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Abstract. It is shown that the dual unit ball BX∗ of a Banach space X∗

in its weak star topology is a uniform Eberlein compact if and only if X

admits a uniformly Gâteaux smooth norm and X is a subspace of a weakly
compactly generated space. The bidual unit ball BX∗∗ of a Banach space
X∗∗ in its weak star topology is a uniform Eberlein compact if and only if
X admits a weakly uniformly rotund norm. In this case X admits a locally
uniformly rotund and Fréchet differentiable norm. An Eberlein compact
K is a uniform Eberlein compact if and only if C(K) admits a uniformly
Gâteaux differentiable norm.

A compact space K is called a uniform Eberlein compact if K is home-

omorphic to a weakly compact set in a Hilbert space endowed with its weak

topology. If the Hilbert space in this definition is replaced with c0(Γ) for some Γ,

then we speak of an Eberlein compact. The notion of a uniform Eberlein compact
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was introduced by Y. Benyamini and T. Starbird in [4] and further studied by

S. Argyros, Y. Benyamini, V. Farmaki, M.E. Rudin, M. Wage and others (see

e.g. [2], [3]). The aim of this note is to study the relationship of the existence

of uniformly Gâteaux smooth norms on Banach spaces and the uniform Eberlein

property of their dual balls in their weak star topology.

The notation used in this note is standard. In particular, the unit ball

of a Banach space X is denoted by BX i.e. BX = {x ∈ X; ‖x‖ ≤ 1} and the

unit sphere of X is SX = {x ∈ X; ‖x‖ = 1}. The dual unit ball of X∗ is

BX∗ = {x∗ ∈ X∗; sup
x∈BX

x∗(x) ≤ 1} and the dual unit sphere of X∗ is SX∗ = {x∗ ∈

X∗; sup
x∈BX

x∗(x) = 1}.

Recall that a Banach space X is weakly compactly generated if there is

a weakly compact set K ⊂ X such that X is the closed linear span of K. A

norm ‖ · ‖ on a Banach space X is called weakly uniformly rotund if xn − yn → 0

weakly, whenever {xn} and {yn} are sequences in the unit ball BX of X and

‖xn + yn‖ → 2. The norm ‖ · ‖ is called locally uniformly rotund if xn → x

in norm whenever x, xn ∈ BX and ‖x + xn‖ → 2. The norm ‖ · ‖ is uniformly

Gâteaux smooth or uniformly Gâteaux differentiable if for every h ∈ SX and every

ǫ > 0 there is δ > 0 such that

1

τ
(‖x + τh‖ + ‖x − τh‖ − 2) < ǫ

whenever 0 < τ < δ and x ∈ SX .

All notions used and not explained in this note can be found e.g. in [5],

[6], [7] or [10].

The main result in this note is the following theorem.

Theorem 1. Let X be a Banach space. Then the dual unit ball BX∗

of X∗ in its weak star topology is a uniform Eberlein compact if and only if X

is a subspace of a weakly compactly generated Banach space and X admits an

equivalent uniformly Gâteaux differentiable norm.

If X is itself a dual space, the requirement on X to be a subspace of a

weakly compactly generated space in Theorem 1 can be dropped. Namely, we

obtain the following result.
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Theorem 2. Let X be a Banach space that is isomorphic to a dual

space. Then X admits an equivalent uniformly Gâteaux differentiable norm if

and only if the dual unit ball BX∗ of X∗ endowed with its weak star topology is a

uniform Eberlein compact.

From Theorem 2 we obtain the following corollary.

Corollary 3. A Banach space X admits an equivalent weakly uniformly

rotund norm if and only if the bidual unit ball BX∗∗ of X∗∗ in its weak star

topology is a uniform Eberlein compact. Every Banach space with weakly uni-

formly rotund norm admits an equivalent norm that is locally uniformly rotund

and Fréchet differentiable.

For spaces of continuous functions we have the following theorem.

Theorem 4. Let K be an Eberlein compact. Then K is a uniform

Eberlein compact if and only if C(K) admits an equivalent uniformly Gâteaux

differentiable norm.

The proofs of these results depend on the following three lemmas.

The first one is a variant of the result of S. Troyanski in [19].

Let (X, ‖·‖) be a Banach space. For x, y ∈ X we write x ⊥ y if ‖y+tx‖ ≥

‖y‖ for all t ∈ R.

Lemma 5. Let ‖ · ‖ be a uniformly Gâteaux smooth norm on a Banach

space X. Then for every ǫ > 0 there are sets Sǫ
i ⊂ SX , i ∈ N, such that

∞
⋃

i=1
Sǫ

i = SX and

‖x1 + . . . + xi‖ < ǫi

whenever x1, . . . , xi ∈ Sǫ
i and xj+1 ⊥ sp{x1, . . . , xj}, j = 1, . . . , i − 1.

P r o o f. Let ǫ > 0 and i ∈ N. If ǫi ≤ 2, put Sǫ
i = ∅. Otherwise let Sǫ

i

be the set of all x ∈ SX such that for every y ∈ SX , with x ⊥ y, and every

τ ∈

(

0,
2

ǫi − 2

)

,

1

τ
(‖y + τx‖ − 1) <

ǫ

2
.
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The uniform Gâteaux smoothness and the orthogonality guarantee that SX =
∞
⋃

i=1
Sǫ

i .

To see this, note that for x, y ∈ SX , x ⊥ y, (‖y + τx‖ − 1) ≤ (‖y + τx‖ − 1 +

‖y − τx‖ − 1) and use the definition of uniform Gâteaux differentiability of ‖ · ‖

as stated above.

Let ǫ > 0 and i ∈ N be such that ǫi > 2 and choose x1, . . . , xi ∈ Sǫ
i as in

Lemma 5. Put vj = x1 + . . . + xj , j = 1, . . . , i. We shall show by induction that

‖vj‖ <
ǫ

2
(i + j), j = 1, . . . , i.

Clearly, this is true for j = 1. Assume it holds for j < i.

If ‖vj‖ >
ǫi

2
− 1, then ‖vj‖

−1 <
2

ǫi − 2
and thus

‖vj+1‖ = ‖vj + xj+1‖ = ‖vj‖

∥

∥

∥

∥

vj

‖vj‖
+

1

‖vj‖
xj+1

∥

∥

∥

∥

< ‖vj‖

(

1 +
ǫ

2

1

‖vj‖

)

<
ǫ

2
(i + j) +

ǫ

2
=

ǫ

2
(i + j + 1).

If ‖vj‖ ≤
ǫi

2
− 1, then

‖vj+1‖ = ‖vj + xj+1‖ ≤
ǫi

2
− 1 + 1 =

ǫi

2
<

ǫ

2
(i + j + 1).

In particular, for j = i we have ‖vi‖ <
ǫ

2
(i + i) = ǫi. �

The next lemma is a result of Y. Benyamini, M. Rudin and M. Wage in

[3].

Lemma 6 [3]. A compact space K is a uniform Eberlein compact if

and only if it admits a family U of open Fσ sets such that

(i) U separates the points of K, i.e., whenever x, y ∈ K are distinct, then

card({x, y} ∩ U) = 1 for some U ∈ U , and

(ii) There exist κ : N → N and a decomposition U =
∞
⋃

n=1
Un such that for

every x ∈ K and every n ∈ N

ord(x,Un) := card{U ∈ Un : U ∋ x} ≤ κ(n).
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Let (X, ‖·‖) be a nonseparable Banach space and let µ be the first ordinal

of cardinality equal to the density character of X (i.e, the smallest cardinality of

a dense subset in X). A projectional resolution of the identity (P.R.I. in short)

on (X, ‖ · ‖) is a family {Pγ : 0 ≤ γ ≤ µ} of linear projections on X such that

P0 ≡ 0, Pµ is the identity mapping, and for all 0 < γ ≤ µ the following hold

(i) ‖Pγ‖ = 1,

(ii) dens PγX ≤ max(ℵ0, cardγ),

(iii) Pγ(Pβ) = Pβ(Pγ) = Pβ if 0 ≤ β ≤ γ,

(iv)
⋃

β<γ

Pβ+1X is norm dense in PγX.

Lemma 7. Let a Banach space X be a subspace of a weakly compactly

generated Banach space. Assume that the norm ‖ · ‖ of X is uniformly Gâteaux

differentiable. Then the dual unit ball BX∗ of X∗ endowed with the weak∗ topology

is a uniform Eberlein compact.

P r o o f. Let In = (an, bn), n ∈ N, be an enumeration of all open intervals,

with rational endpoints, belonging either to (0, 2) or to (−2, 0). We will prove

the following statement:

For every n, i ∈ N there exist sets ∆n
i ⊂ SX such that, if

Un
i = {Un

x : x ∈ ∆n
i },

where

Un
x = {x∗ ∈ BX∗ : 〈x∗, x〉 ∈ In},

then the family
∞
⋃

n,i=1
Un

i separates the points of BX∗ and for every x∗ ∈ BX∗ and

every n, i ∈ N, we have

ord(x∗,Un
i ) ≤ i.

Note that each set Un
x is open and Fσ in (BX∗ , w∗). Thus the above implies, by

Lemma 6, that (BX∗ , w∗) is a uniform Eberlein compact.

Assume first that X is separable. Let {xi : i ∈ N} be dense in the unit

sphere SX of X. Then it is enough to put ∆n
i = {xi}, n, i ∈ N.
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Now let an uncountable cardinal ℵ be given and assume that our state-

ment was already proved for every space whose density character is less than ℵ.

Let the space X have the density character equal to ℵ. Let {Pγ : γ ∈ [0, µ)}

be a P.R.I. on X with respect to the norm ‖ · ‖ ([11], see e.g. [5] or [7]). For

γ ∈ [0, µ), denote by Qγ = Pγ+1 − Pγ . Then every subspace QγX satisfies the

assumptions of our lemma and moreover the density character of Qγ(X) is less

than ℵ. Hence, by the induction assumption, for every n, i ∈ N there exists a set
γ∆n

i ⊂ SQγX such that, when denoting by

γUn
i = {γUn

y : y ∈ γ∆n
i },

where
γUn

y = {y∗ ∈ B(QγX)∗ : 〈y∗, y〉 ∈ In},

the family
∞
⋃

n,i=1

γUn
i separates the points of the unit ball B(QγX)∗ and for every

y∗ ∈ B(QγX)∗ and every n, i ∈ N

ord(y∗, γUn
i ) ≤ i.

For ǫ > 0 let Sǫ
l , l ∈ N, be the sets from Lemma 5. For n ∈ N define

ǫn =

{

an if In = (an, bn) ⊂ (0, 2)

−bn if In = (an, bn) ⊂ (−2, 0).

For γ ∈ [0, µ) and for n, i, l ∈ N put

γUn
i,l = {Un

x : x ∈ γ∆n
i ∩ Sǫn

l },

where

Un
x = {x∗ ∈ BX∗ : 〈x∗, x〉 ∈ In}.

Put also

Un
i,l =

⋃

γ∈[0,µ)

γUn
i,l, ∆n

i,l =
⋃

γ∈[0,µ)

γ∆n
i ∩ Sǫn

l , n, i, l ∈ N.

We claim that the family
⋃

{Un
i,l : n, i, l ∈ N} separates the points of BX∗ . To see

this, take distinct x∗
1, x∗

2 ∈ BX∗ . We find γ ∈ [0, µ) so that x∗
1 |QγX 6= x∗

2 |QγX ; this

is possible since
⋃

γ<µ
QγX is linearly dense in X. By the induction assumption,
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there exist n, i ∈ N and U ∈ γUn
i such that card({x∗

1 |QγX , x∗
2 |QγX} ∩ U) = 1.

We know that U = {y∗ ∈ B(QγX)∗ : 〈y∗, y〉 ∈ In}, with some y ∈ γ∆n
i . Then

〈x∗
j , y〉 = 〈x∗

j |QγX , y〉, j = 1, 2, and so card({x∗
1, x

∗
2} ∩ Un

y ) = 1. Now it remains

to observe that Un
y ∈ γUn

i,l ⊂ Un
i,l for some l ∈ N, since

∞
⋃

l=1
Sǫn

l = SX .

We will now show that (ii) in Lemma 6 is satisfied. To this end fix any

x∗ ∈ BX∗ and any n, i, l ∈ N. For every γ ∈ [0, µ) we have

ord(x∗,γ Un
i,l) = #{Un

x : x ∈ γ∆n
i ∩ Sǫn

l , Un
x ∋ x∗}

≤ #{Un
x : x ∈ γ∆n

i , 〈x∗, x〉 ∈ In}

= #{γ
Un

x : x ∈ γ∆n
i , 〈x∗

|QγX , x〉 ∈ In}

= #{U ∈ γUn
i : U ∋ x∗

|QγX}

= ord(x∗
|QγX , γUn

i ) ≤ i.

Assume that there are γ1 < · · · < γl < µ such that ord(x∗, γjUn
i,l) > 0. For

j = 1, . . . , l we find xj ∈
γj ∆n

i ∩Sǫn

l so that x∗ ∈ Un
xj

. If ǫn = an, then 〈x∗, xj〉 > ǫn

and so

‖x1 + · · · + xl‖ ≥ 〈x∗, x1 + · · · + xl〉 > lǫn.

If ǫn = −bn, we have 〈−x∗, xj〉 > ǫn and so

‖x1 + · · · + xl‖ ≥ 〈−x∗, x1 + · · · + xl〉 > lǫn.

Note that xj+1 ⊥ sp{x1, . . . , xj}, j = 0, . . . ℓ− 1. Indeed, if α1, . . . αj , t ∈ R, then

‖α1x1 + · · · + αjxj + txj+1‖ ≥ ‖Pγj
(α1x1 + · · · + αjxj + txj+1)‖ = ‖Pγj

(α1x1 +

· · · + αjxj)‖ = ‖α1x1 + · · · + αjxj‖.

Since, moreover, xj ∈ Sǫn

l , j = 1, . . . , ℓ, from Lemma 5 we have

‖x1 + · · · + xl‖ < lǫn,

a contradiction. Therefore

ord(x∗,Un
i,l) < il

for every x∗ ∈ BX∗ .
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By enumerating the set N × N by elements of N we get from the families

Un
i,l, ∆n

i,l, i, l ∈ N, new families Un
i , ∆n

i , i ∈ N, such that
∞
⋃

n,i=1
Un

i separates the

points of BX∗ and

ord(x∗,Un
i ) ≤ κ(i)

for every x∗ ∈ BX∗ , where κ : N → N. Finally, by adding some empty families

and by repeating some of the families Un
i , if necessary, we can arrange things

such that

ord(x∗,Un
i ) ≤ i

for all x∗ ∈ BX∗ and all n, i ∈ N. Now it suffices to enumerate the system

Un
i , n, i ∈ N, by positive integers and to apply Lemma 6. �

P r o o f o f T h e o r em 1. Let X be a Banach space that admits an

equivalent uniformly Gâteaux differentiable norm and is a subspace of a weakly

compactly generated Banach space. Then the dual unit ball BX∗ of X∗ in its

weak star topology is a uniform Eberlein compact by Lemma 7. On the other

hand, assume that the dual unit ball BX∗ of a Banach space X in its weak star

topology is a uniform Eberlein compact. Then a Hilbert space can be mapped

linearly and continuously onto a dense subset of C(BX∗) by [3, Theorem 3.2] (see

e.g [10]). Thus C(BX∗) admits an equivalent uniformly Gâteaux differentiable

norm by [5, Theorem II.6.8(ii)]. As X is isometric to a subspace of C(BX∗), we

obtain that X admits an equivalent uniformly Gâteaux differentiable norm. Since

BX∗ in its weak star topology is Eberlein compact (use the canonical map of a

Hilbert space ℓ2(Γ) into c0(Γ)), the space C(BX∗) is weakly compactly generated

by a result of D. Amir and J. Lindenstrauss (see e.g. [5], [7] or [10]). As X is

isometric to C(BX∗), X is a subspace of a weakly compactly generated Banach

space. The proof of Theorem 1 is finished. �

P r o o f o f T h e o r em 4. Let K be an Eberlein compact such that C(K)

admits an equivalent uniformly Gâteaux differentiable norm. As K is an Eberlein

compact, C(K) is weakly compactly generated by the result of D. Amir and J.

Lindenstrauss (see e.g. [5], [7] or [10]). Thus B(C(K))∗ in its weak star topology

is a uniform Eberlein compact by Theorem 1. Since K is homeomorphic to a

subspace of B(C(K))∗ in its weak star topology, we have that K is a uniform

Eberlein compact. On the other hand, if K is a uniform Eberlein compact, then
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there is a continuous linear map of a Hilbert space onto a dense subset of C(K)

by [3, Theorem 3.2] (see e.g. [10]). Thus C(K) admits an equivalent uniformly

Gâteaux differentiable norm by [5, Theorem II.6.8 (ii)]. �

P r o o f o f T h e o r e m 2. Assume that X admits an equivalent uniformly

Gâteaux differentiable norm and that X is isomorphic to a Banach space Y ∗.

If X is separable, then BX∗ in its weak star topology is easily seen to be a

uniform Eberlein compact as there is a one-to-one bounded linear weak star-

weak continuous map of X∗ into ℓ2(N) (see e.g. [10, Chapter 3, Ex. 24]). So,

assume that X is not separable. The space Y ∗ admits an equivalent uniformly

Gâteaux differentiable norm ‖ · ‖. By Šmulyan’s duality lemma (see e.g. [5,

Chapter II]), the dual norm ‖ · ‖∗ of ‖ · ‖ on Y ∗∗ is weakly star uniformly rotund

(i.e. fn − gn → 0 in the weak star topology whenever fn and gn are norm one

elements of Y ∗∗ such that ‖fn + gn‖
∗ → 2). Thus the restriction of ‖ · ‖∗ to

Y is weakly uniformly rotund. The dual norm of this restricted norm ‖ · ‖∗ is

uniformly Gâteaux differentiable on Y ∗ by Šmuljan’s duality lemma (see e.g. [5]

or [10]). Since Y is weakly uniformly rotund, Y is an Asplund space (i.e. each

separable subspace of Y has separable dual) by [12]. By [8] and [15], Y ∗ has

P.R.I. such that (Pγ+1 − Pγ)Y ∗ are isometric to duals of Asplund spaces, so the

induction argument can be used to finish the proof that BY ∗∗ in its weak star

topology is a uniform Eberlein compact along the lines of the proof of Lemma 7.

Since X is isomophic to Y ∗, BX∗ in its weak star topology is a uniform Eberlein

compact as well. On the other hand, if BX∗ is a uniform Eberlein compact, then

X admits an equivalent uniformly Gâteaux differentiable norm and is a subspace

of a weakly compactly generated Banach space as shown in the proof of Theorem

1. �

P r o o f o f C o r o l l a r y 3. If X has an equivalent weakly uniformly

rotund norm ‖ · ‖, then the dual norm of ‖ · ‖ on X∗ is uniformly Gâteaux

differentiable by Šmulyan’s duality lemma (see e.g. [5]). Then the bidual unit ball

of X∗∗ is a uniform Eberlein compact in its weak star topology by Theorem 2.

If, on the other hand, the bidual unit ball BX∗∗ is a uniform Eberlein compact in

its weak star topology, then X∗ is a subspace of a weakly compactly generated

Banach space and admits an equivalent uniformly Gâteaux differentiable norm

by Theorem 1. Thus X admits an equivalent weakly uniformly rotund norm (see

the proof of Theorem 2). If X∗ is a subspace of a weakly compactly generated
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space, then X admits an equivalent norm that is locally uniformly rotund and

Fréchet differentiable (see e.g. [5, Chapter VII]). �

Remarks. H. P. Rosenthal constructed in [17] a probability measure

µ such that the space L1(µ) (which is weakly compactly generated and admits

an equivalent uniformly Gâteaux differentiable norm by [5, Theorem II.6.8 (ii)])

contains a subspace XR with unconditional basis that is not weakly compactly

generated. Thus XR is an example of a Banach space with unconditional basis

and uniformly Gâteaux differentiable norm that is not weakly compactly gener-

ated. We do not know of any Banach space with uniformly Gâteaux differentiable

norm that is not a subspace of a weakly compactly generated space. From the

results in [18] and [19] it follows that the space T constructed in [11] is an exam-

ple of a nonseparable Banach space that admits an equivalent weakly uniformly

rotund norm and yet it does not admit any bounded linear one to one operator

into any Hilbert space. Finally, let us mention a related problem whether an

Asplund space admits an equivalent locally uniformly rotund norm if it admits

an equivalent weakly locally uniformly rotund norm (for definitions see e.g. [5]).
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