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ABSTRACT. Oscillation criteria are given for the second order sublinear
non-autonomous differential equation.

(r(t)y ()2’ ()" + q(t)g(x(t)) = ¢(1).

These criteria extends and improves earlier oscillation criteria of Kamenev,
Kura, Philos and Wong. Oscillation criteria are also given for second order
sublinear damped non-autonomous differential equations.

1. Introduction. In this paper we consider the second order nonlinear
non-autonomous differential equation

d

(£1) (rg(@)2’ (1) + a()g(=(t) = 6(t), (=), t = to

or, more generally, of the form
(E2) (r(t)¢(@)a' (1)) + p(t)2'(t) + a(t)9(z) = (1),

where g,v € C(R) with zg(z) > 0, ¢’(xz) > 0 for all  # 0, and 1(x) > 0 for all
x € R. 1 /g satisfies the sublinear condition
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€ (u)
(Cl) /;I:O mdu < oo, t2>tp.

p,q,7, ¢ € Clto,00) with r(t) > 0 for all ¢ € [tg, 00).

Throughout this paper, we restrict our attention only to continuable so-
lutions of equation (E) (or (E2)), i.e., those exist and can be continued on some
interval of the form [ty, 00), where ¢y > 0 may depend on the particular solution.
Such a solution is called oscillatory if the set {t : z(¢) = 0} is unbounded. Equa-
tion (E7) ((E2)) is said to be oscillatory if all its solutions are oscillatory. The
oscillation problem for second order nonlinear differential equations is of partic-
ular interest and, therefore, it is the subject of investigation by many authors.
Many physical systems are modelled by second order nonlinear ordinary differ-
ential equations. The prototype of equation (E7) is the so-called Emden-Fowler
equation

(E3) 2" (t) + q(t)|z(t)|*sgnz(t) =0, a>0.

Equation (Ej3) arises in the study of gas dynamics and fluid mechanics. Also, this
equation appears in the study of relativistic mechanics, nuclear physics and in
the study of chemically reacting systems. The study of the Emden-Fowler equa-
tion originates from earlier theories concerning gaseous dynamics in astrophysics
around the turn of the century. For more details for this equation we refer to the
paper by Wong [10], and to the survey article by Sevelo [9] for a detailed account
of second order nonlinear oscillation and its physical motivation.

Oscillation criteria for equation (FE3) in the sublinear case, i.e., 0 < o < 1,
when ¢(t) is allowed to assume negative values for arbitrary large values of ¢, have
received more attention in recent years since the early work of Belohorec [1]. We
list here some of the more important oscillation criteria for (E3) for easy reference;
where o(t) in the following criteria, if any, stands for a non-negative increasing
concave function.

(I) /Ooo tPq(t)dt = oo, for some § € [0, ] (Belohorec [1])

(I1) hm sup — / / u)duds = oo, (Kamenev [4])
to Jto
(111) hm sup t_ (t —5)"q(s)ds = oo, for some n > 1 (Kamenev [5])
to

t rs
(Iv) hm sup — / uPq(u)duds = oo, for some 3 € [0, al, (Kura [6])
to Jto

t—o0
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(V) lim sup — m L — /t(t — 8)" o(s)q(s)ds = oo, n > 2, (Philos [8])

t—00
(VI) hm sup — / / u)duds = 0o, (Kwong and Wong [7])
to Jto
(VII) hm sup t_ (t —5)"0%(s)q(s)ds = oo, for some n > 1 (Chen [2] and
t
Wong . [11]) ’
Wong [12] showed recently an extension of Kamenev result (II) to a more
a(t)
general equation (F1), with r(t) = 1, ¢(z) = 1, and ¢(t) = 0 if g'(m)/ g—Z) >
0

1
— for x # 0 and,
c

(VIII) hm sup — / / u)duds =
to Jto
1 . . .
for A = T < 1, then equation (E7) is oscillatory.
c

Remarks.

1. We note that the requirement A < 1 is essential in the proof of Wong’s result
[12].

2. Kura criteria (IV) unifies and considerably improves the results of Belohorec (I)
and Kamenev (II). Also, condition (V) has the result of Kura (IV) as a particular
case, (VII) includes (V).

The purpose of this paper is to extend condition (VII) for a abroad class
of second order nonlinear equations of the type (E1) (and (F3)) (Theorems 1 and
2). Also, we present new oscillation criteria for (E7) and (E2) (Theorems 3 and
4).

2. Main results. We prove the following theorem for the case when
¢ =0in (Ey).

Theorem 1. Let n be an integer with n > 1 and p be a positive and
twice continuously differentiable function on the interval [tg, 00) with

(c2) pt) >0 and p'(t) <0 for all t € [ty,0).

Equation (E7) is oscillatory if (c1) holds, and

(c3) ()= :/((tt)) — 20N YW (t) >0 and '(t) <0 for all t € [ty,0),
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(cq) tlim suptin t(t - S)npASﬂilq)(S) ds =00, for Xel0,1].
—00 to

Proof. Assume, for the sake of contradiction, that there exists a nonoscil-
latory solution x for t > t¢, of (E7). Without loss of generality, we suppose that
x(t) > 0 for all t > ty. We define

x(t)
w(t) = p)‘(t)/ Mdu, t > to.
o g(u)
This and equation (Fj) imply

()2 (1) Px)g (x)2"(t) +2Apk‘1(t)¢(w)$’(t)]
g(z)

z(t) h(u
P00 + 0= D 200) [

t
< - - , for all t > .

Thus, we have for t > t,

! 2P (s)q(s) ! n Lt = s)"y(s)P(x(s))a’ (s)ds
/to(t—s) 7’!”(8) ds<—/t0(t—s) w (s)ds—/to @(9))
R R e  CL LT ORCT

But, by using the Bonnet theorem, for a fixed ¢ > ¢y and some £ € [to, t], we have

[ s e [ HD

0 g(x(s)) e
z(€) )(u
= —7(to)(t —to)" /gc(to) %du
z(to) U
= ’y(to)(t - tO)n /x(g) 15(—U))du

Since
0, it z(&) > x(to)

/a:(to) Kz)du < x(to) ¥(u) .
s o) [, S, it 2() < alto),
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and 7(tg) is positive for all ¢ > ¢y, we have

(= 5 (s a()2 (5) .
-/, 9((5)) @8 < fnff ~ )",

x(to)
where k1 = v(to) Ao %du.

Hence, for every t > ty, we derive

/tt(t—s)”-%ds < (t—to)™w! (o) + k1 (E—to)" —n(n—1) /tt(t—s)”_Qw(s)ds.

Since n > 1, the integral in the right hand side of the above inequality exists for
every t > tg and is nonnegative.
Therefore,

/t(t —s)"- %dzs < (t —to)"w (to) + K1 (t — to)™

Dividing by t" and then taking the upper limit, we get the desirable contradiction.
This completes the proof. 0O

Theorem 2.  Suppose that (c1), (c2) and (c3) hold. Furthermore, we
suppose that

(¢c5) p(t) >0 and <Z%;(t)> <0 forall te [tyg,00)
A S

(c) Jim sup 2 (6= 9" 5 als) = (5 )ds = .
to rs

forn>1and0<\X<1, 5= where ¢ = tiiltf x(t), for x >0, ¢ = sup z(t),
1]

1
g(c)’ >t
for x < 0. Then equation (FEs) is oscillatory.
Proof. Assume, that there exists a nonoscillatory solution x, for ¢ > tg

of (E2) and z(t) > 0 for ¢ > ty. Define w(t) as in Theorem 1, then

prMat)  BploM) _ ye(@)a’(t) _ p(t)p (D)2’ (1)

r(t) r(t) g(x) rt)g(z)

w"(t) < —
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hence for all ¢t > t; we have

JEDA L
| o) = Blute)as < = [ 0= s)u(s)ds-

to
s ) ) (= ) pl)o ) (s)
A 9(2(3)) i [

But, by the Bonnet theorem, for a fixed ¢ > ¢y and for some £ € [tg,t] we have

[P, _(m )p(to>>(t_t0)n L
t, t,

0
0 r(s)g(x(s)) r(to) o 9(x(s))

__(Paplto)) e [ du
- < r(to) >(t o) /x(a g(u)’

Since
/a:(to) du 0, if x(§) > x(to)
— < z(to) dqy ]
we) 9) /+ s oy O <)
p*(to)p(to)
and( r(to) )20f0r all ¢t > ty, we have
[ e PO
J =ty S e
where

p* (to)p(to) /Wo) du
kg = ————> — —_
r(to) +0  g(u)
The rest of the proof can be carried out as for Theorem 1. O

Remark. If ¢)(x) =1 or ¥(z) is bounded then a condition on the sign
of the damping coefficient can be removed.

Corollary. If condition (cg) in Theorem 2 is replaced by

L) -9

(c7) tliglo SUP to r(s) T
and

t A e\
(cs) Jim sup g [ I s < o0
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then equation (Es) is oscillatory.

Remark. This result improves our result in [3].

In the following result, no sign condition is assumed on p(t).

Theorem 3. Assume, in addition to (c1), (c2) and (c3) that

(c9) d(x) > % >0 forall x#0,

. [t p(s) P*(s)
(c10) tlggo to Ts) < (s) = 4kr(s)

- ﬂ|¢(8)|> ds = oo,

t s s 2 U
(c11) tllglo sup /to % /to % <q(u) — f?((u)) — ﬂ|q§(u)\> duds = oo.

Then equation (Es) is oscillatory.

Proof. Let x be a nonoscillatory solution on an interval [tg,c0) of the
differential equation (F5). Without loss of generality, we assume that z(t) > 0
for all ¢t > ty. We define w(t) for t > t( as follows

wit) = ptt) [ A,

g(u)
then
o pOR@ ) O )
(1) w'(p) = PEEEES ) [T L,
and

(Y (z)a’(t)) 1/1(95)9'(93)95'2@)1 L 2P (B)
9(z) 9*(x) g(x)

z(t) u
+ 0 %du.

This and equation(Es) imply
_p0a®) | Ble@®lp(t) _ v (2)a’(t) _ p(tp(H)2’ (1)
t

w(t) (0 "0 9(@) (9@

IN
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_ Pty (@)g (2)a"(t)
9*(z)
_ _r®a®)  BleMle(t) _ ye(@)a’(t)  pt)pi(H)
r(t) r(t) g(x) 4r2(t)(z)g ()

Hence, for all t > tg

P p(s (s ty(s)p(x(s))' (s)ds
)< ) [ 20 (a0 = 0L < ot ) s - [ AN

This and (1) imply that

AL ) 22 (a0 2L~ 1ot )
to o

g9(x) r(s) Akr(s)
_ [Fae)p(as)a(s)
o glx(s))
t p(s) p*(s)
< M- ) <(I(5) " W) ﬂ|¢(8)l> ds,

M = w'(tg) + k1, where k; is as in Theorem 1.
Condition (c19) implies for large values of ¢, that

" p(s) p?(s)
/to @ <q(8) o Akr(s) - m@b(s)‘) ds > 2M.

()9 ()2’ (t) < _%/t(j@ <q(s) — ﬁj;ig) —ﬁ\cb(S)\) ds

therefore, for all t > #g

O u O ),
I I .
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o 2 (= 2~ o) .
to

"2 Ji p(s) r(u)  dkr(u)
(1) 4h(u) -
Consequently / ﬂdu — —00 as t — —oo, contradicting the fact
0 glu
z(t)
/ M > 0, this completes the proof. O
0 g(u)

Theorem 4. If, in addition to (c1), we assume that

(c12) Y(x)g'(z) >0 for all x #0,

There exists a continuously differentiable function
p: [to,00) — (0,00) such that
(c13) (7) p(t) <0 forall te [ty,o0)

(44) p(t) >0 and (p'(t)r(t)) <0 forall t e [ty,00),

@) gms ([ @d) [ 2 [ tatw) = Blotlduds = o,

t—o0 o 7(8) o 7(8) Jro

where [ is as in Theorem 2, then equation (E1) is oscillatory.

Proof. Let x be a nonoscillatory solution, for ¢ > ¢y of equation (E),
and suppose that z(¢) > 0 for all ¢ > ¢t;. We define

w(t) = %Z))w/(t), for all ¢ > ty,
then / "
W)+ alt) = flo)] + " <
Therefore, for all ¢ > tg
MOUBE [ - sleteihds < i)
tr(s)w(x(s))g (z(s))z"(s
W ECIC VECIECC



252 E. M. Elabbasy

Multiplying by % and then integrating from ¢ to ¢
Lp(s)b(a(s)) Lols) [0  p(s)
/| ey s+ [ 25 | a(w) = Blo))duds < wito) | ooy
O ) ) ) Lols) [0
ptt) [ S~ [ ) [ S s+ [ 28 [ a(w) — () duds
 p(s) w0) ()
< w(tp) /to @ds + p(to)/o g—u)du.

Write, for convenience,
_ 0 v o [ v S
a(t) = /O Cdu, F(1) = /top(s) /O duds = /top(s)G(s)ds

hence we have

p(H)G )+ / / — Blé(w)|)duds
)
tp(s) $(to)M .,
<) [ ESydsotio) [ S

Now, we consider two cases:
Case 1. p/(t) <0, for all t > tg. Thus, p(t)G(t) — F(t) > 0, and then,
we have from (2)

L p(s) (1) 9(u)
@ds + p(to) /0 ﬁdu.

gl\u

/t o /S(q(“) — Bl¢(w)|)duds < w(to)
to

T(S) to to
t
Dividing by / @
to T(S)
Case 2. p/(t) > 0 and (p'(t)r(t)) < 0, for ¢ > 0. Thus, if p(t)G(t) —
F(t) > 0, then we have a contradiction as in Case 1.

Suppose, there exists T' > to such that p(¢t)G(t) — F(t) <0 for all t > T
Thus, we have G(t) is bounded above, say by A > 0. For, p(t)G(t) — F(t) <0

implies, p(t)F'(t) < p/(t)F(t), then (%)/ > 0, for all ¢ > T. Thus, % >
p(T)

F(T)’

ds and then taking the upper limit we get a contradiction.

t>T.
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Hence,
implies PRG(E) < F(t) < %, t>T
F(T)
0< G(t) < p(T) — A forall t>T.

This and (2) imply that

/t: " /t:(CI(U) — Blo(u)|)duds

S z(to) 1) (u
(3) <w(t0)/t: Mds—l—p(to)/o t %du—l—F(t)

)
t s I(to) U
§w(t0)/t p—)ds—l-p(to)/o %dquAp(t).

t
Now, since (p/(t)r(t)) < 0, tlim % does exist and is finite. For, if
—00
ds

to T(S)
tlim p(t) < oo, then the conclusion is true; on the other hand, if tlim p(t) = oo,
—00 —00
/
e i 20 T
e P =Ty
—=ds
to 7“(8)
L . tp(s) )
Therefore, dividing both sides of (3) by (—)ds and then taking the
to T(s

upper limit we have a contradiction. This completes the proof. O

Corollary. If condition (c14) in Theorem 4 is replaced by

tlirglo sup </t: %ds)l /t: % /t: q(u)duds = oo,

lim sup < t@d8>_l /tt ps) /ts lp(u)|duds < oo

t—00 to 7(8) o 7(8)
then the conclusion of Theorem 4 is true.

and
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