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ABSTRACT. Here we prove results about Riesz summability of classical La-

guerre series, locally uniformly or on the Lebesgue set of the function f such

that (fooo(l + 2)™P| f(z)[Pdz) 1 oo, for some p and m satisfying 1 < p < oo,
—00 < m < 00.

1. Introduction and statement of the main results.

Consider the La-
guerre series in the form

F)~ Y B, fe= [ f@®wdy 52—,
k=0 0

and the corresponding partial sum

Ef) = [ ez, y) f(2)dz,

where

e\ z,y) =Y B(z)P)(y),
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1991 Mathematics Subject Classification: 42C10
Key words: Riesz summability, Laguerre series



2 El-Sayed El-Sayed Abd El-Aal El-Adad

and

T(k+1) 1Y% _

are the eigenvalues and orthonormalized eigenfuctions of the operator

2

d 1
A=—— 4224+ (62— )z 24+2-25 in L?*0,00).
dx? 4

k
Here Lg(a:) = (k) etz <%) (e*xazkw) are the Laguerre polynomials and e(\, z, y)
is called the spectral function of A.

The Laguerre series are investigated in the classical Szegd book [7], where suf-
ficient conditions are given on the behaviour of the function f at infinity so that the
following equiconvergence result holds:

y+e
Exf(y) - / O\ z,y)f(@)dr — 0, 0<e<y,
Yy

—€

locally uniformly on (0,00). Here e’(\, z,y) is the spectral function of the main part
d2

dx?’
These conditions are significantly improved in [3], where the method of the

spectral function is applied. To enlarge further the classes of functions we can consider
the Riesz summability method. For other results see, for example [4], [5], [9] and the
bibliography in [8].

Let

B ) =30 (1-55) Al m<

be the Riesz means of order o. Then
(L1) B () = [ 176\ ap)f (@),

where
A 0\
fae(&aay):/ (1_X) de(p, z,y)
0

is the Riesz kernel of order «.

The main results proved in this paper are concerned with:
a) Equisummability locally uniformly for the functions f from the space LP,
with a norm

1oy = ( [Ta +w)mp|f(x)lpdar) F o l<p<o
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b) Summability on the Lebesgue set of the functions from the space LP, for
1<p<oo,m>—mo(a,p) if p#4/3 and m > —mg(a,4/3) if p=4/3.
Here

1 1
(1.2) mo(e, p) = 2a + min <—,1——> , a>0.
p

1
Note that in [9] a related result is proved for a > 6 and for the case m = 0.

¢) Summability locally uniformly for the functions f with the properties: f(x)
and f'(z) are O(2%) as © — oo for 3 < 2a+ 1. The case a = 0 is considered in [3].

The author expresses his gratefulness to Prof. G. E. Karadzhov, who initiated
this work and served as a supervisor during its completion.

We start with theorems about equisummability locally uniformly, which means
that as A — oo

y+e
ESf(y) - / F@) (A 2, y)dz — 0,

—E&

(1.3) RS f(y) 4

uniformly with respect to y € [c,d] for any compact interval [c,d] C (0,00), where
e € (0,c).

Theorem 1 (equisummability locally uniformly). If « > 0 then the conver-
gence (1.3) is fulfilled in the following cases:

4
() € Db 1<p<oo,p# s if m=—mofa,p)

4
(b) fe L3 if m>—mg (oz, §>
(¢) feLyif m>—mpy(a,o00)
(d) feCp if m>—mp(a,0).
Here C,, is the subspace of LY consisting of all continuous functions f such
that ™ f(x) — 0 as ¢ — oo and f(x) — 0 as z — 0.

Theorem 2. Let f € L},.[0,00) and the derivative f'(x) exists for x > As. If
f(z) and f'(x) are O(zP), x — oo for B < 2a+1, a > 0, then the convergence (1.3) is
true.

Corollary 1 (equisummability on the Lebesgue set). Under the conditions of
Theorems 1 or 2 we have

(1.4 ) - [ @0 m i 0,

y—e
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where y € (0,00) is on the Lebesgue set of the function f and 0 < e <y. Here

1 sin V\(z — y)

0
A S
Chay) =~ pr—"
and
(1.5) 19O\, 2, y) = A2E, (VA z —y)),
where
(1.6) Fo(s) = das 2 1 jaia(s),  do =2°(2m) 30(a + 1).

Corollary 2 (summability on the Lebesgue set). Under the conditions of
Theorem 1 or 2 , ES f(y) — f(y) on the Lebesque set of the function f.

Corollary 3 (summability in L} ). Under the conditions of Theorem 1 or 2,

loc

ESf — fin L], 1<q< oo ifin addition f € L, (0,00).

loc loc

Corollary 4 (summability locally uniformly). Under the conditions of Theo-
rem 1 or 2, ES f(y) — f(y) locally uniformly if in addition f is continuous.

Corollary 5 (localization principle). Let y > 0, € > 0 be fized. Then under
the conditions of Theorem 1 or 2, EXf — 0 if f(x) =0 for |v —y| <e.

2. Asymptotics of Riesz kernels. In proving the main results, stated in §
1, we shall apply the method of the spectral function as in [3] and especially [4], where
this method was used to find the uniform asymptotics of the Riesz kernels of order «
in the case of Hermite series.

First we state the uniform asymptotics of the Riesz kernels (1.1) which we need.
It is convenient to consider also the functions

(2.1) ea(\,2,y) = A2T% (N, 2, y), Eal\,z,9) = ea(X, VAz, VAY).

For our purposes it is sufficient to consider only the cases: 0 < a < =z < 00, 0 <
¢ <y <d< oo Itis convenient to split the interval [a,c0) into the intervals [a,b],

[A, (1= )VA] [(1 =)V, (1 +e)VAL [(1+€) VA, 00).

Theorem 3. Let0<a<z<band0<c<y<d. Then,

(2.2) [I%e(\, z,y) — (Io‘eo()\,x,y) + Cg[o‘eo(/\,a:, —-y))| <C(1+ \/X\J: — y\)fo‘fl,
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where o > 0, I%€Y(\, z,y) is given by (1.5) and Cs is a constant.

Here and later on, C is a positive constant, not depending on A, z, y.

A d
Theorem 4. Let — <z <1-—¢, —§ —. Then for A>d, e >0 we
‘ VA NS RVsY
have the uniform asymptotics
(2.3) Eo(A\z,y) = Foa(M 2,y) + CsFo (A 2, —y),
where
4 .
(2.4) Fahz,y) = X723 bp(M )™ + 2717027
k=1
and
(2.5) bp| < Cx™17% |Oby| < Cx™27
(2.6) [Outpl* =1 —a®, |07l < C(1— )7
Theorem 5. If 1—e <z <1+c¢, <y < —, then there exists a positive
\/7 \/_

number € > 0 such that the uniform asymptotics (2.3) is satisfied, where

[e.o]

(2.7) Fa\,y) = Y (a2, ) A2 4 bi(A 2, ) A7)
k=0

and
arg = (ape™ + b AINB), by, = (e + dpe ) AL (A B).

The functions A — ag, by, di, ci. or their derivatives with respect to x are bounded. Here
Ai(s) = %/ei(sﬂ't?’/g) is the Airy function, A = A(x,y), B = B(x,y) are smooth,
ReA =0 and B(x,y) ~ C(y)(x® — 1) as 22 — 1, c(y) > 0.

Analogously to Theorem 6 [3] we have

Theorem 6. Letx > 1+ ¢ for some e > 0. Then

|Ea(\ z,9)| < C(z® — 1) VAN Y2 exp(—Ce(2® — 1)Y2X), C > 0.
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As a consequence of Theorems 5 and 6 it follows

Corollary 6. If 22> X+ A3 ¢ >0 then

9 1/2
1%\, z,y)| < CA™* Y3 exp (—C)\l/?’ <% - 1) ) .

From Theorem 5 and the asymptotics of the Airy function it follows

d
Corollary 7. Ifl—e; <22 <1—X"2/3% >0 and - < —, then
yTogtee NoNRVoY

we have the uniform asymptotics (2.3), where

4
Fa(hz,y) =223 (ak(l — )V 41— x2)1/4) eME 4 (1 -2 towY),
k=1

the functions A\ — ag(\, x,y),bp(\, x,y) or their derivatives over x are bounded, and

Yy satisfy (2.6).
3. Proof of Theorem 1. First, according to [7], we have |e(\, z,y)| < c if
0<zy<ec |r—y|>e>0, and consequently
%N\, z,y)| <c i O<zy<ec |z—y|>e>0.
Since

R = ([ / )@ sy

“+e

we can write

(3.1) [BRXf(y)l < ¢

A
| 1 @lae + |K<A,y>|] ,
where ¢ < y < d and for some large A > 0,
(32) KOy = [ @)z, y)da.
A

Now let K;(A\,y) = [a;i(\x)f(z)[Y(\, x,y)dz, where a;(A,x) is the characteristic
function of the set A; and

Aj={zcRy, A2<22<(1—-e))\}, Ap={zc Ry, (1-e)d<a?<)—\/3},

Az ={x € Ry, |2% — \| < \/3}, Ay={x € Ry, N+ N3 < 2?2 < XA+ \/3+e}
As ={z € Ry, 22 > A+ \I/3+e}
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The estimates below are uniform with respect to y € [c, d] and the number A is
large enough, say A > d + 1.

a) Estimate of K;(\,y). Using Theorem 4 we have
[I%(\, 2,9)] < CA™2z717% 2z e A,
Hence by the Holder inequality,

Kl < e [l i@l ds

< A fllmp I (V)
where .

VA A T

J(\) = (/ o~ (I+atm)p da) , = +-=1

1 p p
Therefore
(3.3) KA y)l < ellflimp i m > =2 =1/p, 1 <p <oo
(3.4) IKi(Ay)| < A fllmoo  if m>—2a, @ >0 for some vy > 0.

b) Estimate of K3(),y). Using Theorem 5 and the estimates |Ai(s)| < ¢|s|~1/4,
| A7’ (s)] < e(1 + |s])M/*, we have

—1/4
a —a—1/2 a? g
1% (N, z,y)| < cA 1—— , € As.

A
Therefore
[ Ko (A, )| < eA™ @22 £l T (V)
where
1
_ 5y ' -r'/44 v
J(A) =2 (/)\2/30 O') )

hence
(3.5) [ Ko\ y)| < A2 £, p £ 4/3

(3.6) [ (N, )] < eX™(mHmo)/2(10g V4| £l 0, p = 4/3.
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Here my is given by (1.2).

c) Estimate of K3(\,y). According to Theorem 5 we have

1%\, z,y)| < AT7V3) 2 e As.

Hence
50 y)l < AT B f g d (V)
where )
/ ’ _m_ 1
J(A) = (/ ag(\, x)x”™P da:) YTz,
Therefore
(3.7) (A )| < XTImO |
d) Estimate of K4(\,y). Theorem 6 implies
2 -1
1%\, z,y)| < eA™71/2 <% - 1) , e Ay
Hence )
(K )] <A™ 7272 [ fllmpd (M),
where
A—2/3+e , ﬁ
J(\) = < / o P /4da> .
A—2/3
Therefore
—(m-rmy 4
(3.8) K4 y)| < A2 £l 1< p < 3
—(m+m, 4
(3.9) [Ka( )] < A0 2 Qog )| f s 2= 5
4
(3.10) K4\ y)| < eA™mFmo)/2=v g if p > 5 for some 7 > 0.

f) Estimate of K5(\,y). Corollary 6 gives

1%\, z,y)] < AT Vexp(—eX/?), if € As, x <A



Equisummability Theorems for Laguerre Series 9
[I%e(\, z,y)| < ex—em1/3 exp(—cvz), if x>\ ¢>0.
Hence we obtain
(3.11) |K5(A\,y)] <A77 fllmyp for some v > 0.
Thus the estimates (3.3)—(3.11) give
(3.12) BSF )] < el fllmgs i m > —mo, 1< p< oo, p#4/3

Sf(y) — 0 if m>—mp(a,p) and p=4/3 or p=oc.

On the other hand it is not hard to see that
(3.13) Sf — 0 uniformly on [c,d] if f € C§°(0,00).

Finally, if f € L?,, 1 < p < oo or f € (), then we can find g € C§° such that
lf = gllmp < e. Then (3.12) implies |RS f| < ce + |R$g|, whence (3.13) gives R{f — 0
locally uniformly.

4. Proof of Theorem 2. We start with (3.1) and (3.2), where 1 < i < 4,
a;(A, x) is the characteristic function of the set B; and By = Aj,

By={a : (1-e)\<a?<A=AT*}, By={o : 22—\ <A}, Bi=4;
Now, let B;(\,y) = K;(A\,V\y), i = 1,2. Then
Bi(),y) = Al/2-0 /0 a0 V@) f(VAT) Ea (A, 2, y)de.
a) Estimate of K(\,y). Using Theorem 4 we can write
Bi(Ay) = I(Ay) + CsI (X, —y),
where
(4.1) I(\y) = A1/2_a/a1()\, VL) f(VAZ)Fa(\, 2, y)da

and F, (A, z,y) is given by (2.4). It is enough to find the asymptotics of I(\,y). We
have by (2.4),

4 o0
(42) IOy =273 /0 a1(\, VAZ)bR(, 2, )™ f(VAz)de + RiIO(AY?)
k=1
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where, using f(z) = O(z”), z — oo,

(4.3) Ry = / a1 (V)| f (V) [z~ e < NP2 I(N),
! ATB2e2 g <o
J()\):/ 12m71*a+ﬁda:§c log A, B=a .
A=Y 1, 0>«

Then integrating by parts and using (2.5), (2.6), we get for § < 2a + 1,
II(\,y)| < CA—"V2HB/2 1(x) + oA~1/2,
If B <2a+ 1, we see that |I(A\,y)| <A77 for some v > 0, hence
I(\,y) — 0 locally uniformly
or

(4.4) Ki1(A,y) — 0 locally uniformly.

b) Estimate of K2(\,y). We shall use Corollary 7. Then analogously to (4.1),
(4.2) and (4.3) we see that it suffices to estimate

(4.5) B(\,y) = )\_O‘/ag()\, Vaz)a(\, z,y)(1—22) "V (VAz)eN de+ OAV2 )R,y
where a(\, z,y) = ax(\, z,y) and
(4.6) Ry = /ag()\, VOIF(VAz)|(1 = 22) " tde < eXP/?log A.

Let
I(\) = /az()\, Va2, y)(1 — 22) VA (Vz)eM di.

Integrating by parts and using (2.6) we get
T < X7 [ a0 VA0 (N2 (Al (1 - o)
[F(VAD)|(1 = 22) 7T/ da 4 CAY2.
Since 1 — 22 > A~2/3%9 we obtain for 8> 0, € > 0,

(4.7) [I(\)| < CATV24872,
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Thus (4.5), (4.6) and (4.7) imply
B\, y)| < CA™O7V/2H0/2 L ox=a= 12482109 X\ < CA77 for some ~ > 0
since # < 2a + 1. In other words,
(4.8) |K2(A,y)] < CA™7 — 0 locally uniformly.
c¢) Estimate of K3(A,y). Theorem 5 gives
o
Ks(y) < OA 2 [ ag(3, )| f(2)

0

Hence

—_

(4.9) |K3(\,y)| < CA™0F0271/24 0 if 0<e<a— g + 5

Finally it is easy to prove (see 3.11) that

(4.10) K4(\,y) — 0 locally uniformly.

Thus (3.1) and the estimates (4.4), (4.8), (4.9), (4.10) give

A
|RSf(y)| < C/ |f(x)|dz + o(1), locally uniformly.
0

Now the proof finishes analogously to the proof of Theorem 1. O

5. Proof of Corollaries 1-4.
Proof of Corollary 1. Let y € (0,00) is on the Lebesgue set of the function
fand 0 < ¢ <y. Comparing (1.3), (1.4) we have only to prove

y+e
(5.1) 1000 = [ @l ,) - %0, 2, y)lde — 0.
y—e
Let f(z) = f(z)x(x) and let x(x) be the characteristic function of the set
(y — e,y +¢). According to theorem 3,
(52) |\ a,y) - 00 2,9)] < O + Hy(WXz — g, a >0,

0<y—ec<az<y+e where Hy(s) = (1 +5)7* ! s > 0. Since a > 0, then
H,(s) € L'(R), hence Theorem 1.25 [6] gives

[ F@VAHL (VX = yl)de = F(o).
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(5.3) /yw F(@) Ha(V N — y|)da — 0.

Evidently (5.1) follows from (5.2), (5.3). O

Proof of Corollary 2. According to Corollary 1 we have to prove

y+e

1) = [ @0y — 1)

where y is on the Lebesgue set of the function f and 0 < ¢ < y. Using (1.5) and 1,
F.(s) € LY(R) for a > 0, we see that Theorem 1.25 [6] implies

1) = [ @A E e — gz — fly) = f). O

Proof of Corollary 3. First we have according to Theorem 1 or 2 R f — 0

: q
in Lloc

(0,00). Thus according to (1.3) it is sufficient to prove

y+e
(5.4) IO\ y) = /y F@) e\ z,y)dz — f(y) if L9[c,d],

—€

0<c<d, 0<e<ec Let f(x) = f(z)x(z), where x is the characteristic function of
(¢ —e,c¢+¢). Hence we can write

(5.5) INy) = Ji(\y) — Jo(Ny) for c<y<d,

where

J1(\y) = /OOO f(x)[ae()\,x,y)dx,

Jo(\,y) = /M f@) I\ z,y)de, M={z : |z—y|>e}n(c—e,d+e).

According to Theorem 3 we have |[%e(A, z,y)| < CN2 if ¢ < y<d, x € M. Since
a > 0 it follows

(5.6) Ja(A,y) — 0 uniformly in ¢ <y <d.

On the other hand, Theorem 1.25 [6] gives

/f(l‘)\/XHa(\/X‘l‘ —y))de — f(y) in L7 if 1<q< oo, H, € LY(R).
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Therefore using (5.2) and o > 0, we get
0o o0 -
| F@ie e — [~ 170, 5) (@) — 0
0 —00

in L9(c,d), 1 < q < 0.
The same Theorem 1.25 [6] and (1.5), (1.6) imply

[F@r @0z g - fy) n 19 1< <0
Therefore,
(5.7) Ji(Ay) = fly) in L9c,d).

Thus (5.4) follows from (5.5)-(5.7). O

Proof of Corollary 4. Let f € C(0,00) and 0 < ¢ < y < d. Find a
function g € Cy(R) such that g(y) = f(y) for ¢ < y < d. Further we can proceed as
in the proof of Corollary 3. Thus we have again (5.4)—(5.7) but now the convergence is
uniform for y € [¢,d]. O

6. Proof of Theorem 3. We shall use the formula

(6.1) ea(\ z,y) = T(a+ 1)(27i) 1 /SeApV(p,J:,y)Ha()\,p)X(p)dp,
where S = (z-: — ig,s + zg), e>0,a>0,x(p) € C§°(S) and s — H,(s,p) is defined
by
+oo
(6.2) Ho(s,p) = Y e 2(p+ikn/2)"7!, peS, a>0.

k=—o00
For proving (6.1) we notice that
ca(A,2,y) = A %(A, 2, y) = A xde(X, z,y)

and that the Laplace transform of A} is I'(a + 1)p~®~!. Thus
o0
| e Pealhap)dh = Do+ Dy W (pa.y)
0

where

o0
V(pya:,y)Z/O e "de(\,x,y), Rep > 0.
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Since
Vip,z,y) = Y e M PoR(2)dp(y), pn =4k +4
we have
(63) V(p+ikGay) = Vo).
Further the inverse Laplace transform gives
£4100
ea(X z,y) =b ep= W (p,x,y)dp, b=T(a+1)(2mi)"
£—100

or using (6.2), (6.3) we get for a > 0,

(6.4) ea( N 2,y) = b i eV (p, z,y)Ha(s,p)dp,
1

i K
where S1 = (E - zZ,E +ZZ)'

Noticing that p — g(p) = eV (p,z,y)Ha(\,p) is zg - periodic function it is
not hard to see that (6.4) implies (6.1) for some x € C§°(S), x = 1 near € + 0.
Now, we can write

(65) 601(/\71373/) = A)\(J:7y) + B)\(x,y),

where

Ax(z,y) = b /S PV (p, 2, y)p" x(p)dp,

By(,y) = b /S PV (p, 2, y)ha (X p)x (p)dp

and the function hy(A,p) has no singularities on S. Further let the function f(x) €
C§°(0,00) and consider the formula

|7 cathas@is =5 [ @m0 NG ([T Vs @) dp
0
We want to take limit as € — 0. To this end we write
[ee] .
IO y) = / Ax(z, ) f()de = b / NV (it ) (it + 0)~ Lix(£)dt,
0

where x(t) € C§° (—g,g), x(t) = 1, |t| < v for some v > 0 and V(it,y) =

/ V(it,z,y) f(x)dx is a smooth function. Since in the sense of distributions
0

((it—l—O)*o‘*l,go = lim Cl// —en’—ity? o(t)n**dtdn, n € R?,

e1—0
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where

©(t) = ibe™V (it,y)x(t) and C) = we get

(o +1)

I(\,y) = lim z'bCl/ei)‘tV(it,y)e_i"2t_51"2x(t)dtd77.

g1—0

To represent V (it,y) we shall use the generating function 1.1 46 [10]:

5 - ($2+y2) coth2p s iy
V(p,a,y) = (wy)/?e ) (sinh 2p) 1e |2 o ().
sinh 2p

Using the formula (1), p. 74, (6), p. 75 and 3, 4, p. 168 from [10] we can write

(6.6) To(2) = VA (=) + O F() i >

where

1 1
1/2\2 1 © o s1 AN 1
— | — - u 1— — _
2<7r) F((5—|—1/2)/0 o 2( 2,2) du, 0> =3
1
1/2\2
_<_)2’ 5:_1
2\ 7 2

is a holomorphic function for Re z # 0. Here Cj = ¢Fis(
Note also the property for f(¢,u) = f(1/usin 2t),

f(z) =

5+3).

(6.7) OF f(t,u)| < C) uniformly in u € (0,c¢).
Therefore
) .
(6.8) Vpa,y) = (sinh2p) 122 oM (erulsinh g p gy
+Cpe S 20 (p, —ay))
where Cs = 6_%(54'%)0;' and a(p,x,y) = ePO-1) ¢ ( 'my )
sinh 2p
: 1 zy (z —y)?
N —— (2% +5*)coth 2 = — 0 =0
ow, since 2(:6 +y~)coth 2p + Snh 2p ” +s(p,x,y), s(0,2,9)

. o v
and s has no singularities as |Imp| < 5 we get

V(pa Zz, y) =
= (sinh2p) /2 (e~ p(p, 2, y) + Coe™ @ APp(p, 2, —y))
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where b(p, z,y) = e*P*¥a(p, 2y), b(0,2,y) = (2m)~1/2,
Now using the equality
OV 2 df S N—1/2 _i(z—y)2
lim e—zf t+i(z—y)§—e28* S (47‘('Zt) e w1 75 0
e9—0 2T 5(1; — y)’ t =

we obtain in D'(Ry)

V(ita T,y = limO[G(t? z,Y, 52) + C(SG(t’ z, =Y, 52)])
go—
where
: —1/2 o
Gltnye) = (5 ) @n) Pblitay) [ e g
Hence
where
JAy) = lim e SN g ()
£9—
x lim / f(x) ( / e‘if?t“(‘”—y)f—a?f?dg) dadtdn
e2—0 Jo
and 2
) sin 2t\ ~ _ 1 .
g1(t,n,2,y) = b(it, z,y) ( m ) (27) 1/22—7T2x(2t)n2a-

o .

Since f(z) € C§°(0,00) and h(§) = / f(z)e™ dzx is rapidly decreasing, the integral
0

hey(t) = / e it~ b ()¢ is absolutely convergent, and |k, (t)] < / |h(€)|dE.

Hence the Lebesgue theorem gives

J()\ﬂy) = lim G(A7y751752)7
e1—0
g2—0

where

G\ y,e1,e0) = /O [ / NI i i —y)E— P e o (¢ o Vdededn]| f(x)de
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or
J(hy) = A*+32 / Mg, m)gn (b1, x, y)dtddn| f(x)dat
otim [ Ly f)ds,
e1—0 0
e9—0
where

Le,(\z,y) = /\‘”3/2/6“1"515291(t,n,x,y)(1 — g(&,m))dtdédn,
0<a<z<b0<c<y<d, suppf C la,b],
Yerey = (L= =t + X7V (@ —y)€ —e1n® —ean®, ¥ =g

and g(&,n) is a cutoff function .
In the last integral we can integrate by parts. Namely, since |0;t),-,| > C (€2 +
n?) for €2 +n? > C4, then

[Leres (A, y)] < AZNHOTS/2 / 10 g1 (8,0, 2, 9)|(€ +1°) ™™ (1 — g(&,m))dtdedn.
Using (6.7) we get [0]¥ g1(t,n,z,y)| < Cy. Hence,
[ eie,( Nz y)| < CONA N2 4 <o <b, 0<c<y<d.

Finally we see that

(6.10) T y) = AT (A y) + O ),
where

(6.11) By = [ €N1g(€m)g1 (6, y)dedecn
and

(6.12) Y1t Emr,y) = (1= =)t + A7z —y)e.

The second term in (6.5), By(z,y), can by treated analogously. Thus (6.5), (6.10) give
the basic formula

1
(613) ea()\,x,y) = Fa(A7$7y) + C5Fa(A7$7 _y) + O()‘_Oo)u (5 Z _57

O<a<z<b 0O0<c<y<d
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where
(614') Fa(A7 xZ, y) = )‘a+3/2<]1()‘7 y) + )‘1/2J2()‘7 y)7

J1(A\,y) is given by (6.11), while Jo(A\,y) = /ei)‘wg(f)gg(t,x,y)dtdg and 1 is the
function (6.12), while ¥ (¢, &, z,y) = ¥1(¢,£,0,z,y).

Asymptotics of Jy, Js. Since in polar coordinates (£,71) = o(w, ), w € R*,
o >0, w?+0% =1, (w=cosy, f; = sinpcos i, O = singsinp;, 0 < ¢ < T,
0<yr < 27T),

I = / ei\/x(xiy)wUQZOld(’w, 9) — 27‘(’/ ei)\(xfy)wa(l - w2)adw’
w2+462=1 w2<1

then
(6.15) I = Co(VAlz = ylo) 27T joy 0 (VA = ylo),

Co = (2m)%/22°T (o + 1).
Therefore

oo .
BNz =gy /20 [T [ eaaigntas2y (VN = ylo)a(t,o)drdo,

(6.16) q(0,1) = (2m) 732221 (a + 1).

For 0 =~ 0 we can integrate by parts with respect to ¢, and hence we can suppose
q(t,0) € C°(R x (0,00)). If VAl —y| > 1 we use the formula (6.6). Thus we get

Jas12(VAlz = ylo) = (VAlz —ylo) ™1/ x

(6.17) } j
x [ AV = ylo) + (VA — o)
where
059(VAe —ylo) < C if VAlz—y[>1, 0<Ci<o<Ch
Hence

I = (Ve = )72 + Ko + O(A )]
Ky = )™ [ Mgt 00, y)dedo,

v =(1— 02)15 — |z — y|/\*1/20, o = (1 — JZ)t + |z — y|/\,1/20’
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05| < Cp if VANz—y|>1, (t,o)— ¢ e CC(R x (0,00)).

To find the asymptotics of the integrals K; we apply the stationary phase
method [1].

1/2

1
The critical points o = 1, t4 = :|:§\:L‘ — y|A7/“ are nondegenerate and the

Taylor formula gives.
(6.18) g(t+,1) = g(0,1) + |z — y|OA/?)
Therefore

Ky = (Vi —yl) 2[5 SVl Rl — ylha(ee. 1) + O )

Ko = (Ve =) /2 |2 SeVRe g/ Ra = yl)g(e-. 1) + O]

or according to (6.16), (6.18)

(0:19) i = (VAo = y) 75 |,y (VR — g+ 00| it VAlz g > 1,

where d,, is given by (1.6).
Consider now the case v/ A|z — y| < 1. Then analogously to (6.15) we get

Jp = / / M=) gt o N)dtdo + O(A™),
0

where

ot.oN) = [ (1= ue N g, 1,0,
w

g1t ) € C2(R x (0,00)), g1(0,1) = QL

2
T
and the method of stationary phase gives

1

/2 (1 - w2)a€i)\(zfy)wadw + O(AiZ),
w=<1

(6:21)  Ji(VX & —y)) " oA Tagrp(VAIZ — ) + ON?) if VA z—y[ < 1.
By the same method of stationary phase we have

(6.22) T\ z,y) = O 1),
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Thus (6.14), (6.19), (6.21) and (6.22) imply
Fa(\2,y) = do N2 (VA = y)) 72 g1 0 (VN = y|) + R,

where

C(Vale —y) 20V i Ve —y| > 1
IR <

oxe1/2 it VXz—y| <.
This and (6.13), (2.1) give (2.2). Theorem (1) is completely proved.

7. Proof of Theorem 4. Starting with (6.1) and using (6.2) we can write

Ea()‘axuy) = El()‘axay) + EQ()‘axay)y

(7.1) Ei(\x,y) = b/e)‘pV(p, Vaz, V) Ha (N ) Ki(p)dp, i = 1,2,
where for some ~y; > 0,
K; € Cg°(S), supp Ki(p) C {[Imp| <m}, Ki(p)=1 for [Imp|<y<m.
Further, analogously to the proof of Theorem 3,
Ev(Az,y) = Ax(z,y) + Ba(z,y),

where

Ax(z,y) = b/eApV(zx vz, Vy)p~* K1 (p)dp

and
By(z,y) = b/e)‘pV(p, VAz, VAy)ha (N, p) K1 (p)dp.

Now instead of (6.8) we shall use

V(it, Vz, \/Xy) = lim [G(t, Vz, \/Xy,é?g) + C5G(t, Vz, —\/Xy,é?g)}

eo—0

where
i(z?+y?) c28in2t | s 2
Glt,2,y.22) = (4m)~/2em 2ot [ IR =0 = (it 0,y

Since in the sense of distributions

2 _ ;. 28in2¢
(isin2t +0)"* ' = lim C, [ e ST =Y "2 p%dn, ne R

e1—0
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we obtain, analogously to (6.13), (6.14),

El()\’xay) = Fla()\axvy) + C(SFla()"xa _y) + O()‘_Oo)v

where
(7.2) Fia(\@,y) = X*PPL (A 2,y) + AL 2,y),
L\ ,y) = / MR8 gy (X, 2, y)n** g1 (&, m)dtdédn,
B\ ay) = [ @O0t 3 o y)gr(€)dds
and

. 2 —a—1
Gt 2, y) = (Slgt t> a(it, A, 7, ) (27)°H LR (it),
Gt A\, 2, y) = ha (N, )a(it, A, z,y)(2m) =227 V2 Ky (it),
2 2 2 2
ol aym 8 =t = T gnar 4 @ - ype— T gy

g91(&,m) and g1 () are cutoff functions.
We can represent Fo as follows:

EQ()\,J),@/) = FQO&()\vxvy) + C(SFQQ()‘?J;? _y)>

where
FQa()\v z, y) =b / ei)\LpQ(t) )\7 z, y)dt7
(= +9%) ry
. t =t+-——=cot2t —
and

q(t, N, @,y) = (isin 20) Y2 H, (N, it)iba(it, Axy) Ko (it).

Note that t — ¢ € C§° (O< |t] < g)

21

To find the uniform asymptotics of the integrals I; (¢ = 1,2) in the domain
A d
{(x,y) € R?, 7 <r<l-—eg 0< i/\ <y< —} we shall apply the method of the

2 VA

stationary phase.

Asymptotics of I;. Analogously to (6.20) we have

oo .
I= (e =) ™2 7 [ otz (e = ylo)a(t.0)dtdo + O(A),
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where

2 2 2
@bozt—%sin%—w

Let s = M|z — y|o. The asymptotics of J; /544(s) gives

tant, ¢ € C3°(R x (0,00)).

2
(7.4) Jijz4a(s) = sTV2R(Cpe® = Cre ™) + 0(s77/?).
k=0

Since |z — y| > c|z| > eA~Y/2, then (7.2) and (7.4) imply

(7.5) LNz —yl)~ i(m —y|) "My, + 2T TrO(N T,
k=0

where

(7.6) My = /0 - / (N gtk (1 Vdtde, qp € C°(R x (0, 00))

and

(7.7) Y=t— %QSin 2t — Mtamt + |z — ylo.

The critical points (¢;,0;) of ¢ satisfy

(7.8) dete)” = +4d, d= /(1 —a?)(1 - 1?)

(7.9) cos2t; = xy+ (—1)"d (i=1,2), ty=—t1, ty=—ts, oysin2t; = +|z —y|

and these critical points are nondegenerate for zt <1 —¢, y <1 —e.
Thus the method of the stationary phase gives

“1N" Mo }
(7.10) Ze Ci(\ ) + 00 ), G\ z,9)| < C,

Mk - O()\il)> k= 1)27

(7'11) Qf)z(l‘,y) = w(tbai) = @(ti,w,y).

Then (7.5) and (7.10) imply

4
(712) Il - )\72701 Z ei)\wi Eli()\v x, y) + 1:71,040()\—5/2701)’
i=1
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(713) [;li()\vxvy) = ‘J} - y‘_l_aci()"xay)'

Asymptotics of I,. The critical points of the phase function (¢, z,y,0,&)
satisfy (7.9), where ;sin 2t; = x — y. Therefore the stationary phase method gives

4
(7.14) L=X"1)"eMiby(N z,y) + O(A2),
i=1
where
and
(7.16) boi| < O, |0,bas] < C.

Now (7.2), (7.12) and (7.14) show that

4
(7.17) Fia(\z,y) = X237 b\ 2, y) + 27 70N,
i=1
where 1; satisfy (7.11), (7.15) and by; according to (7.13), (7.16) satisfy (2.5). To find
the asymptotics of Fa,, we first notice that the critical points t; of the phase function
o(t,z,y) given by (7.3) satisfy (7.9) and " (t,z,y) = (—1)"'4d(sin2t;)71, 1 <i < 4.
Thus the critical points are nondegenerate and

4
Fao(N,z,y) = A7/ Z eMby (N, x,y) + O(A/?),
=1
|bQi‘ + |0sboi| < C; iz, y) = o(ti, x,y).

Evidently (7.17) and (7.18) give (2.4).

(7.18)

8. Proof of Theorem 5. Starting with (6.4) and (2.1) we get formula (2.3),

where
Fo(h3,y) = /S X°q(p, \)dp,
1
— 5 — 9142 & 2\ coth 1y
o(p)=p (z* + y~)cot p+sinh2p,

_ _ ALY T T
= sind 29) P HL O )00 () (o T i) e s
Q(p, )‘) b(SID p) a()\vp)e f sinh 2p ) Sl €1 14751 +'L4 , €1 >
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Now we can apply the same method as in [3], which gives the asymptotics (2.7).
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