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Abstract. The concept of the distinguished sets is applied to the inves-
tigation of the functionally countable spaces. It is proved that every Baire
function on a functionally countable space has a countable image. This is a
positive answer to a question of R. Levy and W. D. Rice.

0. Introduction. The present work deals with the properties of distin-
guished subsets in Tychonov spaces and spaces of functions.

Section 1 presents the basic definitions and notions used in this paper. In
Section 2 we discuss the concept of a distinguished subset. Every Baire set is a
distinguished set. In Section 3 a factorization theorem for measurable mappings
into a separable metric space is proved. For Baire measurable mappings more
general results were obtained in [2]. Section 4 contains a positive answer to the
question posed by R. Levy and M. D. Rice [11]. The extensions of measurable
mappings are studied in Sections 5 and 6. Section 7 presents some results on
extensions of zero-sets.
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1. Preliminary results, definitions and notations. We consider
only Tychonov spaces. We shall use the notations and terminology from [4]. In
particular, βX is the Stone-Čech compactification of the space X, clXH or cl H
denotes the closure of a set H in X, |X| is the cardinality of X, N = {1, 2, 3, . . .},
the symbol R will denote the topological field of real numbers.

Fix a space X. By C(X) we denote the space of all continuous real-
valued functions on X. Let B0(X) = C(X) and inductively define the α Baire
class Bα(X) for each ordinal α ≤ Ω (Ω denotes the first uncountable ordinal) to
be the space of pointwise limits of sequences of functions in ∪{Bβ(X) : β < α}.
For every function f : X → R we denote Z(f) = f−1(0) and CZ(f) = X \Z(f).
We put Zα(X) = {Z(f) : f ∈ Bα(X)} = {f−1F : F is a closed subset of R},
CZα(X) = {CZ(f) : f ∈ Bα(X)}, Zα(X) ∩ CZα(X) = Aα(X). The class
Zα(X) (class CZα(X)) is a multiplicative (additive) class α of Baire sets of the
space X. The sets Aα(X) are called the sets of ambiguous Baire class α.

Let PX be the set X with the topology generated by the Gδ–sets in the
space X. The topology of the space PX is called the Baire topology of the space
X. For every α ≥ 0 the classes Zα(X), CZ1+α(X), A1+α(X) are open bases of
the space PX.

A space X is called a P–space if X = PX.
A space is realcompact if it is homeomorphic to a closed subspace of a

product of real lines. Denote by νX the Hewitt real-compactification of the space
X. From [4, Theorem 3.11.10] we have νX = ∩{U ∈ CZ0(βX) : X ⊆ U} =
∩{Y ⊆ βX : X ⊆ Y and Y is a realcompact subspace} = βX \∪{H ∈ Z0(βR) :
X ∩H = ∅}.

The discrete space of cardinality c = 2ℵ0 will be denoted by D(c). We
consider that D(c) = PR.

Lemma 1.1. Let X be a realcompact space. Then PX is homeomorphic
to a closed subspace of the Cartesian product D(c)C(X).

P r o o f. For every f ∈ C(X) the mapping f : PX → PR = D(c) is
continuous. The mapping ϕ : X → R

C(X), where ϕ(x) = {f(x) : f ∈ C(X)}
is an embedding and X = ϕ(X) is a closed subspace of R

C(X). The mapping
ϕ : PX → (PR)C(X) = D(c)C(X) is an embedding. Hence PX = ϕ(PX) is a
closed subspace of D(c)C(X). �

Corollary 1.2. Let X be a realcompact space. Then PX is realcompact.

Lemma 1.3. Zα(X) = {X ∩ H : H ∈ Zα(β(X)} and CZα(X) =
= {X ∩H : H ∈ CZα(βX)} for all α ≤ Ω and every space X.

P r o o f. Follows from equality Z0(X) = {X ∩H : H ∈ Z0(βX)}. �
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2. On distinguished subsets. A subset H of a space X is called dis-
tinguished if there exist a separable metric space Y and a continuous mapping
h : X → Y such that H = h−1(h(H)).

By D(X) we denote the class of all distinguished subsets of a space X.
Let 2N be the family of all subsets of the set N. Fix a subset B ⊆ 2N. For

every sequence {Hn : n ∈ N} of subsets of X we define

ΨB{Hn} = ∪{(∩{Hn : n ∈ ξ}) ∩ (∩{X \Hn : n ∈ N \ ξ}) : ξ ∈ B},

ΦB{Hn} = ∪{∩{Hn : n ∈ ξ} : ξ ∈ B}.

The operation ΨB is called a ts–operation with a base B and ΦB is called
a δs–operation with a base B.

If B ⊆ 2N and A = {ξ ⊆ N : η ⊆ ξ for some η ∈ B}, then ΨA{Hn} =
ΦA{Hn} = ΦB{Hn} for every sequence {Hn : n ∈ N} of subsets of X. Hence
every δs–operation is a ts–operation (see [6, 9, 8, 3]).

For every ts–operation Ψ and family L of subsets of a space X we put
Ψ(L) = {Ψ{En} : {En : n ∈ N} ⊆ L}.

Let Ψ(X) = Ψ(Z0(X)) for every space X.

Lemma 2.1. ΨB(D(X)) ⊆ D(X).

P r o o f. Let {Hn : n ∈ N} ⊆ D(X). For every n ∈ N fix a separable metric
space Yn and a continuous mapping fn : X → Yn such that Hn = f−1

n (fn(Hn)).
Consider the continuous mapping f : X → Y = f(x) ⊆

∏
{Yn : n ∈ N}, where

f(x) = {fn(x) : n ∈ N} for every x ∈ X. By construction f−1(f(Hn)) =
Hn for every n ∈ N. Hence f−1(f(ΨB{Hn})) = ΨB{Hn} and f(ΨB{Hn}) =
ΨB{f(Hn)}. �

Corollary 2.2. ΨB(X) ⊆ D(X).

Corollary 2.3. D(X) is a σ-algebra of open and closed subsets of the
space PX.

Corollary 2.4. Let {Hn : n ∈ N} ⊆ ΨB(X). Then there exist a
separable metric space Y and a continuous mapping h : X → Y such that h(Hn) ∈
ΨB(Y ) and Hn = h−1(h(Hn)) for every n ∈ N.

Corollary 2.5. ZΩ(X) ⊆ D(X) for every space X.

Theorem 2.6. Let X be a space and H ∈ D(X). Then there exists a
unique subset νH ∈ D(νX) such that:

1. νH ∩X = H.
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2. If U is open in PνX and U ∩X = H, then U ⊆ νH.

3. If U is open and closed in PνX and U ∩X = H, then U = νH.

4. If B ⊆ 2N and H ∈ ΨB(X), then νH ∈ ΨB(νX).

5. If H ∈ Zα(X), then νH ∈ Zα(νX).

P r o o f. Let f : X → Y be a continuous mapping onto a separable metric
space Y and f−1(f(H)) = H. There exists a continuous extension νf : νX → Y
of the mapping f on νX. Let νH = νf−1(νf(H)). By construction νH ∩X = H
and νH ∈ D(νX).

Let U be open in PνX and U ∩X = H. If x ∈ U \ νH, then U \ νH is
open in PνX and there exists a subset V ∈ Z0(νX) such that x ∈ V ⊆ U \ νH.
By construction, V ∩X = ∅. Hence U is a subset of the set νH.

Let U be closed in PνX and U ∩ X = H. Then F = νH \ U is open
in PνX and F ∩ X = ∅. Hence F = ∅ and νH ⊆ F . The assertions 1, 2 and
3 are proved. The assertions 4 and 5 follow from Corollary 2.4. The proof is
complete. �

3. Factorization theorem for measurable mappings.

Definition 3.1. A mapping f : X → Y is called:
— B–measurable of class α if f−1(Z0(Y )) ⊆ Zα(X);
— D–measurable if f−1(Z0(Y )) ⊆ D(X).

Every B–measurable mapping is D-measurable.

Theorem 3.2. Let f : X → Y be a D–measurable mapping of the space
X onto a separable metric space Y . Then there exist a separable metric space
Z, a continuous mapping g : X → Z and a D–measurable mapping h : Z → Y
such that f = h ◦ g. In particular, if f is B–measurable of class α, then h is
B–measurable of class α as well.

P r o o f. Let {Hn : n ∈ N} be a closed base of the space Y . Then there
exist a separable metric space Z and a continuous mapping g : X → Z such that:

1. g−1(g(Hn)) = Hn for all n ∈ N;
2. if f−1(Hn) ∈ Zα(X), then g(f−1(Hn)) ∈ Zα(Z).
Let h(z) = f(g−1(z)) for every z ∈ Z. Then h(h−1(Hn)) = Hn and

h−1(Hn) = g(f−1(Hn)) for every n ∈ N. Hence h : Z → Y is a single-valued
mapping. Every mapping of a separable metric space is D–measurable. There-
fore, the mapping h is D–measurable. If f is B–measurable of class α, then
{h−1(Hn) : n ∈ N} ⊆ Bα(Z) and h is B–measurable of class α. The proof is
complete. �
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4. On functionally countable spaces. A spaceX is functionally count-
able if the set f(X) is countable for each function f ∈ C(X) (see [11]).

R. Levy and N. D. Rice [11] have posed the following question: Let X be
a Lindelöf functionally countable space. Does every Baire function on X have a
countable image?

The next theorem contains a positive answer to the R. Levy and H. D.
Rice question.

Theorem 4.1. For every space X the following statements are equiva-
lent:

1. X is functionally countable.

2. Every Baire function on X has a countable image.

3. For every continuous mapping f : X → Y into a metric space Y the
image f(X) is countable.

4. For every B–measurable mapping f : X → Y into a metric space Y
the image f(X) is countable.

5. For every D–measurable mapping f : X → Y into a metric space Y
the image f(X) is countable.

6. Every D–measurable image of X is functionally countable.

P r o o f. A metric space is functionally countable if and only if it is count-
able. Hence, the implications 6 → 5 → 4 → 3 → 1, 1 → 3 and 4 → 2 → 1 are
immediate.

Let X be a functionally countable space and ϕ : X
onto
−→ Y be a D–

measurable mapping. Fix a continuous function g ∈ C(Y ). The mapping ψ =
g◦ϕ : X → R is D–measurable. By virtue of Theorem 3.2, there exist a separable
metric space Z, a continuous mapping h : X → Z and a mapping f : Z → R

such that ψ = h ◦ f .

By implication 1 → 3, the image h(X) is countable. Hence the set g(Y ) =
ψ(X) = f(h(X)) is countable. This proves the implication 1 → 6. The proof is
complete. �

Corollary 4.2. A B–measurable image of a functionally countable space
is functionally countable.

Proposition 4.3. A space X is functionally countable if and only if the
space νX is functionally countable.

P r o o f. If f : νX → R is a continuous function, then f(νX) = f(X).
This completes the proof. �
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Proposition 4.4. If PX is a Lindelöf space, then X and PX are
functionally countable spaces.

P r o o f. Let f ∈ C(X). Then f : PX → PR is continuous and γ =
{f−1(x) : x ∈ f(X)} is a discrete open cover of PX. Hence γ is a countable
cover and the image f(X) is countable. The proof is complete. �

A space is scattered if every non-empty subspace contains an isolated
point. A compact space is functionally countable if and only if it is scattered (see
[7, 11, 12, 13]).

Proposition 4.5. For a space X the following statements are equivalent:

1. X is functionally countable and pseudocompact.

2. βX is functionally countable.

3. βX is scattered.

4. ZΩ(X) = D(X) and X is pseudocompact.

5. Z1(X) = D(X) and X is pseudocompact.

P r o o f. The implications 2 → 3 → 2 are proved in [11, 12, 13].

Let X be a functionally countable pseudocompact space. Fix a continuous
mapping f : X → Y onto a metric space Y . Then Y is a compact space and, by
virtue of Theorem 4.1, Y is countable. Hence f−1H ∈ Z1(X) for every H ⊆ Y .
Therefore, D(X) ⊆ Z1(X) and the implication 1 → 5 is proved.

The implication 5 → 4 is obvious.

Let X be a pseudocompact space, f ∈ C(X) and Y = f(X) be uncount-
able. Then there exists some subset H /∈ ZΩ(Y ). In [1, Theorem 3.4] it is proved:
L ∈ ZΩ(Y ) if and only if f−1(H) ∈ ZΩ(X). Hence f−1(H) ∈ D(X) \ ZΩ(X).
This proves the implication 4 → 1. The proof is complete. �

Question 4.6. Let X and Y be functionally countable spaces. Is X×Y
functionally countable?

5. Extension of mappings.

Theorem 5.1. Let ϕ,ψ : PνX → Y be a continuous mappings into a
space Y . If ϕ|X = ψ|X , then ϕ = ψ.

P r o o f. The set X is dense in PνX. Theorem 2.1.9 [4] completes the
proof. �

Corollary 5.2. Let ϕ,ψ : νX → Y be D–measurable or B–measurable
mappings. If ϕ|X = ψ|X , then ϕ = ψ.
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Theorem 5.3. Let ϕ : X → Y be a D–measurable mapping. Then there
exists a unique D–measurable mapping νϕ : νX → νY such that:

1. ϕ = νϕ|X .

2. If ϕ is a B–measurable mapping of class α ≤ Ω, then νϕ is a B–
measurable mapping of class α as well.

3. If Y is a complete separable metric space, then there exists a D–
measurable mapping βϕ : βX → Y such that ϕ = βϕ|X .

4. If Y is a complete separable metric space and ϕ is a B–measurable
mapping of class α ≤ Ω, then there exist an ordinal number ζ < Ω, a set Xϕ ∈
Zζ+1(βX) and a B–measurable mapping bϕ : Xϕ → Y of class ζ such that ζ ≤ α
and ϕ = bϕ|X .

P r o o f. Suppose that Y is a separable metric space. By Theorem 3.2
there exist a separable metric space Z, a continuous mapping f : X → Z and a
mapping g : Z → Y such that ϕ = g◦f and if ϕ is a Baire measurable mapping of
class α, then g is a Baire measurable mapping of class α, too. Let νf : νX → Z
be a continuous extension of f . Then νϕ = g ◦ νf .

Let bZ be a metrizable compactification of a space Z and βf : βX → bZ
be a continuous extension of f .

Let Y be a complete separable metric space and ρ be a complete metric
on Y . We fix a family {Fnm : m,n ∈ N} of closed subsets of Y such that:

1. Y = ∪{Fnm : m ∈ N}.

2. diamFnm < 2−n.

Let Hnm = Fnm \ ∪{Fni : i < m}. Fix the sets {Wnm ∈ D(βX) : n,m ∈
N} with the properties:

3. Wnm ∩X = ϕ−1(Hnm).

4. Wnm ∩Wnk = ∅ if m < k.

5. Wn = ∪{Wnm : m ∈ N} ⊆ ∪{Wkm : m ∈ N} if k < n.

By construction, W = ∩{Wn : n ∈ N} ∈ D(βX). Let x ∈W . Then there
exists a unique sequence m(x) = {mn(x) : n ∈ N} such that x ∈ ∩{Wnmn(x) :
n ∈ N}. We put βϕ(x) = ∩{Fnmn(x) : n ∈ N}. The mapping βϕ : W → Y is
D–measurable and ϕ = βϕ|X . Fix a point b ∈ Y . We put βϕ(x) = b for all
x ∈ βX \W . Then the mapping βϕ : βX → Y is D– measurable.

Let Y be a complete separable metric space and ϕ be a B–measurable
mapping of class α. Then for some ζ ≤ α, ϕ is a B–measurable mapping of class
ζ and ζ < Ω. By virtue of the K. Kuratowski theorem [10, 35, Section VI] there
exist a Baire set H ∈ Zζ+1(bZ) and a B–measurable mapping ψ : H → Y of class
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ζ such that Z ⊆ H and g = ψ|Z . We put Xϕ = βf−1(H) and βϕ(x) = ψ(βf(x))
for every x ∈ Xϕ.

The assertions 3 and 4 are proved.

The mapping ϕ : PX → Y is continuous. For every f ∈ C(Y ) there exists
a unique D–measurable mapping νXf : νX → R such that νXf(x) = f(ϕ(x)) for
every x ∈ X and νXf(νX) = f(Y ). If ϕ is a B–measurable mapping of class α,
then νXf ∈ Bα(νX). Fix a pair F1, F2 of disjoint closed subsets of βY . There
exists a continuous function g : βY → [0, 1], such that F1 ⊆ g−1(0) and F2 ⊆
g−1(1). Let f = g|Y and h be a continuous extension of the function νXF over
βPνX. Then ϕ−1(F1) ⊆ h−1(0) and ϕ−1(F2) ⊆ h−1(1). By virtue of the A. D.
Taimanov theorem [10, Theorem 3.2.1], there exists a unique continuous mapping
ψ : βPνX → βY such that ϕ = ψ|X . Let y ∈ βY \ Y . Then there exists a set
H ∈ Z0(βY ) such that y ∈ H ⊆ βY \ Y . By construction, ψ−1(H) ⊆ Z0(βPνX)
and ψ−1(H) ∩ X = ∅. Hence ψ−1(H) ∩ PνX = ∅ and ψ−1(νY ) ⊆ PνX.
Therefore νϕ = ψ|PνX : PνX → νY is a continuous extension of the mapping
ϕ : PX → Y . If h ∈ C(νY ) and f = h|Y , then νXf(x) = h(νϕ(x)) for every
x ∈ νX. Hence νϕ−1(h−1(0)) = νXf

−1(0). In particular: if ϕ is D–measurable,
then νϕ is also D–measurable; if ϕ is B–measurable of class α, then νϕ is B–
measurable of class α, too. The proof is complete. �

Corollary 5.4 (P. R. Mayer [7, Theorem 7]). Every f ∈ Bα(X) has a
unique extension to an νf ∈ Bα(νX).

Remark 5.5. For a paracompact X the assertion 4 of a Theorem 5.3
was proved in [5].

6. Extension of zero-sets.

Theorem 6.1. Let X be a dense subspace of a realcompact space Y .
Then the following statements are equivalent:

1. Y = νX.

2. For every H ∈ Z0(X) there exists a unique Φ ∈ Z0(Y ) such that
Φ ∩X = H.

3. For every H ∈ Z0(X) there exists a unique Φ ∈ D(Y ) such that
Φ ∩X = H.

4. For every H ∈ BΩ(X) there exists a unique Φ ∈ BΩ(Y ) such that
Φ ∩X = H.

5. For every H ∈ D(X) there exists a unique Φ ∈ D(Y ) such that
Φ ∩X = H.
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6. For every f ∈ C(X) there exists a unique D–measurable extension
g : Y → R.

P r o o f. The implication 1 → 6 follows from Theorem 5.3.

Let H ∈ D(X), L,Φ ∈ D(Y ) and H = L ∩ X = Φ ∩ X. Consider the
functions f : X → R and ϕ,ψ : Y → R, where f−1(0) = H, f−1(1) = X \ H,
ϕ−1(0) = L, ϕ−1(1) = Y \ L, ψ−1(1) = Y \ Φ and ψ−1(0) = Φ. Then ψ|X =
ϕ|X = f and f , ϕ, ψ are D–measurable functions. This proves the implications
6 → 5, 6 → 4, 6 → 3 and 6 → 2.

Suppose that for every H ∈ Z0(X) there exists a unique Φ ∈ Z0(Y ) such
that Φ ∩ X = H. There exists a continuous mapping h : βX → βY such that
h(x) = x for every x ∈ X. Let y ∈ Y , x1, x2 ∈ h−1(y) and x1 6= x2. There
exist closed subsets H1,H2 ∈ Z0(βX) and open subsets V1, V2 of βX such that
H1 ∩ H2 = ∅, x1 ∈ V1 ⊆ H1 and x2 ∈ V2 ⊆ H2. Let Φ1,Φ2 ∈ Z0(βY ) and
Φ1 ∩X = H1 ∩X, Φ2 ∩X = H2 ∩X. By construction, h(H1) ⊆ Φ1, h(H2) ⊆ Φ2,
y ∈ Φ1 ∩ Φ2 ∈ Z0(βY ) and Φ ∩ X = ∅. Hence ∅ ∩ X = Φ ∩ X = ∅ ∈ Z0(Y )
and ∅ 6= Φ. Therefore the mapping h is one–to–one, Y ⊆ βX = βY and Y =
βX \ ∪{H ∈ Z0(βX) : H ∩X = ∅} = νX. The proof is complete. �

REF ERENC ES

[1] M. N. Choban. Baire sets in complete topological spaces. Ukrainskii
Matem. Zhurnal 22 (1970), 330-342, (in Russian)?.

[2] M. M. Choban. Continuous images of complete spaces. Trans. Moscow
Math. Soc. 30 (1974), 25-65, (in Russian)?.

[3] M. M. Choban. On the operations on sets. Sibirskii Matem. Zhurnal 16,
6 (1975), 1332-1351.

[4] R. Engelking. General Topology. PWN, Warsaw, 1977.

[5] R. W. Hansell. On Borel mappings and Baire functions. Trans. Amer.
Math. Soc. 194 (1974), 195-211.

[6] F. Hausdorff. Set Theory. Chelsca, New York, 1957.

[7] J. E. Jayne. Spaces of Baire functions. Ann. Inst. Fourier (Grenoble) 24,
4 (1974), 47-76.



242 M. M. Choban

[8] L. V. Kantorovich, E. N. Livenson. Memoir on the analytical sets.
Fund. Math. 18 (1932), 214-279.

[9] A. N. Kolmogorov. On the operations on sets. Matem. zbornic 35, 3

(1928), 416-422, (in Russian)?.

[10] K. Kuratowskii. Topology, vol. 1, Academic Press, New York, 1966.

[11] R. Levy, N. D. Rice. Normal p-spaces and the Gδ–topology. Colloq.
Math. 44, 1 (1981), 277-240.

[12] A. Pelczynski, Z. Semadeni. Spaces of continuous functions III. Studia
Math. 18 (1959), 211-222.

[13] W. Rudin. Continuous functions on compact spaces without perfect sub-
sets. Proc. Amer. Math. Soc. 8 (1957), 39-42.

Krasnodonskaya 72, kv. 119

278000 Tiraspol

Moldova Received November 3, 1995


