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INVOLUTIVITY AND SIMPLE WAVES IN R
2

Dimitar Kolev

Communicated by F. Colombini

Abstract. A strictly hyperbolic quasi-linear 2× 2 system in two indepen-
dent variables with C2 coefficients is considered. The existence of a simple
wave solution in the sense that the solution is a 2-dimensional vector-valued
function of the so called Riemann invariant is discussed. It is shown, through
a purely geometrical approach, that there always exists simple wave solu-
tion for the general system when the coefficients are arbitrary C2 functions
depending on both, dependent and independent variables.

1. Introduction. We consider the quasi-linear system
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1(x, u)∂2u
1 + a1

2(x, u)∂2u
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2(x, u)∂2u
2 ,

where u ≡ t(u1, u2) is an unknown vector valued function; x ≡ t(x1, x2) is an

independent variable; ∂k ≡ ∂/∂xk; the coefficients ai
j(x, u) (i, j = 1, 2) are C2

functions of x and u.

The problem for the existence of symple wave solutions for similar systems

in R
n (n ≥ 2) is considered by Z. Peradzinski in [3] but he gives neither methods
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for finding them nor conditions for their existence. Some geometrical properties

of such systems are discussed by J. Tabov in [5] and [6]. He proposes an idea

of finding simple wave solutions and gives necessary and sufficient conditions for

their existence. However, these conditions are in such a general form, that a

priori it is not clear whether in the hyperbolic case simple waves do always exist,

as in the case when ai
j (i, j = 1, 2) depend only on u and do not depend on x (see

e.g. A. Jeffrey [1]). We show that, for arbitrary coefficients ai
j (i, j = 1, 2) which

are C2 functions of (x, u) the system (1) possesses always simple wave solution.

The paper consists of four sections. The basic definitions and results are

given in Section 2. In Section 3 we derive conditions for the solvability of the

system (1). In Section 4 we show the main result (Theorem 4), that the general

hyperbolic system (1) possesses at least one simple wave solution.

2. Basic definitions and results. We begin this section by quoting an

important definition.

Definition (M. Burnat [2]). We say that a solution u(x) of the system

(1) is constructed by means of Riemann invariants if it is of the form

(2) ui(x) = vi(R(x)) (i = 1, 2)

where vi(z) (i = 1, 2) are functions of a single variable and R(x) is a suitable

function, called Riemann invariant.

If the system (1) is homogeneous, then the solution (2) is called a simple

wave, and in the non-homogeneous case it is called a simple state.

Following the Pfaff theory the system (1) can be written in differential

forms. For that purpose we let x3 ≡ ∂2u
2, x4 ≡ u1, x5 ≡ u2, x ≡ t(x1, . . . , x5),

dx ≡ t(dx1, . . . , dx5). Then the desired Pfaffian differential system takes the form

(3) w1(dx) = 0 , w2(dx) = 0 ,

where wi (i = 1, 2) are differential forms and dx is a five-dimensional vector field.

For (3) there are three linearly independent vector fields ξ1, ξ2, ξ3, annihilating

the forms wi (i = 1, 2), i.e. wi(ξk) = 0 (i = 1, 2; k = 1, 2, 3); so we determine

a distribution θ(x) as a linear hull of ξ1, ξ2, ξ3. Thus, in accordance with the

theory any pair of linearly independent vector fields η01, η02 ∈ θ(x) determines a
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two-dimensional subdistribution θ1(x) ⊂ θ(x) as a linear hull of these two fields.

If the commutator of η01 and η02

(4) [η01, η02] = {ηj
01

(∂jη
k
02) − ηj

02
(∂jη

k
01)}∂k (j, k = 1, . . . , 5),

belongs to θ1(x), then θ1(x) is called an involutive subdistribution. Taking into

account the Fröbenius theorem, provided that θ1(x) is completely integrable, it

follows that the system

(5) η01Φ(x) = 0, η02Φ(x) = 0,

(Φ(x) is the unknown function) possesses three functionally independent solutions

(6) Φi(x) = ci (ci ≡ const ; i = 1, 2, 3).

By means of the implicit function theorem it can be found the so called simple

wave solution for the system (3) in the form of set of three functions, namely

xj = xj(x1, x2) (j = 3, 4, 5).

However, it is not known a priori whether the involutive subdistribution

θ1(x) ⊂ θ(x), will always exist. We discuss this question in Section 4 (Theorem

4).

3. Involutive subdistributions of θ(x). The following lemma is due

to Grundland [4]:

Lemma 1 (Grundland [4]). The functions ui(x) (i = 1, 2) can be

represented in the form (2) if and only if ∇u1 and ∇u2 are collinear at each

point, i.e.

(7) ∂1u
1∂2u

2 = ∂2u
1∂1u

2.

Hence we have:

Theorem 1 (Tabov [6]). The vector-function t(u1, u2) is a solution

constructed by Riemann invariants for (1) if and only if t(u1, u2) is a solution of

the following system:

(8)
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Further, replacing ∂1u
1 and ∂1u

2 in the third equation of (8) by the

right-hand sides of the first two equations, respectively, we obtain the following

algebraic equation:

(9) a2

1X
2 − (a1

1 − a2

2)XY − a1

2Y
2 = 0.

Since we are interested in strictly hyperbolic systems, let us assume that D ≡

(a1
1−a2

2)
2+4a2

1a
1
2 > 0. By letting K ≡ X/Y in (9) we obtain a quadratic equation

with respect to K whose roots are

(10) K1,2 = (0.5/a2

1)(a
1

1 − a2

2 ± D1/2).

In order to reduce the Pfaffian differential system (3), associated with (8), to

simple terms we let t1 ≡ a1
1(x)K(x) + a1

2(x), t2 ≡ a2
1(x)K(x) + a2

2(x), x ∈ R
5,

where K is either K1 or K2 and thus

(11)

∣

∣

∣

∣

∣

∣

w1(dx) ≡ dx4 − x3t1dx1 − x3Kdx2 = 0

w2(dx) ≡ dx5 − x3t2dx1 − x3dx2 = 0.

The following three linearly independent vector fields

(12) ξ1 = t(0, 0, 1, 0, 0), ξ2 = t(1, 0, 0, x3t1, x
3t2), ξ3 = t(0, 1, 0, x3K,x3)

satisfy the system (11), i.e. wi(ξk) = 0 (i = 1, 2; k = 1, 2, 3).

The linear hull of the above three vector fields (12) determines a three-

dimensional distribution θ(x). If we choose a pair of linearly independent vector

fields η01, η02 ∈ θ(x), then their linear hull determines a two-dimensional subdis-

tribution θ1(x) ⊂ θ(x). Thus, if the commutator [η01, η02] ∈ θ1(x), then θ1(x)

will be involutive and from Fröbenius theorem it will follow that θ1(x) is a com-

pletely integrable subdistribution of θ(x). Therefore, the system (5) possesses

three functionally independent solutions written like (6). Having in mind the re-

sults obtained in [6] our first task is to build a basis by the linearly independent

vector fields η01, η02, by which we may find all possible involutive two-dimensional

subdistributions θ1(x) of θ(x).

Let ξ1(x), ξ2(x), ξ3(x) be a basis of the distribution θ(x), then the follow-

ing theorems give us a way to find a pair of suitable vector fields η01, η02.
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Theorem 2 (J. Tabov [6]). There exists only one (up to a scalar

multiplier) vector field η02(x) satisfying the system

(13) wi(η) = 0 (i = 1, 2) , ∂w2(ξj , η) = 0 (j = 1, 2, 3).

Theorem 3 (J. Tabov [6]). If the restriction of ∂w1 on θ(x) is non-

trivial, then there exists only one (up to a scalar multiplier) vector field η01(x)

satisfying the system

(14) wi(η) = 0 (i = 1, 2) , ∂w1(ξj , η) = 0 (j = 1, 2, 3).

Since it is not clear whether the subdistribution θ1(x) (determined as a

linear hull of η01, η02) is involutive, we will consider the following two hypotheses:

(i) If the subdistribution θ1(x) is involutive, then the system of PDEs (5)

has a set of three functionally independent solutions. The following lemma holds.

Lemma 2 (J. Tabov [6]). If there exists a two-dimensional involutive

subdistribution θ1(x) of θ(x), which is the linear hull of the fields η01, η02, then

the system (1) has a solution determined by the implicit function theorem from

any three functionally independent solutions of the system (5). The converse is

also true.

Hence, there exist implicit functions xj = xj(x1, x2) (j = 3, 4, 5) deter-

mined by the system (6), forming a simple wave solution of (11).

(ii) If θ(x) is not involutive, then the system (11) has no solution.

4. Existence of a simple wave. The following lemma is true.

Lemma 3. The vector fields

(15) η01 = pξ1 + Kξ2 − t1ξ3 , η02 = qξ1 + ξ2 − t2ξ3,

where K 6= 0, p ≡ (x3)2(K∂4t1 + ∂5t1 − t1∂4K − t2∂5K) + x3(∂2t1 − ∂1K),

q ≡ (x3)2(K∂4t2+∂5t2)+x3∂2t2 satisfy the conditions of Theorem 3 and Theorem

2, respectively.

P r o o f. Replacing η = η02(x) in the system (13) and η = η01(x) in (14),

respectively we immediately get the statement. �



230 Dimitar Kolev

Let Cj (j = 1, . . . , 5) denote the commutator components in (4), i.e.

[η01, η02] = Cj(x)∂j (j = 1, . . . , 5); then we have

(16)

C1 = −∂1K + t2∂2K ,

C2 = −K∂1t2 + t1∂2t2 + ∂1t1 − t2∂2t1 ,

C3 = K∂1q − t1∂2q + p∂3q − ∂1p + t2∂2p − q∂3p ,

C4 = C5 = 0 .

Theorem 4. The subdistribution θ1(x) ⊂ θ(x), defined as a linear hull

of the vectorial fields η0i(x) (i = 1, 2) (specified in Lemma 3) is involutive and

therefore the system (1) has a simple wave solution.

P r o o f. In order to be involutive the subdistribution θ1(x) spanned by

the pair of vectorial fields η01(x), η02(x) it is necessary and sufficiently to exist

linear dependence between η01(x), η02(x), [η01(x), η02(x)], i.e. the rank of the

matrix

(17) M ≡ (η01, η02, [η01, η02])

should be equal to 2. Let us define the functions

(18)

e(x, P (x), Q(x)) ≡ (pt2 − qt1)P (x) + (p − Kq)Q(x) ,

f(x, P (x), Q(x)) ≡ x3[t1P (x) + KQ(x)] ,

g(x, P (x), Q(x)) ≡ x3[t2P (x) + Q(x)] ,

where K is determined by (9) and P , Q are some scalar C2 functions with respect

to x. �

Lemma 4. If P = C1(x), Q = C2(x), then e ≡ 0, f ≡ 0 and g ≡ 0.

P r o o f. Replacing P = C1(x), Q = C2(x) in the right-hand side of the

functions e, f, g defined by (18) and making use the obvious identity t1−Kt2 ≡ 0

we get the statement. �

Further, having in mind the classical rank theorem, it follows that in

order to have rankM = 2 it is necessary and sufficient each one of the 3 × 3
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determinants constructed by the elements of M to be annihilated, i.e.

△1 ≡
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01(x) η2

01(x) η5
01(x)
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∣

∣

∣

∣

∣

∣

∣

= 0.

Indeed, expanding successively the determinants and having in mind Lemma 4,

we get the equalities △1 = e ≡ 0, △2 = f ≡ 0, △3 = g ≡ 0. Further, taking

into account Lemma 2, we infer that the system (1) has a simple wave solution

obtained by means of the implicit function theorem, namely uj = uj(x1, x2)

(j = 1, 2) satisfying the system (8) as well. �

The last result (Theorem 4) shows, that for arbitrary coefficients ai
j(x, u)

(i, j = 1, 2) which are C2 functions, the strictly hyperbolic system (1) possesses

always a simple wave solution, which can be found following the method sketched

in Section 3 (see [6] as well). The above stated result gives the existence only of

a simple wave solution. However, for certain hyperbolic systems of type (1) there

may exist another type of solutions save the always existing simple wave. By

means of both Grundland’s Lemma 1 and Theorem 4 it is possible to be clarified

what type of solution has been found.
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