Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica
Mathematical Journal

Cepauka

MareMaTnuyeCcKo CIIMCAHUE

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on

Serdica Mathematical Journal
which is the new series of

Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica

or contact: Editorial Office

Serdica Mathematical Journal

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



Serdica Math. J. 23 (1997), 233-242 Serdica
Mathematical Journal

Institute of Mathematics
and Informatics, Bulgarian
Academy of Sciences

FUNCTIONALLY COUNTABLE SPACES AND BAIRE
FUNCTIONS

M. M. Choban

Communicated by S. P. Gul’ko

ABSTRACT. The concept of the distinguished sets is applied to the inves-
tigation of the functionally countable spaces. It is proved that every Baire
function on a functionally countable space has a countable image. This is a
positive answer to a question of R. Levy and W. D. Rice.

0. Introduction. The present work deals with the properties of distin-
guished subsets in Tychonov spaces and spaces of functions.

Section 1 presents the basic definitions and notions used in this paper. In
Section 2 we discuss the concept of a distinguished subset. Every Baire set is a
distinguished set. In Section 3 a factorization theorem for measurable mappings
into a separable metric space is proved. For Baire measurable mappings more
general results were obtained in [2]. Section 4 contains a positive answer to the
question posed by R. Levy and M. D. Rice [11]. The extensions of measurable
mappings are studied in Sections 5 and 6. Section 7 presents some results on
extensions of zero-sets.
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1. Preliminary results, definitions and notations. We consider
only Tychonov spaces. We shall use the notations and terminology from [4]. In
particular, 5X is the Stone-Cech compactification of the space X, clxH or ¢l H
denotes the closure of a set H in X, | X]| is the cardinality of X, N={1,2,3,...},
the symbol R will denote the topological field of real numbers.

Fix a space X. By C(X) we denote the space of all continuous real-
valued functions on X. Let Byp(X) = C(X) and inductively define the o Baire
class B, (X) for each ordinal a < € (© denotes the first uncountable ordinal) to
be the space of pointwise limits of sequences of functions in U{Bg(X) : B < a}.
For every function f: X — R we denote Z(f) = f~1(0) and CZ(f) = X \ Z(f).
We put Zo(X) = {Z(f) : f € Ba(X)} = {f'F : F is a closed subset of R},
CZy(X) ={CZ(f) : f € Ba(X)}, Za(X)NCZy(X) = Aa(X). The class
Za(X) (class CZ,(X)) is a multiplicative (additive) class « of Baire sets of the
space X. The sets A,(X) are called the sets of ambiguous Baire class .

Let PX be the set X with the topology generated by the Gs—sets in the
space X. The topology of the space PX is called the Baire topology of the space
X. For every a > 0 the classes Zy(X), CZ140(X), Ai1a(X) are open bases of
the space PX.

A space X is called a P-space if X = PX.

A space is realcompact if it is homeomorphic to a closed subspace of a
product of real lines. Denote by vX the Hewitt real-compactification of the space
X. From [4, Theorem 3.11.10] we have vX = N{U € CZy(pX) : X CU} =
MY C X : X CY and Y is a realcompact subspace} = BX \U{H € Zy(OR) :
XNH=0}

The discrete space of cardinality ¢ = 280 will be denoted by D(c). We
consider that D(c) = PR.

Lemma 1.1. Let X be a realcompact space. Then PX is homeomorphic
to a closed subspace of the Cartesian product D(C)C(X).

Proof. For every f € C(X) the mapping f : PX — PR = D(c) is
continuous. The mapping ¢ : X — R where ¢(z) = {f(z) : f € C(X)}
is an embedding and X = (X) is a closed subspace of REX). The mapping
¢ : PX — (PR)°X) = D(¢)°X) is an embedding. Hence PX = ¢(PX) is a

closed subspace of D(¢)¢X). O

Corollary 1.2. Let X be a realcompact space. Then PX is realcompact.

Lemma 1.3. Z,(X)={XNH : H € Z,(8(X)} and CZ,(X) =
={XNH : HeCZ,(BX)} for all « <Q and every space X.

Proof. Follows from equality Zo(X) ={X NH : He Zy(sX)}. O
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2. On distinguished subsets. A subset H of a space X is called dis-
tinguished if there exist a separable metric space Y and a continuous mapping
h: X — Y such that H = h='(h(H)).

By D(X) we denote the class of all distinguished subsets of a space X.

Let 2N be the family of all subsets of the set N. Fix a subset B C 2. For
every sequence {H, : n € N} of subsets of X we define

Up{Hn} = U{(N{Hy :n € &}) N (N{X \ Hy:n e N\ &}) 2 € € B,

Op{H,} =U{n{H, :ne}:&c B}

The operation U p is called a ts—operation with a base B and ®p is called
a ds—operation with a base B.

If BC2Vand A={¢ CN:pnC¢for somen € B}, then Vo{H,} =
O4{H,} = ®p{H,} for every sequence {H, : n € N} of subsets of X. Hence
every ds—operation is a ts—operation (see [6, 9, 8, 3]).

For every ts—operation ¥ and family L of subsets of a space X we put
V(L) ={Y{E,}:{E,:neN}C L}

Let U(X) = U (Zy(X)) for every space X.

Lemma 2.1. Yp(D(X)) C D(X).

Proof. Let {H, :n € N} C D(X). For every n € N fix a separable metric
space Y, and a continuous mapping f,, : X — Y, such that H, = f,1(f.(H,)).
Consider the continuous mapping f : X — Y = f(z) C [[{Y, : n € N}, where
f(@) = {fu(z) : n € N} for every * € X. By construction f~1(f(H,)) =
H, for every n € N. Hence f~(f(Vp{H,})) = Vp{H,} and f(Yp{H,}) =
\IJB{f(Hn)} O

Corollary 2.2. VUp(X)C D(X).

Corollary 2.3. D(X) is a o-algebra of open and closed subsets of the
space PX.

Corollary 2.4. Let {H, : n € N} C Up(X). Then there exist a
separable metric space Y and a continuous mapping h : X — 'Y such that h(H,) €
Up(Y) and H, = h='(h(H,)) for every n € N.

Corollary 2.5. Zo(X) C D(X) for every space X.

Theorem 2.6. Let X be a space and H € D(X). Then there ezists a
unique subset vH € D(vX) such that:
1. vHNX =H.
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If U is open in PvX and UNX = H, then U CvH.

If U is open and closed in PvX and UNX = H, then U = vH.
If BC 2N and H € V(X), then vH € Up(vX).

If H € Z,(X), then vH € Z,(vX).

Proof. Let f: X — Y be a continuous mapping onto a separable metric
space Y and f~!(f(H)) = H. There exists a continuous extension vf : vX — Y
of the mapping f on vX. Let vH = vf~1(vf(H)). By construction vHNX = H
and vH € D(vX).

Let U be open in PvX and UNX = H. If x € U\ vH, then U \ vH is
open in PvX and there exists a subset V' € Zp(vX) such that x € V C U \ vH.
By construction, VN X = (). Hence U is a subset of the set vH.

Let U be closed in PvX and UN X = H. Then F = vH \ U is open
in PrX and FNX = (. Hence F = () and vH C F. The assertions 1, 2 and
3 are proved. The assertions 4 and 5 follow from Corollary 2.4. The proof is
complete. [

T o= W N

3. Factorization theorem for measurable mappings.

Definition 3.1. A mapping f: X — Y is called:
— B-measurable of class a if f~1(Zo(Y)) C Zo(X);
— D-measurable if f~1(Zy(Y)) C D(X).

Every B—measurable mapping is D-measurable.

Theorem 3.2. Let f: X — Y be a D-measurable mapping of the space
X onto a separable metric space Y. Then there exist a separable metric space
Z, a continuous mapping g : X — Z and a D—measurable mapping h : Z — 'Y
such that f = hog. In particular, if f is B—measurable of class «, then h is
B-measurable of class o as well.

Proof. Let {H, : n € N} be a closed base of the space Y. Then there
exist a separable metric space Z and a continuous mapping g : X — Z such that:

1. ¢ Y(g(H,)) = H, for all n € N;

2. if F1(Hy) € Zo(X), then g(f~1(Hy)) € Za(Z).

Let h(z) = f(g~'(z)) for every z € Z. Then h(h~'(H,)) = H, and
h=Y(H,) = g(f~'(H,)) for every n € N. Hence h : Z — Y is a single-valued
mapping. Every mapping of a separable metric space is D—measurable. There-
fore, the mapping h is D—measurable. If f is B—measurable of class «a, then
{h"1(H,) : n € N} C B,(Z) and h is B-measurable of class a. The proof is
complete. O
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4. On functionally countable spaces. A space X is functionally count-
able if the set f(X) is countable for each function f € C(X) (see [11]).

R. Levy and N. D. Rice [11] have posed the following question: Let X be
a Lindelof functionally countable space. Does every Baire function on X have a
countable image?

The next theorem contains a positive answer to the R. Levy and H. D.
Rice question.

Theorem 4.1. For every space X the following statements are equiva-
lent:
1. X 1is functionally countable.

2. FEvery Baire function on X has a countable image.

3. For every continuous mapping f : X — Y into a metric space Y the
image f(X) is countable.

4. For every B—measurable mapping f : X — Y into a metric space Y
the image f(X) is countable.

5. For every D—measurable mapping f : X — Y into a metric space Y
the image f(X) is countable.

6. Every D-measurable image of X is functionally countable.

Proof. A metric space is functionally countable if and only if it is count-
able. Hence, the implications 6 — 5 —-4 —-3 — 1,1 -3 and4 — 2 — 1 are
immediate.

Let X be a functionally countable space and ¢ : X MY be a D-
measurable mapping. Fix a continuous function g € C(Y). The mapping ¢ =
gop : X — Ris D-measurable. By virtue of Theorem 3.2, there exist a separable
metric space Z, a continuous mapping h : X — Z and a mapping f : Z — R
such that ¢ = ho f.

By implication 1 — 3, the image h(X) is countable. Hence the set g(Y) =
P(X) = f(h(X)) is countable. This proves the implication 1 — 6. The proof is
complete. [

Corollary 4.2. A B-measurable image of a functionally countable space
1s functionally countable.

Proposition 4.3. A space X is functionally countable if and only if the
space vX is functionally countable.

Proof. If f: vX — R is a continuous function, then f(rvX) = f(X).
This completes the proof. O
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Proposition 4.4. If PX is a Lindeldf space, then X and PX are
functionally countable spaces.

Proof. Let f € C(X). Then f : PX — PR is continuous and v =
{fYx) : » € f(X)} is a discrete open cover of PX. Hence v is a countable
cover and the image f(X) is countable. The proof is complete. [

A space is scattered if every non-empty subspace contains an isolated
point. A compact space is functionally countable if and only if it is scattered (see
[7, 11, 12, 13]).

Proposition 4.5. For a space X the following statements are equivalent:
. X is functionally countable and pseudocompact.

. BX is functionally countable.

. BX is scattered.

. Zq(X) = D(X) and X is pseudocompact.

. Z1(X) = D(X) and X is pseudocompact.

Proof. The implications 2 — 3 — 2 are proved in [11, 12, 13].

Let X be a functionally countable pseudocompact space. Fix a continuous
mapping f: X — Y onto a metric space Y. Then Y is a compact space and, by
virtue of Theorem 4.1, Y is countable. Hence f~'H € Z;(X) for every H C Y.
Therefore, D(X) C Z;(X) and the implication 1 — 5 is proved.

The implication 5 — 4 is obvious.

Let X be a pseudocompact space, f € C(X) and Y = f(X) be uncount-
able. Then there exists some subset H ¢ Zq(Y). In [1, Theorem 3.4] it is proved:
L € Zq(Y) if and only if f~1(H) € Zo(X). Hence f~Y(H) € D(X) \ Za(X).
This proves the implication 4 — 1. The proof is complete. O

N

ot

Question 4.6. Let X and Y be functionally countable spaces. Is X XY
functionally countable?

5. Extension of mappings.

Theorem 5.1. Let ¢,¢ : PuX — Y be a continuous mappings into a
space Y. If o\ x = x, then ¢ = 1.

Proof. The set X is dense in PvX. Theorem 2.1.9 [4] completes the
proof. O

Corollary 5.2. Let p,% : vX — Y be D-measurable or B—measurable
mappings. If o\ x = \x, then p = 1.
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Theorem 5.3. Let ¢ : X — Y be a D-measurable mapping. Then there
exists a unique D—measurable mapping vy : vX — vY such that:

L. o=vpx.

2. If ¢ is a B-measurable mapping of class o < ), then vy is a B-
measurable mapping of class a as well.

3. IfY is a complete separable metric space, then there exists a D—
measurable mapping B : X — Y such that ¢ = By x.

4. If Y is a complete separable metric space and ¢ is a B—measurable
mapping of class o < ), then there ewxist an ordinal number ¢ < Q, a set X, €
Z¢+1(BX) and a B-measurable mapping by : X, — Y of class ¢ such that { < «
and ¢ =bp|x.

Proof. Suppose that Y is a separable metric space. By Theorem 3.2
there exist a separable metric space Z, a continuous mapping f : X — Z and a
mapping g : Z — Y such that ¢ = go f and if ¢ is a Baire measurable mapping of
class a, then g is a Baire measurable mapping of class «, too. Let vf : v X — Z
be a continuous extension of f. Then vp =govf.

Let bZ be a metrizable compactification of a space Z and 8f : BX — bZ
be a continuous extension of f.

Let Y be a complete separable metric space and p be a complete metric
on Y. We fix a family {F,,, : m,n € N} of closed subsets of ¥ such that:

1. Y =U{F,, :m e N}

2. diam F,,, < 27".

Let Hpp = Fpp \ U{F}y; : @ < m}. Fix the sets {W,,, € D(BX) : n,m €
N} with the properties:

3. Wy N X = o~ (Hpm).

4 Wi N Wy =0 if m < k.

5 W, =U{Wym :m e N} CU{Wyg,, : m € N} if k < n.

By construction, W = n{W,, : n € N} € D(3X). Let x € W. Then there
exists a unique sequence m(z) = {my(x) : n € N} such that x € {W,,, () :
n € N}. We put Bp(x) = W Fym, @) : 7 € N}. The mapping S : W — Y is
D-measurable and ¢ = By x. Fix a point b € Y. We put Byp(zr) = b for all
x € X \ W. Then the mapping Sy : X — Y is D— measurable.

Let Y be a complete separable metric space and ¢ be a B-measurable
mapping of class a. Then for some ¢ < «, ¢ is a B-measurable mapping of class
¢ and ¢ < 2. By virtue of the K. Kuratowski theorem [10, 35, Section VI] there
exist a Baire set H € Z¢1(bZ) and a B-measurable mapping 1 : H — Y of class
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¢ such that Z C H and g = z. We put X, = Bf~Y(H) and Bp(x) = (Bf(x))
for every z € X,,.

The assertions 3 and 4 are proved.

The mapping ¢ : PX — Y is continuous. For every f € C(Y) there exists
a unique D—measurable mapping vx f : vX — R such that vx f(z) = f(p(z)) for
every x € X and vx f(vX) = f(Y). If ¢ is a B-measurable mapping of class a,
then vx f € By(vX). Fix a pair Fy, F, of disjoint closed subsets of Y. There
exists a continuous function g : Y — [0,1], such that I} C ¢g=*(0) and F, C
g 1(1). Let f = gy and h be a continuous extension of the function vx F over
BPrX. Then = 1(Fy) C h=1(0) and ¢~ 1(Fy) C h~1(1). By virtue of the A. D.
Taimanov theorem [10, Theorem 3.2.1], there exists a unique continuous mapping
Y : BPvX — BY such that ¢ = ¢x. Let y € BY \ Y. Then there exists a set
H € Zy(BY) such that y € H C BY \ Y. By construction, v~ (H) C Zo(BPvX)
and ¥ 1(H) N X = (. Hence v '(H)N PvX = () and ¢ t(vY) C PvX.
Therefore vy = ¢|p,x : PvX — vY is a continuous extension of the mapping
: PX =Y. If h€ C(vY) and f = hyy, then vx f(z) = h(vp(z)) for every
r € vX. Hence vo~1(h71(0)) = vx f~1(0). In particular: if ¢ is D-measurable,
then vy is also D-measurable; if ¢ is B—measurable of class «, then vy is B—
measurable of class «, too. The proof is complete. O

Corollary 5.4 (P. R. Mayer [7, Theorem 7]). Ewvery f € Bo(X) has a
unique extension to an vf € By(vX).

Remark 5.5. For a paracompact X the assertion 4 of a Theorem 5.3
was proved in [5].

6. Extension of zero-sets.

Theorem 6.1. Let X be a dense subspace of a realcompact space Y .
Then the following statements are equivalent:
1. Y =vX.

2. For every H € Zy(X) there exists a unique ® € Zy(Y) such that
dNX =H.

3. For every H € Zy(X) there exists a unique ® € D(Y) such that
dNX=H.

4. For every H € Bq(X) there exists a unique ® € Bq(Y) such that
dNX=H.

5. For every H € D(X) there exists a unique ® € D(Y) such that
dNX=H.
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6. For every f € C(X) there exists a unique D-measurable extension
g:Y —R.

Proof. The implication 1 — 6 follows from Theorem 5.3.

Let H € D(X), L,® € D(Y) and H = LN X = &N X. Consider the
functions f : X — R and ¢, : Y — R, where f~1(0) = H, f~1(1) = X \ H,
e 1(0) =L, o' (1) =Y\ L, ¢~ (1) = Y \ ® and " 1(0) = ®. Then ¢x =
ox = [ and f, ¢, ¢ are D-measurable functions. This proves the implications
6—56—4,6—3and 6 — 2.

Suppose that for every H € Zy(X) there exists a unique ® € Zy(Y') such
that ® N X = H. There exists a continuous mapping h : X — GY such that
h(z) = = for every x € X. Let y € Y, 21,72 € h™1(y) and 21 # z2. There
exist closed subsets Hy, Hy € Zy(3X) and open subsets Vi, V5 of X such that
HNHy=0,21 € Vi C H and 23 € Vo C Hy. Let ®,®5 € Zo(ﬂY) and
o1NX =HNX,P,NX = HyNX. By construction, h(Hy) C @1, h(Hz) C Do,
y e P NPy € Zy(fY) and PNX =0. Hence )NX =dNX =0 € Zy(Y)
and () # ®. Therefore the mapping h is one-to-one, ¥ C X = Y and Y =
BX\U{H € Zy(5X) : HN X =0} = vX. The proof is complete. [
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