha-1}$. Thus

$$
\int_{0}^{\infty} e^{-\lambda p} e_{\alpha}(\lambda, x, y) d \lambda=\Gamma(\alpha+1) p^{-\alpha-1} V(p, x, y)
$$

where

$$
V(p, x, y)=\int_{0}^{\infty} e^{-\lambda p} d e(\lambda, x, y), \quad \operatorname{Re} p>0
$$

Since

$$
V(p, x, y)=\sum e^{-\mu_{k} p} \phi_{k}^{\delta}(x) \phi_{k}^{\delta}(y), \quad \mu_{k}=4 k+4
$$

we have

$$
\begin{equation*}
V\left(p+i k \frac{\pi}{2}, x, y\right)=V(p, x, y) \tag{6.3}
\end{equation*}
$$

Further the inverse Laplace transform gives

$$
e_{\alpha}(\lambda, x, y)=b \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} e^{\lambda p} p^{-\alpha-1} V(p, x, y) d p, \quad b=\Gamma(\alpha+1)(2 \pi i)^{-1}
$$

or using (6.2), (6.3) we get for $\alpha>0$,

$$
\begin{equation*}
e_{\alpha}(\lambda, x, y)=b \int_{S_{1}} e^{\lambda p} V(p, x, y) H_{\alpha}(s, p) d p \tag{6.4}
\end{equation*}
$$

where $S_{1}=\left(\varepsilon-i \frac{\pi}{4}, \varepsilon+i \frac{\pi}{4}\right)$.
Noticing that $p \rightarrow g(p)=e^{\lambda p} V(p, x, y) H_{\alpha}(\lambda, p)$ is $i \frac{\pi}{2}$ - periodic function it is not hard to see that (6.4) implies (6.1) for some $\chi \in C_{0}^{\infty}(S)$, $\chi=1$ near $\varepsilon+i 0$.

Now, we can write

$$
\begin{equation*}
e_{\alpha}(\lambda, x, y)=A_{\lambda}(x, y)+B_{\lambda}(x, y) \tag{6.5}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{\lambda}(x, y) & =b \int_{S} e^{\lambda p} V(p, x, y) p^{-\alpha-1} \chi(p) d p \\
B_{\lambda}(x, y) & =b \int_{S} e^{\lambda p} V(p, x, y) h_{\alpha}(\lambda, p) \chi(p) d p
\end{aligned}
$$

and the function $h_{\alpha}(\lambda, p)$ has no singularities on S. Further let the function $f(x) \in$ $C_{0}^{\infty}(0, \infty)$ and consider the formula

$$
\int_{0}^{\infty} e_{\alpha}(\lambda, x, y) f(x) d x=b \int e^{\lambda p} H_{\alpha}(\lambda, p) \chi(p)\left(\int_{0}^{\infty} V(p, x, y) f(x) d x\right) d p
$$

We want to take limit as $\varepsilon \rightarrow 0$. To this end we write

$$
I(\lambda, y)=\int_{0}^{\infty} A_{\lambda}(x, y) f(x) d x=b \int e^{i \lambda t} V(i t, y)(i t+0)^{-\alpha-1} i \chi(t) d t
$$

where $\chi(t) \in C_{0}^{\infty}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \chi(t)=1,|t|<\gamma$ for some $\gamma>0$ and $V(i t, y)=$ $\int_{0}^{\infty} V(i t, x, y) f(x) d x$ is a smooth function. Since in the sense of distributions

$$
\left((i t+0)^{-\alpha-1}, \varphi(t)\right)=\lim _{\varepsilon_{1} \rightarrow 0} C_{1} \iint e^{-\varepsilon_{1} \eta^{2}-i t \eta^{2}} \varphi(t) \eta^{2 \alpha} d t d \eta, \quad \eta \in R^{2}
$$

where

$$
\begin{gathered}
\varphi(t)=i b e^{i \lambda t} V(i t, y) \chi(t) \quad \text { and } \quad C_{1}=\frac{1}{\pi \Gamma(\alpha+1)} \quad \text { we get } \\
I(\lambda, y)=\lim _{\varepsilon_{1} \rightarrow 0} i b C_{1} \int e^{i \lambda t} V(i t, y) e^{-i \eta^{2} t-\varepsilon_{1} \eta^{2}} \chi(t) d t d \eta
\end{gathered}
$$

To represent $V(i t, y)$ we shall use the generating function 1.146 [10]:

$$
V(p, x, y)=(x y)^{1 / 2} e^{2 p(\delta-1)}(\sinh 2 p)^{-1} e^{-\left(\frac{x^{2}+y^{2}}{2}\right) \operatorname{coth} 2 p} i^{-\delta} J_{\delta}\left(\frac{i x y}{\sinh 2 p}\right)
$$

Using the formula (1), p. 74, (6), p. 75 and 3,4 , p. 168 from [10] we can write

$$
\begin{equation*}
J_{\delta}(z)=z^{-1 / 2}\left(e^{i z} C_{\delta}^{+} f(-z)+e^{-i z} C_{\delta}^{-} f(z)\right) \quad \text { if } \quad \delta \geq-\frac{1}{2} \tag{6.6}
\end{equation*}
$$

where

$$
f(z)=\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{1}{\Gamma(\delta+1 / 2)} \int_{0}^{\infty} e^{-u} u^{\delta-\frac{1}{2}}\left(1-\frac{i u}{2 z}\right)^{\delta-\frac{1}{2}} d u, \quad \delta>-\frac{1}{2} \\
\frac{1}{2}\left(\frac{2}{\pi}\right)^{\frac{1}{2}}, \quad \delta=-\frac{1}{2}
\end{array}\right.
$$

is a holomorphic function for $\operatorname{Re} z \neq 0$. Here $C_{\delta}^{+}=e^{\mp i \frac{\pi}{2}\left(\delta+\frac{1}{2}\right)}$.
Note also the property for $f(t, u)=f(1 / u \sin 2 t)$,

$$
\begin{equation*}
\partial_{t}^{k} f(t, u) \mid \leq C_{k} \quad \text { uniformly in } \quad u \in(0, c) \tag{6.7}
\end{equation*}
$$

Therefore

$$
\begin{align*}
V(p, x, y)= & (\sinh 2 p)^{-1 / 2} e^{-\frac{\left(x^{2}+y^{2}\right)}{2} \operatorname{coth} 2 p}\left(e^{x y / \sinh 2 p} a(p, x y)+\right. \tag{6.8}\\
& \left.+C_{\delta} e^{-x y / \sinh 2 p} a(p,-x y)\right)
\end{align*}
$$

where $C_{\delta}=e^{-\frac{i \pi}{2}\left(\delta+\frac{1}{2}\right)} C_{\delta}^{+}$and $a(p, x, y)=e^{2 p(\delta-1)} f\left(\frac{i x y}{\sinh 2 p}\right)$.
Now, since $-\frac{1}{2}\left(x^{2}+y^{2}\right) \operatorname{coth} 2 p+\frac{x y}{\sinh 2 p}=-\frac{(x-y)^{2}}{4 p}+s(p, x, y), s(0, x, y)=0$ and s has no singularities as $|\operatorname{Im} p|<\frac{\pi}{2}$ we get

$$
\begin{gathered}
V(p, x, y)= \\
=(\sinh 2 p)^{-1 / 2}\left(e^{-(x-y)^{2} / 4 p} b(p, x, y)+C_{\delta} e^{-(x+y)^{2} / 4 p} b(p, x,-y)\right)
\end{gathered}
$$

where $b(p, x, y)=e^{s(p, x, y)} a(p, x y), b(0, x, y)=(2 \pi)^{-1 / 2}$.
Now using the equality

$$
\lim _{\varepsilon_{2} \rightarrow 0} \int e^{-i \xi^{2} t+i(x-y) \xi-\varepsilon_{2} \xi^{2}} \frac{d \xi}{2 \pi}= \begin{cases}(4 \pi i t)^{-1 / 2} e^{-\frac{i(x-y)^{2}}{4 t}}, & t \neq 0 \\ \delta(x-y), & t=0\end{cases}
$$

we obtain in $D^{\prime}\left(R_{+}\right)$

$$
V\left(i t, x, y=\lim _{\varepsilon_{2} \rightarrow 0}\left[G\left(t, x, y, \varepsilon_{2}\right)+C_{\delta} G\left(t, x,-y, \varepsilon_{2}\right)\right]\right.
$$

where

$$
G\left(t, x, y, \varepsilon_{2}\right)=\left(\frac{\sin 2 t}{2 t}\right)^{-1 / 2}(2 \pi)^{-1 / 2} b(i t, x, y) \int e^{-i \xi^{2}+i(x-y) \xi-\varepsilon_{2} \xi^{2}} d \xi
$$

Hence

$$
\begin{equation*}
I(\lambda, y)=J(\lambda, y)+C_{\delta} J(\lambda,-y) \tag{6.9}
\end{equation*}
$$

where

$$
\begin{aligned}
J(\lambda, y)= & \lim _{\varepsilon_{2} \rightarrow 0} \int e^{-\varepsilon_{1} \eta^{2}+i \lambda t-i \eta^{2} t} g_{1}(t, \eta, x, y) \times \\
& \times \lim _{\varepsilon_{2} \rightarrow 0} \int_{0}^{\infty} f(x)\left(\int e^{-i \xi^{2} t+i(x-y) \xi-\varepsilon_{2} \xi^{2}} d \xi\right) d x d t d \eta
\end{aligned}
$$

and

$$
g_{1}(t, \eta, x, y)=b(i t, x, y)\left(\frac{\sin 2 t}{2 t}\right)^{-1 / 2}(2 \pi)^{-1 / 2} \frac{1}{2 \pi^{2}} \chi(i t) \eta^{2 \alpha}
$$

Since $f(x) \in C_{0}^{\infty}(0, \infty)$ and $h(\xi)=\int_{0}^{\infty} f(x) e^{i x \xi} d x$ is rapidly decreasing, the integral $h_{\varepsilon_{2}}(t)=\int e^{-i \xi^{2} t-i y \xi-\varepsilon_{2} \xi^{2}} h(\xi) d \xi$ is absolutely convergent, and $\left|h_{\varepsilon_{2}}(t)\right| \leq \int|h(\xi)| d \xi$. Hence the Lebesgue theorem gives

$$
J(\lambda, y)=\lim _{\substack{\varepsilon_{1} \rightarrow 0 \\ \varepsilon_{2} \rightarrow 0}} G\left(\lambda, y, \varepsilon_{1}, \varepsilon_{2}\right)
$$

where

$$
G\left(\lambda, y, \varepsilon_{1}, \varepsilon_{2}\right)=\int_{0}^{\infty}\left[\int e^{i \lambda t-i \xi^{2} t-i \eta^{2} t+i(x-y) \xi-\varepsilon_{1} \eta^{2}-\varepsilon_{2} \xi^{2}} g_{1}(t, \eta, x, y) d t d \xi d \eta\right] f(x) d x
$$

or

$$
\begin{aligned}
J(\lambda, y)= & \lambda^{\alpha+3 / 2}\left[\int e^{i \lambda \psi} g(\xi, \eta) g_{1}(t, \eta, x, y) d t d \xi d \eta\right] f(x) d x+ \\
& +\lim _{\substack{\varepsilon_{1} \rightarrow 0 \\
\varepsilon_{2} \rightarrow 0}} \int_{0}^{\infty} I_{\varepsilon_{1} \varepsilon_{2}}(\lambda, x, y) f(x) d x
\end{aligned}
$$

where

$$
I_{\varepsilon_{1} \varepsilon_{2}}(\lambda, x, y)=\lambda^{\alpha+3 / 2} \int e^{i \lambda \psi_{\varepsilon_{1} \varepsilon_{2}}} g_{1}(t, \eta, x, y)(1-g(\xi, \eta)) d t d \xi d \eta
$$

$0<a \leq x \leq b, 0<c \leq y \leq d$, supp $f \subset[a, b]$,

$$
\psi_{\varepsilon_{1} \varepsilon_{2}}=\left(1-\xi^{2}-\eta^{2}\right) t+\lambda^{-1 / 2}(x-y) \xi-\varepsilon_{1} \eta^{2}-\varepsilon_{2} \eta^{2}, \quad \psi=\psi_{0,0}
$$

and $g(\xi, \eta)$ is a cutoff function .
In the last integral we can integrate by parts. Namely, since $\left|\partial_{t} \psi_{\varepsilon_{1} \varepsilon_{2}}\right|>C\left(\xi^{2}+\right.$ η^{2}) for $\xi^{2}+\eta^{2}>C_{1}$, then

$$
\left|I_{\varepsilon_{1} \varepsilon_{2}}(\lambda, x, y)\right| \leq \lambda^{-N+\alpha+3 / 2} \int\left|\partial_{t}^{N} g_{1}(t, \eta, x, y)\right|\left(\xi^{2}+\eta^{2}\right)^{-N}(1-g(\xi, \eta)) d t d \xi d \eta
$$

Using (6.7) we get $\left|\partial_{t}^{N} g_{1}(t, \eta, x, y)\right| \leq C_{N}$. Hence,

$$
\left|I_{\varepsilon_{1} \varepsilon_{2}}(\lambda, x, y)\right| \leq C_{N} \lambda^{-N+\alpha+3 / 2} \quad \text { if } a \leq x \leq b, \quad 0<c \leq y \leq d
$$

Finally we see that

$$
\begin{equation*}
J(\lambda, y)=\lambda^{\alpha+3 / 2} J_{1}(\lambda, y)+O\left(\lambda^{-\infty}\right) \tag{6.10}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{1}(\lambda, y)=\int e^{i \lambda \psi_{1}} g(\xi, \eta) g_{1}(t, \eta, x, y) d t d \xi d \eta \tag{6.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{1}(t, \xi, \eta, x, y)=\left(1-\xi^{2}-\eta^{2}\right) t+\lambda^{-1 / 2}(x-y) \xi \tag{6.12}
\end{equation*}
$$

The second term in $(6.5), B_{\lambda}(x, y)$, can by treated analogously. Thus (6.5), (6.10) give the basic formula

$$
\begin{gather*}
e_{\alpha}(\lambda, x, y)=F_{\alpha}(\lambda, x, y)+C_{\delta} F_{\alpha}(\lambda, x,-y)+O\left(\lambda^{-\infty}\right), \quad \delta \geq-\frac{1}{2} \tag{6.13}\\
0<a \leq x \leq b, \quad 0<c \leq y \leq d
\end{gather*}
$$

where

$$
\begin{equation*}
F_{\alpha}(\lambda, x, y)=\lambda^{\alpha+3 / 2} J_{1}(\lambda, y)+\lambda^{1 / 2} J_{2}(\lambda, y) \tag{6.14}
\end{equation*}
$$

$J_{1}(\lambda, y)$ is given by (6.11), while $J_{2}(\lambda, y)=\int e^{i \lambda \psi_{2}} g(\xi) g_{2}(t, x, y) d t d \xi$ and ψ_{1} is the function (6.12), while $\psi_{2}(t, \xi, x, y)=\psi_{1}(t, \xi, 0, x, y)$.

Asymptotics of $\boldsymbol{J}_{\mathbf{1}}, \boldsymbol{J}_{\mathbf{2}}$. Since in polar coordinates $(\xi, \eta)=\sigma(w, \theta), w \in R^{1}$, $\sigma>0, w^{2}+\theta^{2}=1,\left(w=\cos \varphi, \theta_{1}=\sin \varphi \cos \varphi_{1}, \theta_{2}=\sin \varphi \sin \varphi_{1}, 0<\varphi<\pi\right.$, $0<\varphi_{1}<2 \pi$),

$$
I=\int_{w^{2}+\theta^{2}=1} e^{i \sqrt{\lambda}(x-y) w \sigma} \theta^{2 \alpha} d(w, \theta)=2 \pi \int_{w^{2}<1} e^{i \lambda(x-y) w \sigma}\left(1-w^{2}\right)^{\alpha} d w
$$

then

$$
\begin{equation*}
I=C_{\alpha}(\sqrt{\lambda}|x-y| \sigma)^{-1 / 2-\alpha} J_{1 / 2+\alpha}(\sqrt{\lambda}|x-y| \sigma) \tag{6.15}
\end{equation*}
$$

$C_{\alpha}=(2 \pi)^{3 / 2} 2^{\alpha} \Gamma(\alpha+1)$.
Therefore
$J_{1}(\sqrt{\lambda}|x-y|)^{-1 / 2-\alpha} \int_{0}^{\infty} \int e^{i \lambda\left(1-\sigma^{2}\right) t} \sigma^{\alpha+3 / 2} J_{\alpha+1 / 2}(\sqrt{\lambda}|x-y| \sigma) q(t, \sigma) d t d \sigma$,

$$
\begin{equation*}
q(0,1)=(2 \pi)^{-3 / 2} 2^{\alpha+1} \Gamma(\alpha+1) \tag{6.16}
\end{equation*}
$$

For $\sigma \approx 0$ we can integrate by parts with respect to t, and hence we can suppose $q(t, \sigma) \in C_{0}^{\infty}(R \times(0, \infty))$. If $\sqrt{\lambda}|x-y|>1$ we use the formula (6.6). Thus we get

$$
\begin{gather*}
J_{\alpha+1 / 2}(\sqrt{\lambda}|x-y| \sigma)=(\sqrt{\lambda}|x-y| \sigma)^{-1 / 2} \times \\
\times\left[e^{-i \sqrt{\lambda}(x-y) \sigma} g(\sqrt{\lambda}|x-y| \sigma)+e^{i \sqrt{\lambda}|x-y| \sigma} g(-\sqrt{\lambda}|x-y| \sigma)\right] \tag{6.17}
\end{gather*}
$$

where

$$
\mid \partial_{\sigma}^{k} g(\sqrt{\lambda}|x-y| \sigma) \leq C_{k} \quad \text { if } \quad \sqrt{\lambda}|x-y|>1, \quad 0<C_{1} \leq \sigma \leq C_{2}
$$

Hence

$$
\begin{gathered}
J_{1}=(\sqrt{\lambda}|x-y|)^{-\alpha-1 / 2}\left[K_{1}+K_{2}+O\left(\lambda^{-\infty}\right)\right] \\
K_{1}(\sqrt{\lambda}|x-y|)^{-1 / 2} \int e^{i \lambda \psi_{i}} q_{i}(t, \sigma, x, y) d t d \sigma \\
\psi_{1}=\left(1-\sigma^{2}\right) t-|x-y| \lambda^{-1 / 2} \sigma, \quad \psi_{2}=\left(1-\sigma^{2}\right) t+|x-y| \lambda^{-1 / 2} \sigma,
\end{gathered}
$$

$$
\left|\partial^{k} q_{i}\right| \leq C_{k} \quad \text { if } \quad \sqrt{\lambda}|x-y|>1, \quad(t, \sigma) \rightarrow q_{i} \in C_{0}^{\infty}(R \times(0, \infty))
$$

To find the asymptotics of the integrals K_{i} we apply the stationary phase method [1].

The critical points $\sigma=1, t_{ \pm}= \pm \frac{1}{2}|x-y| \lambda^{-1 / 2}$ are nondegenerate and the Taylor formula gives.

$$
\begin{equation*}
q\left(t_{ \pm}, 1\right)=q(0,1)+|x-y| O\left(\lambda^{-1 / 2}\right) \tag{6.18}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& K_{1}=(\sqrt{\lambda}|x-y|)^{-1 / 2}\left[\frac{2 \pi}{\lambda} \cdot \frac{1}{2} e^{-i \sqrt{\lambda}|x-y|} g(\sqrt{\lambda}|x-y|) q\left(t_{+}, 1\right)+O\left(\lambda^{-2}\right)\right] \\
& K_{2}=(\sqrt{\lambda}|x-y|)^{-1 / 2}\left[\frac{2 \pi}{\lambda} \cdot \frac{1}{2} e^{i \sqrt{\lambda}|x-y|} g(-\sqrt{\lambda}|x-y|) q\left(t_{-}, 1\right)+O\left(\lambda^{-2}\right)\right]
\end{aligned}
$$

or according to (6.16), (6.18)

$$
\begin{equation*}
J_{1}=(\sqrt{\lambda}|x-y|)^{-\frac{1}{2}-\alpha}\left[\frac{d_{\alpha}}{\lambda} J_{\alpha+\frac{1}{2}}\left(\sqrt{\lambda}|x-y|+O\left(\lambda^{-7 / 4}\right)\right)\right] \quad \text { if } \quad \sqrt{\lambda}|x-y|>1 \tag{6.19}
\end{equation*}
$$

where d_{α} is given by (1.6).
Consider now the case $\sqrt{\lambda}|x-y|<1$. Then analogously to (6.15) we get

$$
J_{1}=\int_{0}^{\infty} \int e^{i \lambda\left(1-\sigma^{2}\right) t} g(t, \sigma, \lambda) d t d \sigma+O\left(\lambda^{-\infty}\right)
$$

where

$$
\begin{gathered}
g(t, \sigma, \lambda)=\int_{w^{2}<1}\left(1-w^{2}\right)^{\alpha} e^{i \sqrt{\lambda}(x-y) w \sigma} d w g_{1}(t, \sigma) \\
g_{1}(t, \sigma) \in C_{0}^{\infty}(R \times(0, \infty)), \quad g_{1}(0,1)=\frac{1}{2 \pi^{2}}
\end{gathered}
$$

and the method of stationary phase gives

$$
\begin{equation*}
J_{1}=\frac{1}{2 \lambda \pi} \int_{w^{2}<1}\left(1-w^{2}\right)^{\alpha} e^{i \lambda(x-y) w \sigma} d w+O\left(\lambda^{-2}\right) \tag{6.20}
\end{equation*}
$$

By the same method of stationary phase we have

$$
\begin{equation*}
J_{2}(\lambda, x, y)=O\left(\lambda^{-1}\right) \tag{6.22}
\end{equation*}
$$

Thus (6.14), (6.19), (6.21) and (6.22) imply

$$
F_{\alpha}(\lambda, x, y)=d_{\alpha} \lambda^{1 / 2+\alpha}(\sqrt{\lambda}|x-y|)^{-1 / 2-\alpha} J_{\alpha+1 / 2}(\sqrt{\lambda}|x-y|)+R
$$

where

$$
|R| \leq \begin{cases}C(\sqrt{\lambda}|x-y|)^{-1 / 2-\alpha} \lambda^{\alpha-1 / 4} & \text { if } \sqrt{\lambda}|x-y|>1 \\ C \lambda^{\alpha-1 / 2} & \text { if } \sqrt{\lambda}|x-y|<1\end{cases}
$$

This and (6.13), (2.1) give (2.2). Theorem (1) is completely proved.
7. Proof of Theorem 4. Starting with (6.1) and using (6.2) we can write

$$
\begin{gather*}
E_{\alpha}(\lambda, x, y)=E_{1}(\lambda, x, y)+E_{2}(\lambda, x, y) \\
E_{i}(\lambda, x, y)=b \int e^{\lambda p} V(p, \sqrt{\lambda} x, \sqrt{\lambda} y) H_{\alpha}(\lambda, p) K_{i}(p) d p, \quad i=1,2 \tag{7.1}
\end{gather*}
$$

where for some $\gamma_{1}>0$,

$$
K_{i} \in C_{0}^{\infty}(S), \quad \operatorname{supp} K_{1}(p) \subset\left\{|\operatorname{Im} p|<\gamma_{1}\right\}, \quad K_{1}(p)=1 \quad \text { for } \quad|\operatorname{Im} p|<\gamma<\gamma_{1} .
$$ Further, analogously to the proof of Theorem 3,

$$
E_{1}(\lambda, x, y)=A_{\lambda}(x, y)+B_{\lambda}(x, y)
$$

where

$$
A_{\lambda}(x, y)=b \int e^{\lambda p} V(p, \sqrt{\lambda} x, \sqrt{\lambda} y) p^{-\alpha-1} K_{1}(p) d p
$$

and

$$
B_{\lambda}(x, y)=b \int e^{\lambda p} V(p, \sqrt{\lambda} x, \sqrt{\lambda} y) h_{\alpha}(\lambda, p) K_{1}(p) d p
$$

Now instead of (6.8) we shall use

$$
V(i t, \sqrt{\lambda} x, \sqrt{\lambda} y)=\lim _{\varepsilon_{2} \rightarrow 0}\left[G\left(t, \sqrt{\lambda} x, \sqrt{\lambda} y, \varepsilon_{2}\right)+C_{\delta} G\left(t, \sqrt{\lambda} x,-\sqrt{\lambda} y, \varepsilon_{2}\right)\right]
$$

where

$$
G\left(t, x, y, \varepsilon_{2}\right)=(4 \pi)^{-1 / 2} e^{-\frac{i\left(x^{2}+y^{2}\right)}{2} \sin t} \int e^{-i \xi^{2} \frac{\sin 2 t}{2}+i(x-y) \xi-\varepsilon_{2} \xi^{2}} a(i t, x, y) d \xi
$$

Since in the sense of distributions

$$
(i \sin 2 t+o)^{-\alpha-1}=\lim _{\varepsilon_{1} \rightarrow 0} C_{\alpha} \int e^{-\varepsilon_{1} \eta^{2}-i \eta^{2} \frac{\sin 2 t}{2}} \eta^{2 \alpha} d \eta, \quad \eta \in R^{2}
$$

we obtain, analogously to (6.13), (6.14),

$$
E_{1}(\lambda, x, y)=F_{1 \alpha}(\lambda, x, y)+C_{\delta} F_{1 \alpha}(\lambda, x,-y)+O\left(\lambda^{-\infty}\right)
$$

where

$$
\begin{gather*}
F_{1 \alpha}(\lambda, x, y)=\lambda^{\alpha+3 / 2} I_{1}(\lambda, x, y)+\lambda^{1 / 2} I_{2}(\lambda, x, y) \tag{7.2}\\
I_{1}(\lambda, x, y)=\int e^{i \lambda \psi(t, x, y, \eta, \xi)} q_{1}(t, \lambda, x, y) \eta^{2 \alpha} g_{1}(\xi, \eta) d t d \xi d \eta \\
I_{2}(\lambda, x, y)=\int e^{i \lambda \psi(t, x, y, 0, \xi)} q_{2}(t, \lambda, x, y) g_{1}(\xi) d t d \xi
\end{gather*}
$$

and

$$
\begin{gathered}
q_{1}(t, \lambda, x, y)=\left(\frac{\sin 2 t}{2 t}\right)^{-\alpha-1} a(i t, \lambda, x, y)(2 \pi)^{\alpha+1} \sqrt{\pi} K_{1}(i t) \\
q_{2}(t, \lambda, x, y)=h_{\alpha}(\lambda, t) a(i t, \lambda, x, y)(2 \pi)^{-3 / 2} 2^{-1 / 2} K_{1}(i t) \\
\psi(t, x, y, \eta, \xi)=t-\frac{\left(\eta^{2}+\xi^{2}\right)}{2} \sin 2 t+(x-y) \xi-\frac{\left(x^{2}+y^{2}\right)}{2} \sin t
\end{gathered}
$$

$g_{1}(\xi, \eta)$ and $g_{1}(\xi)$ are cutoff functions.
We can represent E_{2} as follows:

$$
E_{2}(\lambda, x, y)=F_{2 \alpha}(\lambda, x, y)+C_{\delta} F_{2 \alpha}(\lambda, x,-y)
$$

where

$$
\begin{gather*}
F_{2 \alpha}(\lambda, x, y)=b \int e^{i \lambda \varphi} q(t, \lambda, x, y) d t \\
\varphi(t, y, x)=t+\frac{\left(x^{2}+y^{2}\right)}{2} \cot 2 t-\frac{x y}{\sin 2 t} \tag{7.3}
\end{gather*}
$$

$$
q(t, \lambda, x, y)=(i \sin 2 t)^{-1 / 2} H_{\alpha}(\lambda, i t) i b a(i t, \lambda x y) K_{2}(i t)
$$

Note that $t \rightarrow q \in C_{0}^{\infty}\left(0<|t|<\frac{\pi}{2}\right)$.
To find the uniform asymptotics of the integrals $I_{i}(i=1,2)$ in the domain $\left\{(x, y) \in R^{2}, \frac{A}{\sqrt{\lambda}}<x<1-\varepsilon, 0<\frac{c}{\sqrt{\lambda}} \leq y<\frac{d}{\sqrt{\lambda}}\right\}$ we shall apply the method of the stationary phase.

Asymptotics of $\boldsymbol{I}_{\boldsymbol{1}}$. Analogously to (6.20) we have

$$
I_{1}=(\lambda|x-y|)^{-1 / 2-\alpha} \int_{0}^{\infty} \int e^{i \lambda \psi_{0}} \sigma^{3 / 2+\alpha} J_{1 / 2+\alpha}(\lambda|x-y| \sigma) q(t, \sigma) d t d \sigma+O\left(\lambda^{-\infty}\right)
$$

where

$$
\psi_{0}=t-\frac{\sigma^{2}}{2} \sin 2 t-\frac{\left(x^{2}+y^{2}\right)}{2} \tan t, \quad q \in C_{0}^{\infty}(R \times(0, \infty))
$$

Let $s=\lambda|x-y| \sigma$. The asymptotics of $J_{1 / 2+\alpha}(s)$ gives

$$
\begin{equation*}
J_{1 / 2+\alpha}(s)=\sum_{k=0}^{2} s^{-1 / 2-k}\left(C_{k} e^{i s}=\bar{C}_{k} e^{-i s}\right)+O\left(s^{-7 / 2}\right) \tag{7.4}
\end{equation*}
$$

Since $|x-y| \geq c|x|>c \lambda^{-1 / 2}$, then (7.2) and (7.4) imply

$$
\begin{equation*}
I_{1}(\lambda|x-y|)^{-1-\alpha} \sum_{k=0}^{2}(\lambda|x-y|)^{-k} M_{k}+x^{-1-\alpha} O\left(\lambda^{-5 / 2-\alpha}\right) \tag{7.5}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{k}=\int_{0}^{\infty} \int e^{i \lambda \psi} \sigma^{1+\alpha-k} q_{k}(t, \sigma) d t d \sigma, \quad q_{k} \in C_{0}^{\infty}(R \times(0, \infty)) \tag{7.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi=t-\frac{\sigma^{2}}{2} \sin 2 t-\frac{\left(x^{2}+y^{2}\right)}{2} \tan t \pm|x-y| \sigma \tag{7.7}
\end{equation*}
$$

The critical points $\left(t_{i}, \sigma_{i}\right)$ of ψ satisfy

$$
\begin{equation*}
\operatorname{det} \psi^{\prime \prime}= \pm 4 d, \quad d=\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)} \tag{7.8}
\end{equation*}
$$

(7.9) $\quad \cos 2 t_{i}=x y+(-1)^{i+1} d \quad(i=1,2), \quad t_{3}=-t_{1}, \quad t_{4}=-t_{2}, \quad \sigma_{i} \sin 2 t_{i}= \pm|x-y|$ and these critical points are nondegenerate for $x<1-\varepsilon, y<1-\varepsilon$.

Thus the method of the stationary phase gives

$$
\begin{gather*}
M_{0}=\lambda^{-1} \sum_{i=1}^{4} e^{\lambda \psi_{i}} C_{i}(\lambda, x, y)+O\left(\lambda^{-2}\right), \quad\left|C_{i}(\lambda, x, y)\right| \leq C \tag{7.10}\\
M_{k}=O\left(\lambda^{-1}\right), \quad k=1,2
\end{gather*}
$$

Then (7.5) and (7.10) imply

$$
\begin{equation*}
I_{1}=\lambda^{-2-\alpha} \sum_{i=1}^{4} e^{i \lambda \psi_{i}} \tilde{b}_{1 i}(\lambda, x, y)+x^{-1-\alpha} O\left(\lambda^{-5 / 2-\alpha}\right) \tag{7.12}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{b}_{1 i}(\lambda, x, y)=|x-y|^{-1-\alpha} C_{i}(\lambda, x, y) \tag{7.13}
\end{equation*}
$$

Asymptotics of $\boldsymbol{I}_{\mathbf{2}}$. The critical points of the phase function $\psi(t, x, y, 0, \xi)$ satisfy (7.9), where $\xi_{i} \sin 2 t_{i}=x-y$. Therefore the stationary phase method gives

$$
\begin{equation*}
I_{2}=\lambda^{-1} \sum_{i=1}^{4} e^{i \lambda \psi_{i}} \tilde{b}_{2 i}(\lambda, x, y)+O\left(\lambda^{-2}\right) \tag{7.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{i}(x, y)=\psi\left(t_{i}, x, y, 0, \xi_{i}\right) \tag{7.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tilde{b}_{2 i}\right| \leq C, \quad\left|\partial_{x} \tilde{b}_{2 i}\right| \leq C \tag{7.16}
\end{equation*}
$$

Now (7.2), (7.12) and (7.14) show that

$$
\begin{equation*}
F_{1 \alpha}(\lambda, x, y)=\lambda^{-1 / 2} \sum_{i=1}^{4} e^{i \lambda \psi} b_{1 i}(\lambda, x, y)+x^{-1-\alpha} O\left(\lambda^{-1}\right) \tag{7.17}
\end{equation*}
$$

where ψ_{i} satisfy (7.11), (7.15) and $b_{1 i}$ according to (7.13), (7.16) satisfy (2.5). To find the asymptotics of $F_{2 \alpha}$, we first notice that the critical points t_{i} of the phase function $\varphi(t, x, y)$ given by (7.3) satisfy (7.9) and $\varphi^{\prime \prime}(t, x, y)=(-1)^{i+1} 4 d\left(\sin 2 t_{i}\right)^{-1}, 1 \leq i \leq 4$. Thus the critical points are nondegenerate and

$$
\begin{align*}
& F_{2 \alpha}(\lambda, x, y)=\lambda^{-1 / 2} \sum_{i=1}^{4} e^{i \lambda \psi} b_{2 i}(\lambda, x, y)+O\left(\lambda^{-3 / 2}\right) \tag{7.18}\\
& \left|b_{2 i}\right|+\left|\partial_{x} b_{2 i}\right| \leq C, \quad \psi_{i}(x, y)=\varphi\left(t_{i}, x, y\right)
\end{align*}
$$

Evidently (7.17) and (7.18) give (2.4).
8. Proof of Theorem 5. Starting with (6.4) and (2.1) we get formula (2.3), where

$$
\begin{gathered}
F_{\alpha}(\lambda, x, y)=\int_{S_{1}} e^{\lambda \varphi} q(p, \lambda) d p \\
\varphi(p)=p-2^{-1}\left(x^{2}+y^{2}\right) \operatorname{coth} p+\frac{x y}{\sinh 2 p}
\end{gathered}
$$

$q(p, \lambda)=b(\sinh 2 p)^{-1 / 2} H_{\alpha}(\lambda, p) e^{2 p(\delta-1)} f\left(\frac{i \lambda x y}{\sinh 2 p}\right), S_{1}=\left(\varepsilon_{1}-i \frac{\pi}{4}, \varepsilon_{1}+i \frac{\pi}{4}\right), \varepsilon_{1}>0$.

Now we can apply the same method as in [3], which gives the asymptotics (2.7).

REFERENCES

[1] M. Fedorjuk. Method perevala. Moscow, 1977, (in Russian).
[2] L. Hörmander. The analysis of linear partial differential operators I. SpringerVerlag, 1983.
[3] G. E. Karadzhov. Equiconvergence theorems for Laguerre series. Banach center publ., 27 (1992), 207-220.
[4] G. E. Karadzhov. Riesz summability of Hermite series. C. R. Acad. Bulgare Sci., (to appear).
[5] G. E. Karadzhov. Riesz summability of multiple Hermite series. C. R. Acad. Sci. Paris Sér. I, 317 (1993), 1023-1028.
[6] E. M. Stein, G. Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press, 1971.
[7] G. Szegö. Orthogonal polynomials. Amer. Math. Soc. Colloq Publ., 23, 1959.
[8] S. Thangavelu. Lectures on Hermite and Laguerre expansions. Math. Notes 42, Princeton Univ. Press, 1993.
[9] S. Thangavelu. Summability of Laguerre expansions. Anal. Math., 16, (1990), 303-315.
[10] G. Watson. A treatise on the theory of Bessel functions. Cambridge University Press, 1966.

Institute of Mathematics

Bulgarian Academy of Sciences
Acad. G. Bonchev Str., bl. 8
Received September 1, 1994
1113 Sofia, Bulgaria

